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8 Abstract

9 In this paper, a new nonlinear predictive control scheme is proposed for a five-link planar under-actuated biped walking robot. The
10 basic feature in the proposed strategy is to use on-line optimization to update the tracked trajectories in the completely controlled vari-
11 ables (actuated coordinates) in order to enhance the behavior and the stability of the remaining indirectly controlled ones (unactuated
12 coordinates). The stability issue is discussed using the Poincaré’s section tool leading to a computable criterion that enables the stability
13 of the overall scheme to be investigated as well as the computation of a candidate region of attraction. The whole framework is illustrated
14 through simulation case-studies. To attest the efficiency of the proposed scheme, robustness against model uncertainties and ground
15 irregularities are investigated by simulation studies.
16 � 2006 Elsevier Ltd. All rights reserved.

17 Keywords: Biped robots; Dynamic walking; Multi-step limit cycle; Nonlinear optimization; Nonlinear predictive control; Orbital stability

18 Résumé

19 Dans cet article une nouvelle approche de commande prédictive non linéaire est proposée pour un robot marcheur bipède à cinq seg-
20 ments sous actionné. La caractéristique principale dans la stratégie proposée est d’utiliser l’optimisation en-ligne pour mettre à jour les
21 trajectoires à poursuivre sur les variables complètement commandables (coordonnées actionnées) dans le but d’améliorer le comporte-
22 ment et la stabilité des variables indirectement commandées (coordonnées non actionnés). La stabilité est analysée par un outil graphique
23 basé sur la section de Poincaré. Ceci permet, en plus de l’analyse la stabilité du système en boucle fermée, d’estimer la région d’attraction.
24 L’approche proposée est illustrée à travers différents scénarios de simulations. La robustesse, quant à elle, est analysée par rapport à des
25 incertitudes dans le modèle du robot, et des irrégularités dans le sol.
26 � 2006 Elsevier Ltd. All rights reserved.

27 Motsclés: Robots bipèdes; Marche dynamique; Cycle limite d’ordre multiple; Optimisation non linéaire; Commande prédictive non linéaire; Stabilité
28 orbitale
29

30 1. Introduction

31 In recent years, the robotics community has shown
32 increasing interest in the area of legged walking robots

33[29,2]. An excellent database of climbing and walking
34robots built all over the world can be found in [2]. One
35of the serious reasons for exploring the use of legged robots
36is the mobility [23], there is a need for vehicles that can tra-
37vel in difficult terrains, where existing wheeled vehicles can-
38not go, since wheels excel on prepared surfaces such as rails
39and roads, but they perform poorly on rough terrains.
40Moreover, walking robots could co-exist with their
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41 creators without any costly modification to the environ-
42 ment created for humans.
43 In walking locomotion [23], two gaits could be under-
44 lined. Static walking which refers to a system which stays
45 balanced by always keeping the center of mass (c.o.m.) of
46 the system vertically projected over the polygon of support
47 formed by feet. On the contrary, dynamic walking

48 [24,21,13,22] is not constrained in such a manner, therefore
49 the c.o.m. may leave the support polygon for periods of
50 time. Biped robots [23,34,24] have high mobility that
51 allows them to achieve dynamic walking, consequently high
52 speeds could be reached due to the horizontal acceleration.
53 Currently, many research groups in the world are work-
54 ing on biped robots, either on optimization of leg and foot
55 trajectory, stable walking control, or hardware design. The
56 main thrust of current research on biped control includes
57 many proposed control approaches, such as intuitive con-
58 trol [28], intelligent learning control [19], neural network
59 control [18], passivity based control [33], sliding control
60 [6], impedance control [25], optimal control [14], computed
61 torque control [5], and tracking control [31,30].
62 From a control viewpoint, the major academic interest
63 of bipeds comes from (1) their hybrid nature resulting from
64 the unavoidable impacts [3] with the ground which can pro-
65 duce discontinuities (jumps) in the generalized velocities.
66 (2) Another interesting point is under-actuation, indeed
67 biped walking robots may be under-actuated (case of Rab-
68 bit) that is the robot has fewer number of actuators than
69 the number of degrees of freedom. The way this under-
70 actuation is handled may be used to give a particularly
71 clear insight into the set of solutions proposed so far within
72 the academic control community.

73 1. One way to overcome the under-actuation related-diffi-
74 culty is to define virtual controls [8]. Typically, reference
75 trajectories are defined on the whole state including indi-
76 rectly controlled sub-states. These trajectories are depen-
77 dent on some parameter vector p that can be either a
78 virtual time, a remaining free polynomial coefficient or
79 both. Generally, the second time-derivative of the param-
80 eter p becomes a virtual additional control enabling
81 under-actuation to be conceptually overcome. Clearly,
82 technical details are to be investigated when this second
83 derivative is monitored by the tracking requirements (vir-
84 tual time needs to be monotonic, coefficient excursions
85 have to be compatible with geometric constraints, etc.)
86 The reference trajectories to be trackedmay be computed
87 using classical constrained optimal control tools. Several
88 optimization criterions have been proposed [31,26,30].
89 2. A second way to handle under-actuation is to use the
90 concept of virtual constraints and the associated zero-
91 dynamics [12,35,36]. Namely, some regulated output is
92 suitably defined that can be exactly tracked using the
93 available control inputs. The constrained dynamics of
94 the remaining sub-state on the zero-output manifold is
95 then called the zero-dynamics [17]. This methodology
96 is therefore based on the analytical study of the resulting

97zero-dynamics that corresponds to each particular
98choice of the regulated output. If the latter is taken in
99a parameterized closed-loop form, off-line optimization
100can then be used to enhance the asymptotic stability of
101the zero-dynamics [12,35,36]. A particular feature when
102dealing with the zero-dynamics associated to bipeds is
103their hybrid nature [36].
1043. A third way to handle under-actuation in nonlinear
105dynamical systems is predictive control schemes
106[4,20,11]. Indeed, these schemes ensure stability by con-
107trolling the behavior of the whole state at some future
108time, say N-sampling times ahead. This naturally sup-
109presses under-actuation since the number of control
110d.o.f. is r · N where r is the number of actuators while
111the controlled state is still n-dimensional. Therefore,
112under-actuation generically disappears as soon as
113NrP n.
114
115The work proposed in this paper might be viewed as a
116mixture of the last two categories. Namely a nonlinear pre-
117dictive control scheme is proposed for the control of a five-
118link 7 d.o.f. under-actuated biped robot while the stability
119of the resulting zero-dynamics is explicitly studied. Con-
120trary to the approach adopted in [1], where a somehow
121black-box formulation is used to define the auxiliary
122open-loop optimization problem, our approach leads to
123low dimensional decision variables. This may be crucial
124in a real-time implementation context. In particular, it is
125shown that with a scalar such open-loop optimization
126problem, provably stable and quasi-cyclic motions can be
127generated.
128The basic differences between the approach proposed in
129this paper and existing provably stable limit-cycle genera-
130tion can be summarized as follows:

131• The limit cycle so-obtained may include several steps.
132Namely, the robot configuration just after the impact
133is not necessarily the same as the one just after the pre-
134ceding impact. This happens especially with very low
135dimensional (scalar) predictive control. By increasing
136the d.o.f. of the control parameterization, classical
137one-step limit cycles may be recovered, but the underly-
138ing predictive control may not be real-time
139implementable.
140• The resulting closed-loop trajectories do not necessarily
141correspond to a periodic motion of the torso. The latter
142converges to a neighborhood of a stable limit cycle. This
143is a crucial point since it has been pointed out in [27,9]
144that such periodic motion is hard to achieve with at least
145polynomial trajectories of the actuated variables.
146
147Sufficient conditions for the stability of the feedback
148scheme are derived together with a concrete computation
149procedure to compute the corresponding region of attrac-
150tion related to the zero-dynamics of the closed-loop sys-
151tem.
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152 This paper is organized as follows. First, the biped robot
153 prototype is described in Section 2. Then the proposed pre-
154 dictive control approach is presented in a rather general
155 setting (Section 3). Computable sufficient conditions for
156 stability are derived and implementation related topics
157 are discussed in Section 4. Finally simulation results are
158 given in Section 5, illustrating the potentiality of the pro-
159 posed solution. These simulations include scenarios where
160 a stable walk is obtained from the rest position as well as
161 transitions between different desired mean walking speeds.
162 Robustness against model parameters uncertainties and
163 ground irregularities are also verified. The paper ends by
164 some concluding remarks.

165 2. The RABBIT prototype description

166 The academic prototype RABBIT [10] is a biped walking
167 robot with five links and seven d.o.f. (see Fig. 1), which
168 results from the joint effort of several French laboratories
169 (Mechanical engineering, Automatic control, and Robot-
170 ics) working on a project on control of walking robots.1

171 By means of guidance device, RABBIT walks in a circular
172 path (see Fig. 2) while looking like a planar biped. The
173 counter-balance should be used to offset the weight of the
174 lateral stabilization bar in the guidance device. More tech-
175 nical details about the testbed can be found in [10].

176 2.1. Dynamic model

177 Using Lagrange formulation [32], the mathematical
178 model describing the biped moving in the sagittal plane is
179 as follows:
180

MðqÞ€qþ Nðq; _qÞ _qþ GðqÞ ¼ Suþ F ext ð1Þ182182

183 whereMðqÞ 2 R
7�7 is the inertia matrix, Nðq; _qÞ 2 R

7�7 con-
184 tains the centrifugal and Coriolis forces terms, GðqÞ 2 R

7 is
185 the vector of gravitational forces, u¼ ½u1 u2 u3 u4 �

T
2R

4

186 is the vector of control inputs, S is a torque distribution ma-
187 trix, q¼ ½q31 q41 q32 q42 q1 x y �T2R

7 is the vector of gen-
188 eralized coordinates (see Fig. 3). Finally, Fext represents the
189 external forces acting on the robot (contact forces with the
190 ground). Following the proposed decomposition of the
191 walking cycle proposed in [12], the walking cycle can be di-
192 vided into two consecutive phases of motion (see Fig. 4). In
193 the first one, the biped remains in contact with the ground
194 through one foot (single support (SS) phase). The other
195 one is the impact phase [3] that is often considered as instan-
196 taneous and characterized by a collision between the swing
197 leg and the ground. Since the assumption that the robot is
198 walking on horizontal surface without obstacles is made,
199 the switching from one walking phase to another is closely
200 related to the vertical position of the robot free leg tip. Let
201 this position be denoted by r(q), the stance leg is denoted by
202 (q31,q41), and the swing leg by (q32,q42), therefore

1 For a detailed information, see http://robot-rabbit.lag.ensieg.inpg.fr/.

Fig. 2. The guidance device.

Fig. 3. Schematic view of RABBIT’s mechanical structure.

Fig. 4. The walking cycle decomposition.

Fig. 1. RABBIT prototype testbed.
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rðqÞ ¼ l3ðcosðq32Þ � cosðq31ÞÞ þ l4ðcosðq32 þ q42Þ

� cosðq31 þ q41ÞÞ ð2Þ204204

205 Indeed the impact between the swing leg and the ground2

206 occurs when the foot hits the ground, which can be ex-
207 pressed as

rðqÞ ¼ 0; _rðqÞ < 0209209

210 and it characterizes the switch from the single support
211 phase to the impact phase (cf. Fig. 4). On the other hand,
212 the lift-off from ground occurs just after the impact [3] and
213 may be expressed as (after re-labelling the variables)

rðqþÞ ¼ 0; _rðqþÞ > 0215215

216 and it characterizes the switch from the impact phase to the
217 single support phase (cf. Fig. 4). Note that q+ denotes the
218 vector of the generalized coordinates just after the impact
219 (cf. Section 2.1.2). In the following sections, the dynamic
220 equations for these two phases are presented.

221 2.1.1. The single support phase model

222 In this phase only one foot is grounded, and the biped is
223 modelled by the following differential equation [32]:

MðqÞ€qþ Nðq; _qÞ _qþ GðqÞ ¼ Suþ JT
1 ðqÞk ð3Þ225225

226 where J1(q) represents the Jacobian matrix of the holo-
227 nomic contact constraints, and k the Lagrange multipliers
228 of contact forces. Assuming that (q31,q41) is the stance
229 leg, the contact constraints may be expressed by
230

yp1 ¼ _yp1 ¼ €yp1 ¼ 0; xp1 ¼ _xp1 ¼ €xp1 ¼ 0 ð4Þ232232

233 where ðxp1 ; yp1Þ denotes the cartesian coordinates of the
234 stance leg’s foot, given by
235

yp1ðqÞ ¼ y þ l3 cosðq31Þ þ l4 cosðq31 þ q41Þ

xp1ðqÞ ¼ x� l3 sinðq31Þ � l4 sinðq31 þ q41Þ

�
ð5Þ

237237

238 Using (5) and (4) one obtains

J 1ðqÞ€qþP2ðq; _qÞ ¼ 0 ð6Þ240240

241 where P2ðq; _qÞ is defined by

P2ðq; _qÞ :¼
�l3 _q

2
31 cosðq31Þ � l4ð _q31 þ _q41Þ

2 cosðq31 þ q41Þ

l3 _q
2
31 sinðq31Þ þ l4ð _q31 þ _q41Þ

2
sinðq31 þ q41Þ

 !

243243

244 The constrained dynamic model in the single support phase
245 is then given by
246

MðqÞ€qþ Nðq; _qÞ _qþ GðqÞ ¼ Suþ JT
1 ðqÞk

J 1ðqÞ€qþP2ðq; _qÞ ¼ 0

(
ð7Þ

248248

249 In simulation of the walking robot during the single sup-
250 port phase, a reduced order dynamic model, computed
251 form (7), is used (cf. [7] and the references inside for more
252 details).

2532.1.2. The impact phase model

254According to [15], the impact between the swing leg and
255the ground is considered as a rigid collision [3], it occurs
256when the swing leg hits the walking surface and it induces
257discontinuities (jumps) in the generalized velocities,3 our
258objective is then to derive the post-impact velocities in
259terms of pre-impact positions and velocities. During the
260impact we have
261

MðqÞ€qþ Nðq; _qÞ _qþ GðqÞ ¼ Suþ dF ext ð8Þ 263263

264where Fext represents the external contact forces.
265Under suitable assumptions (see e.g. [15]) on the impact
266phenomenon, one can deduce the external acting forces by
267integration of (8) over the impact duration, so one obtains
268

MðqÞð _qþ � _q�Þ ¼ F ext ¼ JT
2 ðqÞk ð9Þ 270270

271where _qþ ðrespectively; _q�Þ is the velocity just after
272(respectively before) impact, and F ext ¼

R tþ

t�
dF ext. J2(q) is

273the Jacobian matrix of the cartesian coordinates of the
274swing leg foot, given by
275

yp2ðqÞ ¼ y þ l3 cosðq32Þ þ l4 cosðq32 þ q42Þ

xp2ðqÞ ¼ x� l3 sinðq32Þ � l4 sinðq32 þ q42Þ

�
ð10Þ

277277

278Eq. (9) involves seven constraints and nine unknowns
279F ext and _qþ. Two additional equations may be obtained
280from the condition that the impacted leg does not rebound
281nor slips at impact, that is
282

yp2 ¼ _yþp2 ¼ 0; xp2 ¼ _xþp2 ¼ 0 ð11Þ 284284

285which gives using the expressions of xp2 , yp2 286
J 2ðqÞ _q

þ ¼ 0 ð12Þ 288288

289The solution of (9)–(12) leads to

_qþ ¼ I �M�1JT
2 J 2M

�1JT
2

� ��1
J 2

h i
_q� ¼ DðqÞ _q�

k ¼ � J 2M
�1JT

2

� ��1
J 2

h i
_q�

8
><

>:
ð13Þ

291291

292On the other hand, the impact model must account for
293the re-labelling of the robot coordinates (i.e. the swing
294leg becomes the new stance leg and vice versa), this can
295be expressed by

qþ

_qþ

� �
¼ RðqÞ

q�

_q�

� �

297297

298To summarize, the global impact model that includes both
299the jumps in velocities and the permutation of coordinates
300and velocities shortly writes
301

qþ

_qþ

� �
¼ DðqÞ

q�

_q�

� �
ð14Þ

303303

2 The system looks like a kinematic chain [15]. 3 But the generalized positions still unaltered i.e. q+ = q� = q.
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304 where

DðqÞ ¼
RðqÞ 0

0 RðqÞDðqÞ

� �
R ¼

0 0 1 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

306306

307 3. The key idea: a predictive control scheme

308 Under single support assumption, the five independent
309 degrees of freedom can be subdivided into two parts

z1 :¼ q1 2 R; z2 :¼ ð q31 q41 q32 q42 Þ
T 2 R

4311311

312 where z2 can be assumed to be completely controllable
313 (provided that saturation constraints on actuators and con-
314 tact conditions are fulfilled). In this section, the sequence of
315 impact instants is denoted by ðtkÞk2N with tk = ktf where tf
316 is the step duration.

317 Remark 1. Under nominal conditions, the step duration tf
318 is fixed and it does not change from one step to another,
319 nevertheless if the biped is required to change the walking
320 speed, among others, a solution could be investigated to
321 change this parameter, but for each speed and configura-
322 tion corresponds a well specified value of tf.

323 Let us choose some target configuration zf2 2 R
4 (cf. Sec-

324 tion 5.1) that is to be reached just before the impact
325 instants tk that is z2ðt

�
k Þ ¼ zf2. This choice is fixed in all

326 the forthcoming developments, in a way, zf2 has to be con-
327 sidered as a design parameter. The way zf2 may be parame-
328 terized is explained in Section 5.1.
329 Associated to this choice of zf2, the following choice
330 _zf2ðz

f
2Þ 2 R

4 is done for the desired _z2ðt
�
k Þ, this choice is

331 defined given some desired foot impact velocity �vp2332

_zf2ðz
f
2; vp2Þ :¼ Argmin

_z2
k_z2k

2
under

oyp2
oz2

ðzf2Þ_z2 ¼ �vp2

¼ �
oyp2
oz2

ðzf2Þ

� �T
vp2

oyp2
oz2

ðzf2Þ

����
����
2

,
ð15Þ

334334

335 where yp2ðz
f
2Þ is the y-coordinate of the swing foot. There-

336 fore, _zf2 is clearly the minimum norm velocity vector that
337 corresponds to some impact velocity �vp2 . Once this choice
338 is done, a final desired ‘‘just before impact’’ sub-state
339 ðz2; _z2Þ 2 R

8 is completely defined by the choice of zf2 2 R
4.

340 In what follows, the following notations are used
341

Z2 :¼
z2

_z2

� �
2 R

8; Z
f
2 :¼

zf2

_zf2ðz
f
2; vp2Þ

 !
2 R

8;

Z1 :¼
q1

_q1

� �
2 R

2 ð16Þ
343343

344Now, during the step, let us denote by g > 0 the remaining
345time before impact. One has the following dynamic for g

_g ¼ �1þ dðgÞ � tf ð17Þ 347347

348where d(Æ) is the generalized impulse function. Consider a
349control sampling period sc > 0 such that tf=sc ¼ N c 2 N

350(Nc: is also a design parameter).
351Basically, a problem of synchronizing the sampling
352times to the impact times could appear when impact is
353either detected prematurely (i.e. before the expected
354instant) or detected with a delay (i.e. after the expected
355instant). Since RABBIT PROTOTYPE feet are equipped with
356switches, the impact instant could easily be detected. This
357situation is managed as indicated in Section 4.3 concerning
358implementation issues.
359Let us use the following notation to refer to decision
360instants [4] on the interval [tk, tk+1]

sik ¼ tk þ isc; i 2 f0; . . . ;N c � 1g; k 2 N 362362

363During the step, at each decision instant sik, a p-parameter-
364ized reference trajectory4
365

Z
ref
2 ðs0;Z2ðs

i
kÞ;Z

f
2; gðs

i
kÞ; pÞ; s0 2 ½sik; tkþ1�; p 2 P ð18Þ 367367

368is defined that satisfies for all parameter value p 2 P the
369following boundary (initial and final) conditions
370

Z
ref
2 ðsik;Z2ðs

i
kÞ;Z

f
2; gðs

i
kÞ; pÞ ¼ Z2ðs

i
kÞ ð19Þ

Z
ref
2 ðtkþ1;Z2ðs

i
kÞ;Z

f
2; gðs

i
kÞ; pÞ ¼ Z

f
2 ð20Þ 372372

373namely, the reference trajectory Z
ref
2 ð�;Z2ðs

i
kÞ;Z

f
2; gðs

i
kÞ; pÞ

374is updated at each decision instant sik to start at the present
375value Z2ðs

i
kÞ, and to join the desired final value Zf

2 just be-
376fore next impact.
377It is worth noting that p 2 P is the remaining free
378parameter, once the constraints (19) and (20) have been
379structurally imposed, on some initial parameterization.
380This is typically easy to realize with polynomial parameter-
381ization [9] of trajectories since (19) and (20) are linear con-
382straints in the polynomial coefficients.
383A relevant question is: how to choose p 2 P?
384The role of p is clearly to optimize the behavior of the
385indirectly controlled sub-state Z1. Indeed, imagine that a
386perfect tracking of the reference trajectory Z

ref
2 ð�;Z2ðs

i
kÞ;

387Z
f
2; gðs

i
kÞ; pÞ is performed over ½sik; tkþ1�. What are the con-

388sequences of such tracking on the value of both Z1 and Z2

389just before the (k + 1) impact?

390• For Z2, one would clearly have, because of the perfect
391tracking [see (20)]
392

Z2ðt
�
kþ1Þ ¼ Z

f
2 ð21Þ 394394

395• For the Z1 dynamic, let us consider the torso equation
396extracted from the dynamic model (1), and given by

4 In [16] for instance such trajectories are generated using Van der Pol

oscillators.
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1

4
m1l

2
1 þ I1

� �
€q1 ¼

1

2
m1l1 cosðq1Þ€x

þ
1

2
m1l1 sinðq1Þð€y þ gÞ � u1 � u2 ð22Þ398398

399 where m1 is the mass of the torso, l1 its length, u1 and u2
400 are the torques of the femurs.
401 Using Eqs. (4) and (5) and notations (16), this dynamic
402 should be written
403

_Z1 ¼ f ðZ1;Z2; uÞ ð23Þ405405

406 The closed-loop system is obtained by state feedback,
407 that is u ¼ KðZ;Zref

2 Þ, therefore equation (23) could
408 be rewritten as
409

_Z1 ¼ f ðZ1;Z2;Z
ref
2 Þ ð24Þ411411

412 Under the assumption of perfect tracking, by replacing
413 Z2 in (24) by the reference trajectory Z

ref
2

5 one obtains:
414

_Z1 ¼ f ðZ1;Z
ref
2 Þ ¼ f ðZ1;Z2ðs

i
kÞ;Z

f
2; pÞ ð25Þ416416

417 and integrating (25) starting from the initial condition
418 ðsik;Z1ðs

i
kÞÞ gives the predicted value of Z1ðt

�
kþ1Þ just be-

419 fore next impact. This can be rewritten formally as fol-
420 lows ðgðsikÞ ¼ tkþ1 � sikÞ421

cZ1 t�kþ1js
i
k

� �
¼ W Z1ðs

i
kÞ;Z2ðs

i
kÞ;Z

f
2; gðs

i
kÞ; p

� �
ð26Þ423423

424 and using the impact equation (cf. Eq. (14)) together
425 with the predicted values (21) and (26) one can derive
426 an expression of the predicted value of Z1 just after
427 impact

cZ1ðt
þ
kþ1js

i
kÞ ¼ Wþ

Z1ðs
i
kÞ;Z2ðs

i
kÞ;Z

f
2; gðs

i
kÞ; p

� �
ð27Þ429429

430 The value of the reference trajectory’s parameter pðsikÞ is
431 then given by the optimal solution of the following qua-
432 dratic optimization problem433

p̂ðsikÞ ¼ min
p2P

kẐ1ðt
þ
kþ1js

i
kÞ �Z

f
1k

2
Q subject to

CðZ2ðs
i
kÞ;Z

f
2; pÞ > 0; Q 2 R

2�2 Q > 0 ð28Þ435435

436 where

437 • Z
f
1 2 R

2 is some desired value just after the impact. This
438 value (together with Z

f
2) defines the limit cycle one aims

439 to establish.
440 • CðZ2ðs

i
kÞ;Z

f
2; pÞ > 0 is a constraint expressing non pen-

441 etration condition. This can be for instance

CðZ2ðs
i
kÞ;Z

f
2; pÞ :¼ min

s02½si
k
;tkþ1���

yp2ðs
0;Z2ðs

i
kÞ;Z

f
2; pÞ

ð29Þ443443

444 for some small � > 0.
445
446 To summarize,6 during the step, at each decision instant
447 sik with i < Nc � 1 the reference trajectory

Z
ref
2 s0;Z2ðs

i
kÞ;Z

f
2; gðs

i
kÞ; p̂ðs

i
kÞ

� �
; s0 2 ½sik; tkþ1� 449449

450is defined on the completely controlled variables (actuated
451joints) and tracked using a nonlinear time varying feedback
452during the time interval ½sik; s

iþ1
k �. At the next decision in-

453stant siþ1
k a new reference trajectory

Z
ref
2 ðs0;Z2ðs

iþ1
k Þ;Zf

2; gðs
iþ1
k Þ; p̂ðsiþ1

k ÞÞ; s0 2 ½sik; tkþ1� 455455

456is defined, based on the new measurements and is tracked
457during the time interval ½siþ1

k ; siþ2
k � and the scheme is re-

458peated until the impact instant. This defines a predictive
459control scheme in which the open-loop auxiliary optimiza-
460tion problem is given by (28). The solution of such optimi-
461zation problem is performed using the DBCPOL function
462from the IMSL math library of Digital Fortran 5.0.

4634. Stability and implementation issues

464The stability can be investigated using the Poincaré’s
465section [17] just before the impact, namely at instants t�k .
466Indeed, if this discrete-time map converges, then a cyclic
467trajectory results (see Figs. 5 and 6). To study the stability
468of the Poincaré’s map, note that, by definition of the pre-
469dictive control strategy depicted in the previous section,
470one clearly has
471

Z2ðt
�
k Þ ¼ Z

f
2 ð30Þ 473473

474where Z
f
2 is the desired final ‘‘just before impact’’ configu-

475ration defined by (15) and (16) and depending only on the
476desired final position zf2. Consequently, the overall stability
477depends on the stability of the sequence

Z1ðt
�
k Þ

� �
k2N 479479

480under the constraint (30).

4814.1. Stability definition

482As it can be easily understood from Figs. 5 and 6, an
483asymptotically stable k0-cyclic trajectory on the whole state
484results whenever the following property holds for the
485closed-loop system’s behavior:

kZ1ðt
�
ðjþ1Þk0

Þ �Z
f
1k

2
Q 6 lkZ1ðt

�
jk0
Þ �Z

f
1k

2
Q; l < 1 ð31Þ 487487

Fig. 5. Stability illustration (k0 = 1).

5 Recall that Zref
2 depends on Z2ðs

i
kÞ, Z

f
2, and p.

6 A chart flow better illustrating the principle of the approach is given in

Section 4.3.
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488 similarly, a neighborhood of a k0 cyclic trajectory on the
489 whole is asymptotically stabilized whenever the following
490 property holds for some small e > 0,

lim
j!1

kZ1ðt
�
jk0
Þ �Z

f
1k

2
Q 6 e ð32Þ

492492

493 The aim of the following section is to give sufficient con-
494 ditions under which one of the above conditions is satisfied
495 for some k0 2 N with a graphical tools enabling a concrete
496 evaluation of the associated conditions (see Proposition 1
497 hereafter).

498 4.2. Stability result

499 Now letZ1ðt
�
k Þ be given. Using (30) and the impact map

500 (14), the value of the whole Zðtþk Þ just after the impact can
501 be computed and the predictive control closed-loop trajec-
502 tories may be predicted over ½tþk ; t

�
kþ1�. Therefore, the pre-

503 dicted value of Z1ðt
�
kþ1Þ just before the next impact is

504 only function of Z1ðt
�
k Þ, Nc and Z

f :¼ ðZf
1;Z

f
2Þ, namely

Z1ðt
�
kþ1Þ ¼: C Z1ðt

�
k Þ;Z

f ;N c

� �
ð33Þ506506

507 which is a discrete-time autonomous system (for fixed Z
f

508 and Nc) in the sub-state Z1 for which stability is to be
509 investigated. More generally, the following multi-step
510 map is particularly relevant to assess the stability of the
511 above predictive control scheme, namely,
512

Z1ðt
�
kþk0

Þ ¼: Ck0 Z1ðt
�
k Þ;Z

f ;N c

� �
ð34Þ514514

515 where Ck0 is obtained by repetitive application of C(Æ). Note
516 that this map is easily computable by simulating k0 steps
517 under the closed-loop feedback law explained in the previ-
518 ous section. It is worth noting that such computations are
519 to be done off-line for stability investigations. The on-line
520 feedback however is still based on one-step scalar optimiza-
521 tion as explained in the preceding section. The whole
522 closed-loop system stability analysis is based on the follow-
523 ing proposition

524 Proposition 1

525 1. If for some ðk0;N cÞ 2 N�N, there is . > 0 such that
526

sup
kZ1�Z

f
1
k2Q6.

kCk0ðZ1;Z
f ;N cÞ �Z

f
1k

2
Q 6 . ð35Þ

528528

529then the predictive control closed-loop leads to a stable

530walk for all initial conditions belonging to the set
531

C0 :¼ Z ¼
Z1

Z
f
2

� �
s.t. Z1 2 M.

� 	
ð36Þ

533533

534where for all .P 0, M. :¼ Z1 j kZ1 �Z
f
1k

2
Q 6 .

n o
.

5352. If in addition, the following condition holds for some

536l 2 [0,1[
537

For all 0 < r < . wðr;N c; k0Þ

:¼ sup
kZ1�Z

f
1
k2Q¼r

kCk0ðZ1;Z
f ;N cÞ �Z

f
1k

2
Q 6 l � r

ð37Þ 539539

540then the closed-loop trajectories asymptotically converges

541to a stable limit cycle of length k0 defined by the pair

542ðZf
1;Z

f
2Þ for all initial conditions in C0.

5433. If (35) holds, and if (37) holds for all r 2 [e,.] and

544furthermore,
545

sup
kZ1�Z

f
1
k2Q6e

kCk0ðZ1;Z
f ;N cÞ �Z

f
1k

2
Q 6 e; e < . ð38Þ

547547

548(see Fig. 7 for a typical situation) then the set
549

C1 :¼ Z ¼
Z1

Z
f
2

� �
s.t. Z1 2 Me

� 	
ð39Þ

551551

552is invariant and attractive for all initial conditions in C0

553(an e-neighborhood of the limit cycle is reached).

554

555Proof

5561. Straightforward since condition (35) implies that the set
557M. is invariant under the composed map Ck0ð�;Zf ;N cÞ,
558more precisely

Z1 2 M.


 �
) Ck0ðZ1;Z

f ;N cÞ 2 M.


 �
ð40Þ 560560

561Therefore, starting from some initial value Z
0
1 2 M.,

562the sequence

Fig. 7. Typical situation where (35), (37) and (38) hold (point 3 of

Proposition 1).

Fig. 6. Stability illustration (k0 = 3).

A. Chemori, M. Alamir / Mechatronics xxx (2006) xxx–xxx 7

MECH 787 No. of Pages 19, Model 5+

7 February 2006 Disk Used
ARTICLE IN PRESS



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Z1ðt
�
jk0
Þ

� 
1
j¼1564564

565 belongs to the compact set M..
566 2. Condition (37) implies that for all j 2 N, one has
567

kZ1ðt
�
ðjþ1Þk0

Þ �Z
f
1k

2
Q 6 lkZ1ðt

�
jk0
Þ �Z

f
1k

2
Q ð41Þ569569

570 (where l < 1). Accordingly, by recurrence, one obtains
571 (for m 2 N)

kZ1ðt
�
ðjþmÞk0

Þ �Z
f
1k

2
Q 6 lmkZ1ðt

�
jk0
Þ �Z

f
1k

2
Q ð42Þ573573

574 which implies that

lim
j!1

Z1ðt
�
jk0
Þ ¼ Z

f
1576576

577 This shows that the closed-loop trajectories tends to a
578 limit cycle of length k0 defined by the pair of desired val-
579 ues ðZf

1;Z
f
2Þ.

580 3. Using the same argumentation as in the last point, Eq.
581 (41) may be rewritten for all Z1ðt

�
jk0
Þ that lies in

582 M. nMe. This proves that Me is attractive. Further-
583 more, Me is invariant. h

584

585 Note again that the investigation of (35)–(38) may be
586 done off-line simultaneously and in a deterministic way
587 by solving the following two-dimensional optimization
588 problem

wðr;N c; k0Þ :¼ sup
kZ1�Z

f
1
k2Q¼r

kCk0ðZ1;Z
f ;N cÞ �Z

f
1k

2
Q

590590

591 for increasing values of r and check wether the curve so ob-
592 tained [see Fig. 7] satisfies (35)–(38) for some . > 0 and
593 e > 0. The whole procedure may be repeated for different
594 values of k0. Concrete examples of such plots are given in
595 Section 5 for a specific choice of the design parameters
596 Z

f , Q and Nc. It is then shown that the condition of point
597 3. of Proposition 1 are satisfied for k0 = 3 (see Fig. 11)
598 while it is not satisfied for k0 = 1,2. This shows the need
599 for non trivial multi-step map (34) in establishing the sta-
600 bility of the underlying closed-loop behaviour.

601 4.3. Implementation issues

602 The reference trajectories (18) are implemented using
603 Matlab cubic spline interpolation functions with various
604 end-conditions. They are parameterized with a free param-
605 eter p which should be computed by solution of the optimi-
606 zation problem (28). The use of the cubic spline functions
607 requires the definition of the end-conditions, in our case
608 they are given by

609 • initial-time conditions, given by Eq. (19),
610 • intermediate-time conditions, given by the parameter p

611 to be computed,
612 • final-time conditions, given by Eq. (20).
613

614The obtained trajectory, that satisfy these constraints,
615may be illustrated in Fig. 8.
616The used subroutines provide the cubic spline interpo-
617lant, which should be used to evaluate the trajectory and
618its derivatives, at each instant s 0. The switching to a new
619step is closely related to the impact occurrence. The imple-
620mented simulator (using visual Fortran 5.0 and Mat-

621lab 6.5 softwares) switches to a new step once it detects
622an impact, therefore three possible cases could be under-
623lined

6241. The biped walks without external disturbances, the
625dynamic model is perfect, as well as the tracking of
626the optimal reference trajectories.
6272. During walking, because of external disturbances,
628model imperfections, or obstacles, the impact is detected
629prematurely.
6303. The biped, during walking is subject to external distur-
631bances, model imperfections, or environment changes,
632as a consequence the impact is not detected at the
633expected time (instant).
634
635How the control system would react?
636In the first case there is no problem, the whole closed-
637loop system behavior looks like the predicted one. In the
638second case, when the impact is detected, the reached con-
639figuration just after the impact is considered as an initial
640configuration, the final desired configuration is then com-
641puted, and a new step starts (illustrated in simulation 4).
642While in the third case, the impact is not detected at the
643expected instant, so the control system proceed to an
644extrapolation of the computed trajectories (using the
645Matlab PPVAL function) until the occurrence of the forth-
646coming impact. The whole control approach is summarized
647in the diagram depicted in Fig. 9 that illustrates how it
648works.

6495. Illustrative simulations

650Consider the biped robot model (7) and (14) with the
651parameters summarized in Table 1. The control parameter
652Nc = 1 is used in the following simulations, enabling a large
653admissible on-line computation time. Indeed, with this
654choice, sc = tf and the trajectories being tracked during
655the step are updated just after each impact. The following

Fig. 8. The directly controlled variables trajectories.
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656 choice of the parameter p is used in the definition of the
657 predictive control law (see Section 3):

pðtkÞ :¼ p� q31ðtk þ tf =2Þ659659

660

661

662 Remark 2. The proposed choice of the optimization
663 parameter represents the angular position of the femur of
664 the swing leg at median instant between two impacts. This
665 is a particular choice among many others, for instance one
666 can imagine any free parameter on the trajectories of the
667 actuated coordinates or their derivatives, it can also be one
668 of the configuration parameters (q for instance).

669 Two simulation scenarios are proposed:

670 • The first one shows how the biped reaches a stable walk
671 with constant mean velocity starting from rest.

672• The second one illustrates the transition between several
673walks with different mean walking velocities.
674
675For robustness evaluation of the proposed controller,
676two scenarios are investigated, namely

677• Robustness against uncertainties in the robot model
678parameters.
679• Robustness against ground irregularities.
680
681Let us first illustrate how zf2 is chosen by means of a
682reduced dimensional parameterization. The way such
683choice of zf2 may be made optimal in some sense is beyond
684the scope of the present paper and will be investigated in
685later works.

6865.1. Reduced dimensional parameterization

687of the position vector z2

688Consider the instantaneous double support configura-
689tion. The position vector z2 :¼ ð q31 q41 q32 q42 Þ

T
is

690defined by three simple parameters, namely y,d and q that
691are illustrated in Fig. 10.
692Indeed, simple computations give

q31 ¼ p� arctan qd

y

� 

� u31

q32 ¼ pþ arctan ð1�qÞd

y

� 

� u32

q41 ¼ p� u41 ¼ arccos �
l23 þ l24 � q2d2 � y2

2l3l4

� �

q42 ¼ p� u42 ¼ arccos �
l23 þ l24 � ð1� qÞ2d2 � y2

2l3l4

 !

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð43Þ 694694

695where

Fig. 10. Computation scheme for the position’s reduced parameterization.

Fig. 9. Algorithm of the approach.

Table 1

The model parameters

Parameter Mass (kg) Length (m) Inertia (kg m2)

Torso 20 0.625 2.22

Femur 6.8 0.4 1.08

Tibia 3.2 0.4 0.93
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u31 ¼ arccos
l23 � l24 þ q2d2 þ y2

2l3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2d2 þ y2

p
 !

u32 ¼ arccos
l23 � l24 þ ð1� qÞ

2
d2 þ y2

2l3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qÞ2d2 þ y2

q

0
B@

1
CA

u41 ¼ arccos
l23 þ l24 � q2d2 � y2

2l3l4

� �

u42 ¼ arccos
l23 þ l24 � ð1� qÞ

2
d2 � y2

2l3l4

 !

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð44Þ

697697

698 This enables a simple choice of the desired final configura-
699 tion just before the impact zf2 using parameters that are di-
700 rectly linked to the mean velocity and the geometric
701 configuration [32].

702 5.2. Simulation 1: cyclic forward walking starting

703 from rest (standing position)

704 The aim of this simulation is to take the robot from a
705 rest position to a constant speed periodic walking. The con-
706 figuration zf2 and the other control design parameters are
707 summarized in Table 2.

708 5.2.1. Stability analysis according to Proposition 1

709 In this section, it is shown that under the feedback
710 defined above, the sufficient conditions invoked in point
711 3. of Proposition 1 are satisfied. This can be verified on
712 Fig. 11, that shows the multi-step map

wðr;N c; k0Þ ¼ sup
kZ1�Z

f
1
k2Q¼r

kCk0ðZ1;Z
f ;N cÞ �Z

f
1k

2
Q

714714

715 invoked in Proposition 1, for the two cases corresponding
716 to k0 = 1, 2. Note that:

717 • For k0 = 1 the conditions of Proposition 1 are not satis-
718 fied. Higher values of k0 must be investigated in order to
719 prove stability of the closed-loop system. Recall that k0
720 is only an analysis tool and not a design tool.
721 • For k0 = 2, the conditions of point 3 of Proposition 1
722 are satisfied with . � 0.56 and e � 0.08, therefore for
723 all initial conditions in the set C0 given by (36) with

M. :¼ Z1 j kZ1 �Z
f
1k

2
Q 6 0:56

n o
725725

726the closed-loop trajectories impacts on the Poincaré sec-
727tion converge to the invariant and attractive set C1 given
728by (39) with

Me :¼ Z1 j kZ1 �Z
f
1k

2
Q 6 0:08

n o
730730

731which is a neighborhood of the desired limit cycle of
732length 2 defined by Z

f
1 ¼ 0.

733This example shows clearly the need to the multi-step
734stability analysis tool developed in Proposition 1, since
735for k0 < 2, stability cannot be claimed.

736Remark 3. To give some concrete idea about how large is
737the region of attraction, note that the set of initial
738conditions M. leading to convergence to the neighborhood

Table 2

The approach’s parameters description

Significance Value

tf Step duration 0.75 s

y Hips height y = 0.775

d Step length 0.3 m

q Hip’s x position w.r.t. step length 0.5

vp Foot impact velocity �0.25 m/s

Z10 Initial conditions on the torso (0,0)

Q Weighting matrix in optimization
1 0
0 0

� �

vmean Mean walking velocity �0.4 m/s

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

bisector 

(k0,Nc)=(1,1) 

(k0,Nc)=(2,1) 

Fig. 11. (Sim 1) A stability analysis tool: the curve w(r,Nc,k0) for different

values of k0.
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Fig. 12. (Sim 1) Evaluation of computation time.
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739 of the limit cycle corresponds, among others to the
740 following two initial conditions:

ðq1; _q1Þ0 ¼ ð�42:87�; 0�=sÞ742742

743 5.2.2. More simulation results

744 The behavior of the closed-loop system is to be illus-
745 trated through the following simulation results. In Fig. 13
746 the phase portrait ðq1 � _q1Þ [16] of the unactuated coordi-
747 nate (torso) is displayed, where we note the convergence
748 to a neighborhood of a limit cycle of length 2, which con-
749 firm the stability result discussed above. The mean walking
750 velocity evolution is shown in Fig. 14 where the transition
751 from a rest to the desired mean velocity stable walk can be
752 observed. Note that the mean velocity is computed as the
753 ratio between Dx(k) and tf where Dx(k) = x(tk) � x(tk�1).
754 The position and velocity of the torso coordinate is shown
755 in Fig. 15 where we note through its trajectory that it

756remains close to the vertical. The cartesian coordinates
757(and their corresponding velocities) of the hips are depicted
758in Fig. 17 (for the x coordinate) and in Fig. 18 (for the y

759coordinate), furthermore the resulting trajectory of the hips
760in the plane x � y is illustrated in Fig. 16.
761The system control inputs (i.e. joint torques) to be
762applied to the actuated joints are depicted in Fig. 19 for
763both femurs, and in Fig. 20 for both tibias. We note that
764RABBIT is equipped with dc motors of a maximum torque
765of 150 N m, therefore according to the figures of the gener-
766ated torques we conclude that this bound is largely satis-
767fied, but it should also be checked that the power
768requirement remain within the admissible limit.
769To check the admissibility of the actuators required
770power, the idea is to plot the angular velocity of the actu-
771ators versus their absolute torques, and check if the
772obtained curves remain within the admissible region given
773by the manufacturer of the actuators (DC motors). If it is
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Fig. 14. (Sim 1) The mean walking velocity.
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Fig. 15. (Sim 1) The torso position and velocity versus time.
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Fig. 13. (Sim 1) The phase portrait of the non actuated coordinate (torso).
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Fig. 16. (Sim 1) The hips movement trajectory.
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774the case it could be concluded that required actuators
775power is admissible. To compute the velocities of the
776motors and their absolute torques, based on articular
777velocities and the motors gear ratio which is of 50, the fol-
778lowing formulas are used:

vmot ½rpm� ¼
vart � 50� 60

2� p

smot ½N m� ¼
sart

50

8
><

>:
ð45Þ

780780

781where vmot [rpm] is the velocity of the motor shaft, vart [rad/
782s] is the relative velocity between the two adjacent links of
783the concerned articulation, smot [N m] is the motor torque,
784and sart [N m] is the torque applied on the links.
785The application of this verification technique is illus-
786trated on Fig. 21, which depicts the shaft speed versus tor-
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Fig. 21. (Sim 1) Absolute value of actuator angular velocities (revolutions
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admissible region.

0 2 4 6 8 10 12
–5

–4

–3

–2

–1

0

X
 [
m

]

0 2 4 6 8 10 12
–0.7

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0

Time [sec]

d
X

 [
m

/s
e

c
]

Fig. 17. (Sim 1) The x position and velocity versus time.

0 2 4 6 8 10 12

0.78

0.79

0.8

0.81

Y
 [
m

]

0 2 4 6 8 10 12
–0.2

–0.1

0

0.1

Time [sec]

d
Y

 [
m

/s
e
c
]

Fig. 18. (Sim 1) The y position and velocity versus time.

0 2 4 6 8 10
–50

0

50

100

U
1
 [
n
.m

]

0 2 4 6 8 10
–100

–50

0

50

Time [sec]

U
2
 [
n
.m

]

Fig. 19. (Sim 1) The torques of the femurs versus time.

0 2 4 6 8 10
–40

–20

0

20

40

60

U
3
 [
n
.m

]

0 2 4 6 8 10
–60

–40

–20

0

20

Time [sec]

U
4
 [
n
.m

]

Fig. 20. (Sim 1) The torques of the tibias versus time.
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787 que, for the four robot actuators, where it could be clearly
788 seen that the actuators power requirement is admissible.
789 The contact foot interaction forces with ground are plotted
790 versus time in Fig. 22, where we note that the condition of
791 the friction Coulomb’s law is largely satisfied (this is clearly
792 seen through the amount of the ratio kt/kn with respect to
793 the friction coefficient which is l0 = 0.7). Fig. 23 illustrates
794 the movement of the robot by means of a set of walking
795 stick figures (for the three first steps).

796 5.2.3. Computation time evaluation

797 In order to evaluate the computation time of the pro-
798 posed control scheme, let us consider biped walking for
799 50 steps with a constant speed. The evaluation of the com-
800 puting time is displayed in Fig. 12, which represents the
801 evolution of the computing time versus cycles (steps). The
802 maximum value is given by tmax = 0.97 s. For real time

803implementation the on-line optimization is replaced by an
804interpolation procedure. The basic idea is to define a grid
805on the space ðq1; _q1Þ, and for all the points the optimization
806problem is resolved off-line to define the corresponding
807optimization parameter p, so that at the end of the proce-
808dure a look-up table is obtained. In the experiments this
809look-up table is used to find, for the chosen configuration,
810the optimization parameter at each sample time knowing
811the initial condition (position and velocity) on the unactu-
812ated coordinate.

8135.3. Simulation 2: transition between different mean

814walking velocities

815In this simulation, it is shown that the proposed feed-
816back enables transitions between different mean walking
817velocities to be easily obtained. To show this, 46 walking
818cycles have been produced during which different desired
819velocities of 0.24 m/s, 0.3 m/s and 0.40 m/s are successively
820applied during 12, 14 and 20 cycles respectively. Because of
821the proportional dependency between the duration of the
822cycle tf and the mean walking speed we have chosen to
823change tf under constant d = 0.3 m in order to increase
824(go faster), or to decrease (go slower) the walking speed.
825Since the step length is 0.3 m, the choice of the cycle end-
826time corresponding to the yet mentioned speeds (0.24,
8270.3, and 0.40 m/s respectively) is (1.25, 1, and 0.75 s respec-
828tively).
829Fig. 24 shows the phase portrait of the unactuated coor-
830dinate (torso), where it is well shown the transition between
831the different stable limit cycles (each limit cycle is relative to
832a walking speed). In Fig. 25 the mean walking speed is plot-
833ted, showing thus the switching between the different pro-
834posed walking speeds. The behavior of the unactuated
835coordinate (torso) is illustrated in Fig. 26 giving its position
836as well as its velocity versus time. The cartesian coordinates
837(horizontal, respectively vertical) of the hips are depicted
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Fig. 23. (Sim 1) Stick figures of the walking robot.
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838 respectively in Figs. 28 and 29, and a more illustrative plot
839 of the hip’s trajectory in the sagittal plane is given in
840 Fig. 27.
841 The generated torques are plotted in Figs. 32 and 33 for
842 the femurs and tibias respectively, while in Fig. 30 it is
843 checked that power requirement remain within the permit-
844 ted limit. The contact forces with ground of the stance leg
845 foot are depicted in Fig. 31, where we see clearly that the
846 robot keeps contact with ground during walking.

847 5.4. Simulation 3: robustness against parameters

848 uncertainty

849 In order to investigate the robustness of the proposed
850 controller, let us introduce parameter uncertainties. The
851 inertias of the robot links, namely I1 (the torso), I3 (the
852 femur) and I4 (the tibia) cf. Table 1, are considered with
853 an uncertainty of 10% of the their nominal values, that is
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Fig. 28. (Sim 2) The x position and velocity versus time.
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Fig. 29. (Sim 2) The y position and velocity versus time.
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I1u ¼ I1 þ DI1; I3u ¼ I3 þ DI3; I4u ¼ I4 þ DI4855855

856 where the uncertainties DIi = 0.1Ii, for i 2 {1,3,4}. Figs.
857 34–39 present the corresponding simulation results over
858 12 walking steps.
859 In Fig. 34 the positions and velocities of the first leg
860 femur are plotted for the nominal system (solid line), as
861 well as for the uncertain system (dashed line). Whereas in
862 Fig. 35, the positions and velocities of the tibia are plotted.
863 It can be seen clearly that the introduced uncertainty affects
864 more the femur coordinates.
865 The behavior of the unactuated coordinate (torso) is
866 represented in Fig. 36 which plots the evolution of its posi-
867 tion and velocity versus time. A convergence to a new sta-
868 ble cyclic trajectory is observed. This fact can be seen also

869on the phase portrait of Fig. 37, where a convergence to a
870neighborhood of a new limit cycle (different from that of
871the nominal system) of length 2 is observed for the uncer-
872tain system.
873In Figs. 38 and 39 the control inputs of the robot are
874plotted, they represent the torques generated by the pro-
875posed controller for the femurs articulations (Fig. 38) and
876for the tibias articulations (Fig. 39). For both figures the
877uncertain system torques are slightly different from those
878of the nominal system.
879Let us now consider an other test of the robustness of
880the proposed control approach. This time consider an
881uncertainty of 15% on the mass of the unactuated coordi-
882nate (torso), that is

m1u ¼ m1 þ Dm1; Dm1 ¼ 15% 884884

885To see the effect of the introduced uncertainty on the
886closed-loop system two figures are given. On Fig. 40 the
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Fig. 32. (Sim 2) The torques of the femurs versus time.
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Fig. 33. (Sim 2) The torques of the tibias versus time.
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Fig. 36. (Sim 3) Position and velocity of the torso.
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Fig. 37. (Sim 3) Phase portrait of the torso.
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Fig. 38. (Sim 3) Torques of the femurs.
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Fig. 39. (Sim 3) Torques of the tibias.
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Fig. 34. (Sim 3) Position and velocity of the femur of the first leg.
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887 evolution of the position and the velocity of the torso are
888 displayed. Where it could be seen clearly the convergence
889 to a new cyclic trajectory for the uncertain system. An
890 other interesting point result in the periodicity of the veloc-
891 ity trajectory which is of 1 cycle. This last fact could be bet-
892 ter observed on Fig. 41 of the phase portrait, where one
893 notices a convergence to an other stable limit cycle. How-
894 ever the new limit cycle is of length 1, consequently the
895 introduced uncertainty on the torso masse has induced a
896 deformation of the limit cycle.

897 5.5. Simulation 4: robustness against ground irregularities

898 The aim is to investigate the robustness of the proposed
899 controller, against ground irregularities. Let us make the
900 robot walking on a horizontal surface with a stair at a dis-
901 tance of 1.4 m from the robot, the stair is 1 cm height.

902According to the robot configuration, namely the step
903length d = 0.3 m, the robot hits the stair during the fifth
904walking step.
905The approach parameters are the same as previous sim-
906ulations except the weighting matrix in the optimization
907criterion which is chosen Q = Diag{1,0.1}, and the step
908duration which is of tf = 1 s now. This change in these
909two parameters have been adopted because it gives a better
910results, namely a configuration with these parameters
911choice is more robust than the configuration with the old
912values.
913The corresponding simulation results are depicted in
914Figs. 42–47. It is worth to note that the impact is detected
915at the instants t = 1 s for all steps, except for the step dur-
916ing which it hits the stair (fifth step), where the impact
917instant corresponding to this last one is t = 0.935 s, which
918is before the expected time t = 1 s.

–0.03 –0.02 –0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

q
1
 [Rad]

d
q

1
 [
R

a
d
/s

e
c
]

nominal
uncertain

limit cycle of length 2 
limit cycle of length 1 

Fig. 41. (Sim 3) Phase portrait of the torso.
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Fig. 40. (Sim 3) Position and velocity of the torso.
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Fig. 43. (Sim 4) Position and velocity of the robot tibias.
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919Figs. 42 and 43 display the positions and velocities of the
920actuated robot’s limbs versus time. The effect of the unex-
921pected impact could be seen on Fig. 42 as a removal from
922the cyclic trajectory followed by a convergence to the same
923trajectory. This effect can also be observed on the behavior
924of the unactuated coordinate (torso). Especially Fig. 44
925which shows the evolution of the angular position and
926velocity of the torso, and Fig. 45 which displays its phase
927portrait. On both figures a removal from the cyclic trajec-
928tory is observed, followed by a convergence to the same
929trajectory. It is worth to note that the limit cycle is of
930length 1 for this simulation. Fig. 46 depicts the hips trajec-
931tory in the sagittal plane, whereas Fig. 47 illustrates
932through a stick figures of the robot postures the climbing
933of the stair.
934The limit of stair height beyond it the robot falls is clo-
935sely related to the chosen configuration. For the actual con-
936figuration the limit is of 5 cm. Nevertheless this limit could
937be increased by changing the configuration, or the
938approach parameters.

9396. Conclusion and future work

940In this paper, a nonlinear low dimensional predictive
941control approach is proposed for the control of RABBIT, a
942walking five-link, seven d.o.f. under-actuated biped robot.
943The basic idea of the approach is to split up the vector of
944coordinates into actuated and unactuated variables. Then
945on-line optimization is used to update reference trajectories
946on the actuated coordinates, to aim to enhance the behav-
947ior as well as the stability of the unactuated variables.
948The stability analysis of the resulting closed-loop system
949is carried out using a graphical tool based on the Poincaré
950section. Sufficient conditions for the stability of the motion
951are proposed and a concrete computation procedure is
952given to estimate the corresponding region of attraction
953related to the zero-dynamics of the closed-loop system.
954The particular case of scalar predictive control is success-
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Fig. 45. (Sim 4) The phase portrait of the torso.

0 1 2 3 4 5 6 7 8 9 10
–3

–2

–1

0

1

2

3

q
1
 [

D
e

g
]

0 1 2 3 4 5 6 7 8 9 10

–0.2

–0.1

0

0.1

0.2

0.3

Time [sec]

d
q

1
 [

ra
d

/s
e

c
]

impact with stair 

convergence to the same limit cycle 

Fig. 44. (Sim 4) Position and velocity of the torso.
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Fig. 46. (Sim 4) The hips trajectory in the sagittal plane.

Fig. 47. (Sim 4) Stick figures of stair climbing.
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955 fully investigated by simulation and a reasonable regions of
956 attraction are obtained.
957 The resulting feedback seems to be real-time implement-
958 able thanks to the low dimension of the optimization
959 problem.
960 The whole framework is illustrated through simulation
961 case studies. Indeed four simulations are proposed. In the
962 first one walking at constant average speed starting from
963 rest is investigated, while the second scenario concerns
964 switching between different walking speeds. Robustness
965 of the proposed nonlinear predictive based-upon controller
966 is verified through the two last applications. In the first one
967 a robot model including parameters uncertainties (namely
968 uncertainties on inertias and masses) is considered, while
969 in the second, ground irregularities are considered. In spite
970 of these both significant disturbances the controller is able
971 to guide the robot suitably for walking while keeping it sta-
972 ble (no slipping, no falling).
973 In simulations, after each impact the reference trajecto-
974 ries on actuated coordinates are computed based on a pre-
975 defined step frequency. These trajectories are tracked while
976 checking at each decision instant if there is impact (RABBIT

977 prototype is equipped with switches at feet used to detect
978 impacts). If an impact is detected, the two legs are re-
979 labelled, the configuration of the robot is measured and a
980 new step starts up.
981 Future works may include other features, that should be
982 deeply investigated. In particular, one may be able to
983 choose the design parameters tf, z

f
2 and Q in order to opti-

984 mize some desired feature (mean energy, torque, robust-
985 ness). However, the key future work is naturally the
986 experimentations. This is currently in progress.
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989 robot bipède sous actionné. In: CIFA 2002, 2002. p. 605–10.
990 [2] Berns K. Walking machine catalogue. Available from: http://gate1.
991 fzi.de/ids/public_html/index2.htm, 2004.
992 [3] Brogliato B. Nonsmooth impact mechanics. Models, dynamics and
993 control. LNCIS, vol. 220. Springer Verlag; 1996.
994 [4] Camacho EF, Bordons C. Model predictive control. LNCIS. Sprin-
995 ger Verlag; 2004.
996 [5] Chaillet N, Abba G, Ostertag E. Double dynamic modelling and
997 computed torque control of a biped robot. In: Proceedings of IEEE/
998 RSJ international conference on intelligence robotics systems, p.
999 1149–53, Munich, Germany, 1994.

1000 [6] Chang T, Hurmuzlu Y. Sliding control without reaching phase and its
1001 application to bipedal locomotion. J Dyn Syst Measure Contr
1002 1993;115:447–55.
1003 [7] Chemori A, Loria A. Control of a planar under-actuated biped on a
1004 complete walking cycle. IEEE Trans Automat Contr 2004;49(5).
1005 [8] Chevallereau C. Parameterized control for under-actuated biped
1006 robots. In: IFAC World Congress, Barcelona, Spain, 2002.
1007 [9] Chevallereau C, Aoustin Y. Optimal reference trajectories for walking
1008 and running biped robot. Robotica 2001;19(5):557–69.
1009 [10] Chevallereau C, Abba G, Aoustin Y, Plestan F, Westervelt ER,
1010 Canudas de Wit C, et al. Rabbit: a testbed for advanced control
1011 theory. IEEE Contr Syst Mag 2003;23(5):57–79.

1012[11] Fontes FACC. A general framework to design stabilizing nonlinear
1013model predictive controllers. Syst Control Lett 2001;42(2):127–43.
1014[12] Grizzle JW, Abba G, Plestan F. Asymptotically stable walking for
1015biped robots: analysis via systems with impulse effects. IEEE Trans
1016Automat Contr 2001;46(1):51–64.
1017[13] Gubina F, Hemami H, McGee RB. On the dynamic stability of biped
1018locomotion. IEEE Trans Biomed Eng 1974;21(12):102–8.
1019[14] Hardt M, Kreutz-Delgado K, Helton J. Minimal energy control of a
1020biped robot with numerical methods and a recursive symbolic
1021dynamic model. In: Proceedings of 37th IEEE conference on decision
1022contr., Florida, USA, 1998. p. 413–16.
1023[15] Hurmuzlu Y, Marghitu DB. Rigid body collisions of planar
1024kinematic chains with multiple contact points. Int J Rob Res
10251994;13(1):82–92.
1026[16] Katoh R, Mori M. Control method of biped locomotion giving
1027asymptotic stability of trajectory. Automatica 1984;20(4):405–14.
1028[17] Khalil H. Nonlinear systems. Second Edition. Upper Saddle
1029River: Prentice Hall; 1996.
1030[18] Kun A, Miller W. Adaptive dynamic balance of an experimental
1031biped robot. In: Proceedings of IEEE conference on robotics
1032automatics, 1996.
1033[19] Magdalena L, Monasterio-Huelin F. A fuzzy logic controller with
1034learning through the evolution of its knowledge base. Int JApprox
1035Reason 1997;16(3/4):335–58.
1036[20] Mayne DQ, Rawlings JB, Rao CV, Scokaert PO. Constrained model
1037predictive control: stability and optimality. Automatica
10382000;36:789–814.
1039[21] McGeer T. Passive dynamic walking. Int J Robot Res
10401990;9(2):62–82.
1041[22] Miura H, Shimoyama I. Dynamic walk of a biped. Int J Rob Res
10421984;3(2):60–74.
1043[23] Mrecki A, Waldron K. Human and machine locomotion.
1044LNCIS. Udine, Italy: Springer Verlag; 1997.
1045[24] Nicholls E. Bipedal dynamic walking in robotics. Honours thesis,
1046University of western Australia, 1998.
1047[25] Park JH. Impedance control for biped robot locomotion. IEEE Trans
1048Robot Automat 2001;17(6):870–82.
1049[26] Plestan F. Commande de la marche d’un bipède type rabbit avec
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