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Abstract. Highly oriented solid-supported lipid membranes in stacks of controlled number N ' 16 (oligo-
membranes) have been prepared by spin-coating using the uncharged lipid model system 1,2-dimyristoyl-
sn-glycero-3-phosphocholine (DMPC). The samples have been immersed in aqueous polymer solutions
for control of osmotic pressure and have been studied by X-ray reflectivity. The bilayer structure and
fluctuations have been determined by modelling the data over the full q-range. Thermal fluctuations are
described using the continuous smectic hamiltonian with the appropriate boundary conditions at the
substrate and at the free surface of the stack. The resulting fluctuation amplitudes and the pressure-
distance relation are discussed in view of the inter-bilayer potential.

PACS. 61.10.Kw X-ray reflectometry (surfaces, interfaces, films) – 87.16.Dg Membranes, bilayers, and
vesicles – 87.15.Ya Fluctuations

1 Introduction

A quantitative understanding of the structure, fluctua-
tions, interaction potential and elasticity properties of lipid
membranes, which represent model systems for biological
membranes, has been the goal of many theoretical and
experimental studies. Theoretically, they have been stud-
ied as paradigmatic examples of quasi two-dimensional
macromolecular structures governed by bending rigidity
[1]. In aqueous solution, lipid bilayers assemble into stacks
governed by distinct inter-bilayer interactions. A num-
ber of seminal studies using high resolution synchrotron
X-rays have been published on these systems [2–5]. In
these studies, isotropic aqueous dispersions of multilamel-
lar vesicles have been studied as a function of tempera-
ture T and/or osmotic pressure Π. Detailed quantitative
information on the interaction potentials and the elastic-
ity properties has thus been derived, see e.g. [2–4]. How-
ever, information is lost in these small-angle scattering
studies due to crystallographic powder averaging. In the
analysis, assumptions must therefore be made on the na-
ture of the correlation functions in the framework of linear
smectic elasticity theory, leading to the Caillé model [6]
and related theories, see for instance [7]. In order to over-
come the limitations of powder averaging, it is desirable
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to work with aligned systems of lipid bilayers [8–12]. Un-
der the same conditions of temperature and hydration,
thermal fluctuations are not as strong for aligned sys-
tems as in bulk studies due to the boundary condition
at the flat substrate, enabling a higher resolution in ρ(z).
It is also advantageous to fit the data continuously over a
large range of momentum transfer q, as has been shown
for isotropic solutions [5] and for oriented stacks [12], and
not only in the vicinity of the Bragg peaks arising from
the multilamellar structure. However, for aligned systems
of multilamellar membranes, satisfactory fits of the entire
reflectivity curves and the formulation of a proper statis-
tical model as well as of a scattering theory are still quite
difficult. Note that the best published fits are for systems
consisting of monolayers at the air-water interface, for sin-
gle bilayers or for a free-floating bilayer system developed
by Fragneto and coworkers [13]. In multilamellar systems
on the other hand, the reflectivity signal is typically much
more complex and structured. As we show here, structural
parameters of the bilayer, interaction and fluctuation pa-
rameters can be deduced from these curves, and are com-
pared with the literature.

Most previous studies on aligned multilamellar mem-
branes suffered from a lack of control concerning the num-
ber of bilayers N , the sample homogeneity and also the bi-
layer hydration. Building on recent progress in the prepa-
ration of bilayers on solid support by spin-coating [14],
we use so-called oligo-membranes with a reduced num-
ber of bilayers N ' 10 − 20 resulting in very structured
and well resolved reflectivity signals. We have developed
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a model for the thermal fluctuations calculated for the
proper boundary conditions (rigid substrate and free up-
per surface), which gives the fluctuation amplitudes

〈

u2n
〉

of the bilayers as a function of their position in the stack,
n = 1, N . The values for

〈

u2n
〉

are then inserted in the mul-
tilamellar structure factor, along with a decreasing cover-
age function (see below). The density profile ρ(z) is pa-
rameterized in terms of its Fourier coefficients [15]. This
approach gives for the first time an agreement with the
measured reflectivity curve of multilamellar membranes

over the full range of qz up to typically qz ' 0.7 Å
−1
and

over about seven orders of magnitude in the measured sig-
nal.

The main experimental parameter in this study is the
osmotic pressure. The classical osmotic stress (OS) tech-
nique as developed by Parsegian and coworkers [16] is
widely used for the measurement of force-distance curves
in colloidal systems. The osmotic pressure imposed to a
lamellar phase controls the interaction force experienced
by the membranes across the water layer by setting the
chemical potential of the water molecules in the inter-
bilayer solution. Pressure-distance relations can be easily
determined, e.g. if the lamellar periodicity d is measured
by X-ray scattering at different pressures Π.

In this study we use a variant of the OS technique
where the oriented bilayers are put in direct contact with
the osmotic stress solution [18]. We have verified that
the high molecular weight polymer with a radius of gyra-
tion larger than d does not penetrate the lamellar phase.
We emphasize that the osmotic pressure is one of the
most important parameters in biomolecular systems, since
biomolecular assemblies in the cell are mostly exposed to
varying Π while T is often constant. Therefore, it is of
great importance to study bilayer structure and elastic
properties such as bilayer bending rigidity κ or bilayer-
bilayer interaction parameters as a function of osmotic
pressure Π.

From the relation between the osmotic pressure Π and
the lamellar spacing d the inter-bilayer interaction poten-
tials can be determined. It is generally accepted that in
charge neutral systems two main molecular interaction
forces are dominant, in addition to the effective attrac-
tive interaction by osmotic pressure : a repulsive hydra-
tion potential fhyd(dw) and the attractive van der Waals

potential fvdW(dw) so that the total interaction in J/m
2

is given by f(dw) = fhyd+fvdW+Πdw, defining the equi-
librium distance (water layer thickness) dw as illustrated
in Fig. 1 B). As discussed below, it is important to take
the correct form for fvdW as derived in [17], without the
conventional half-space approximation. It can be argued
that steric (Helfrich) repulsion forces have to be added
to the molecular forces in a mean field approach. Here,
however, we will assume that thermal fluctuations in thin
films of relatively stiff phospholipids do not have a signif-
icant effect on the inter-bilayer interactions, in particular
since the flat boundary suppresses long range fluctuations
in the film. The paper is organized as follows : After this
introduction, section 2 presents some experimental details
while the statistical model and data analysis are presented
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Fig. 1. A): Sketch of the experimental setup where a solid-
supported membrane stack is hydrated in an aqueous polymer
solution. Arrows indicate the incoming and scattered X-ray
beams. B): Interaction potential with van der Waals contri-
bution according to Fenzl [17] (solid line) and with general
approximation (dashed). The (dotted) parabola illustrates the
harmonic approximation to the potential which enters in the
smectic elasticity theory. The arrow shows a typical fluctuation
amplitude of a membrane inside a 16 bilayer stack.

in section 3. Section 4 presents the results, followed by a
section on the interaction potentials and the conclusions
in section 6.

2 Materials and Methods

2.1 Samples and Environment

Highly oriented oligo-membranes were prepared using the
spin-coating method [14]. The uncharged lipid 1,2-dimy-
ristoyl-sn-glycero-3-phosphocholine (DMPC) was bought
from Avanti (Alabaster, AL, USA) and used without fur-
ther purification. The lipid was dissolved in chloroform
at a concentration of 10 mg/ml. An amount of 100 µl
of the solution was pipetted onto carefully cleaned sili-
con substrates of a size of 15 × 25 mm2 cut from stan-
dard commercial silicon wafers. The substrate was then
immediately accelerated to rotation (3000 rpm), using a
spin-coater. After 30 seconds the samples were dry and
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subsequently exposed to high vacuum to remove any re-
maining traces of solvent. The samples were then stored at
4 ◦C until the measurement. For the X-ray measurements
the samples were hydrated in a stainless steel chamber
[10] with kapton windows, which can be filled with wa-
ter or with polymer solution to control the level of hy-
dration by osmotic pressure, see the sketch in Fig. 1A.
Temperature was controlled by an additional outer cham-
ber at T = 40 ◦C. The polymer polyethyleneglycol (PEG)
of molar weight 20000 Da was bought from Fluka and
used without further purification. PEG was dissolved in
ultrapure water (Millipore, Billerica, Mass.) at the con-
centrations 1.5 %, 2.9 %, 3.6 %, 5.8 %, 9 %, 12.1 %,
14.2 % and 25 % (wt. percent). The corresponding os-
motic pressure values were taken from the literature. The
data was obtained from the web site of the Membrane
Biophysics Laboratory at the Brock University in Canada
(http://aqueous.labs.brocku.ca/osfile.html). The value for
the osmotic pressure of PEG 20000 solutions is only avail-
able at 20 ◦C. At 40 ◦C, temperature at which the experi-
ments were performed, the pressure can be expected to be
somewhat lower. However, the temperature coefficient is
small [16,19], and the corresponding discrepancy smaller
than the error bars in Fig 6 below, which is used in the
analysis of the interaction forces.

An important issue in our method of direct contact of
the lamellar phase with the polymer solution is that of
possible interpenetration of the multilamellar phase. Ex-
periments on polymer containing lyotropic lamellar phases
[20,21] have shown that polymers can enter the water layer
in between charged bilayers even if the radius of gyration
is larger than the water layer. However, in the present case
of neutral polymer in neutral bilayers, the amount of poly-
mer in between the lamellae is negligible. The experimen-
tal proof is given by (a) the density profile, which shows
no deviation from the water density in between the bilay-
ers, and (b) the force distance curve itself which shows no
indication of such an effect.

2.2 X-ray experiment

The X-ray reflectivity measurements presented here were
carried out at the bending magnet beamline D4 of HA-
SYLAB/DESY in Hamburg, Germany. At D4, a single-
reflection Si(111) monochromator was used to select a
photon energy of 19.92 keV, after passing a Rh mirror to
reduce higher harmonics. The chamber was mounted on
the z-axis diffractometer, and the reflected beam was mea-
sured by a fast scintillation counter (Cyberstar, Oxford),
using computer-controlled aluminum absorbers which at-
tenuate the beam at small qz to prevent detector satura-
tion. Incident and exit beams were defined by a system of
several motorized slits. The data is corrected for decreas-
ing electron ring current and the diffuse contribution by
subtraction of an offset scan. Finally, an illumination cor-
rection is performed. A typical measurement (reflectivity
and offset scans) is shown in Figure 2, along with the cor-
responding Fresnel reflectivity. The inset shows a rocking
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Fig. 2. Specular reflectivity scan (open symbols) and offset
scan (red solid curve) for a sample immersed in pure water.
The ”true specular” contribution (see Appendix) is given by
the difference of the two curves. In dotted line we also show the
Fresnel reflectivity profile corresponding to the same critical
angle qc. Inset : Rocking scan at the position of the second
Bragg peak. The arrow shows the qx position of the offset scan.

scan on the second Bragg peak, illustrating the separation
between ”true specular” and diffuse components.

3 Model and data analysis

3.1 Reflectivity

In the semi-kinematic approximation the reflectivity of
a structured interface can be expressed by the so-called
master-formula of reflectivity [22] as :

R(qz) = RF (qz) ·
∣

∣

∣

∣

1

ρ12

∫ ∞

−∞

dρ(z)

dz
eiqzzdz

∣

∣

∣

∣

2

, (1)

where RF denotes the Fresnel reflectivity of the sharp in-
terface and ρ(z) is the intrinsic electron density profile,
whereas ρ12 is the total step in electron density between
the two adjoining media. The electron density profile of
a solid-supported oligo-membrane stack, consisting of N
membranes in water, can then be written as :

ρ(z) =
ρ12
2
erfc

(

z + d0
σ

)

+
N−1
∑

n=0

ρ0(z − nd+ un) , (2)

with erfc(z) being the complementary error function and
σ the rms substrate roughness. ρ12 = ρSi − ρH2O is the
difference in electron density between the substrate and
water, d0 is the distance between the substrate and the
midpoint of the first bilayer and ρ0(z) is the electron den-
sity profile of one bilayer in the stack. Thermal membrane
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fluctuations are considered in terms of the displacement
function un = u(r||, z = nd) of the position of the n-th
membrane from its average position z = nd along z. Re-
placing the electron density profile (2) into (1) and taking
the ensemble average yields :

R(qz) = RF (qz) ·
[

e−q
2
zσ

2−

− 2i · e−
q2zσ

2

2

N−1
∑

n=0

f(n)

(

Ff(qz) · sin(qz(d0 + nd)) e−
q2z
2
〈u2
n〉
)

+ |Ff(qz)|2 ·
N−1
∑

m,n=0

f(n)f(m) e−iqzd(m−n) e−
q2z
2
(〈u2

m〉+〈u2
n〉)

]

.

The first summand represents the reflectivity of the sub-
strate. The second is a cross-term and represents inter-
ference effects between the substrate and the membrane
stack. The third summand is the product of the form fac-
tor |Ff(qz)|2 containing the structural information about
one bilayer in the stack, and the structure factor, repre-
senting the periodic structure in the stack. The fluctua-
tions are described by the correlation function 〈unum〉. In
specular reflectivity only the self-correlation function 〈u2n〉
is important (see Appendix).

3.2 Correlation Function

The self-correlation function of the membrane fluctuations
can be calculated from linear smectic elasticity theory
based on a continuous model [23]. The complete theory
and calculations are described in [24]. Here only the es-
sentials, which are important for specular reflectivity shall
be given. The linearized free energy can be written as a
function of the displacement u(r||, z) as :

F =
1

2

∫

V

dr

[

B

(

∂u(r||, z)

∂z

)2

+K(∆||u(r||, z))
2

]

, (3)

with K = κ/d the bending modulus and B the compres-
sion modulus in the stack. We neglect the surface tension
between the lipid stack and the solvent. The discrete struc-
ture of the stack consisting of N bilayers is taken into ac-
count by expanding u overN independent modes. Also, we
are only interested in the fluctuation amplitude at the po-
sition of the bilayer midpoints, denoted by un = u(z = nd)
for the n-th bilayer. From the equipartition theorem one
can calculate the correlation function of the membrane
fluctuations 〈u2n〉, which reads :

〈u2n〉 = η

(

d

π

)2 N
∑

j=1

1

2j − 1 sin
2

(

2j − 1
2

π
n

N

)

(4)

with the conventional Caillé factor η = π
2d2

kBT√
BK
. Figure

5A shows the function for a 16 membrane stack with a
typical η value for DMPC membranes at partial hydra-
tion. In contrast to oligo-membranes which are partially

hydrated from water vapor, oligo-membranes immersed in
excess water or polymer solution exhibit defects which re-
sult in decreasing layer coverage with increasing distance
from the substrate. This effect is evidenced experimen-
tally by the suppression of thickness oscillations (Kiessig
fringes) in the reflectivity curves. Thickness oscillations
are typically observed in vapor-hydrated samples but are
significantly reduced or suppressed in samples immersed in
aqueous solution [14,25]. In the model we take this effect
into account by multiplying the contribution of each mem-
brane in the structure-factor with an empirical coverage-
factor f(n) = [1− (n/N)α]2, where α parameterizes the
decaying density due to decreasing coverage. A typical
experimental value is α ≈ 1.7. Note that both α and the
number of bilayers N are fit parameters.

Since the form factor |Ff(qz)|2 of the membranes con-
sists of the squared Fourier transform of the z-derivative
of the electron density profile of the membrane, it is conve-
nient to express the profile in terms of normalized Fourier
coefficients [15]

ρ(z) =

N0
∑

m=1

fm · cos
(2πmz

d

)

· ρ12 + ρ̄− ρw ,

with ρ̄ being the average electron density of the membrane
stack and ρw the electron density of water. For DMPC,

ρ̄ = 0.3397 e−/Å
3
[4], very close to ρw = 0.332 e

−/Å
3
, so

that |Ff(0)| ' 0.

4 Reflectivity results

Figure 3 shows the reflectivity measurements (symbols)
of 16 DMPC membranes on silicon substrates at four (out
of nine measured) different osmotic pressures. The curves
have been stacked vertically for clarity, with increasing
pressure from 4 kPa (bottom) to 195 kPa (top). The con-
tinuous lines are simulations based on the model described
above with the corresponding electron density profiles shown
in Figure 4A. The reflectivity spectra presented in Figure
3 were each scaled by the corresponding Fresnel reflectiv-
ity. The error bars in the intensity at point n, ∆In, are
estimated considering Poissonian statistics (both for the
raw reflectivity and for the offset scan). The error bar in

the qz direction is taken as ∆qn = ∆q = 5 × 10−4Å−1
,

corresponding roughly to the symbol size, and is given by
the estimated precision in sample alignment.

¿From the electron density profiles one can see that
the increase of periodicity d with decreasing pressure is
mainly due to changes in the water layer thickness, while
the bilayer structure is essentially invariant over the range
in Π studied, with a headgroup spacing (distance be-
tween the two maxima in the electron density profile)
dHH = 34 ± 0.5 Å, in good agreement with the value of
34.4 Å given by Petrache et al. [4]. The simulations match
the measured reflectivity curves not only at the position
of the Bragg peaks, but in the whole continuous q-range of
the measurement. At lower osmotic pressure Π the higher
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Fig. 4. Electronic density profile of the bilayer, as a function
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order peaks are suppressed due to increased thermal fluc-
tuations, as quantified by the above model. As an illustra-
tion, Fig. 5A shows the increase in the fluctuation ampli-
tude as a function of the membrane index for a 16 bilayer
sample.

As discussed above, the relevant parameters for the
reflectivity curves are the mean squared fluctuation am-
plitudes

〈

u2n
〉

, which give access to the Caillé parameter
η. In order to compare our data to the bulk results [4]
we then compute the interbilayer spacing fluctuation am-

plitude σ2 =
〈

(un − un−1)
2
〉

= η
d2

π2
. Soft confinement

theories predict an exponential dependence [4] of param-
eter σ2 with the interbilayer distance, which can be taken
as the thickness of the water layer, given by dw = d− dB ,
where dB = 44 Å is the thickness of the DMPC bilayer [4].

Fig. 5B shows the reciprocal of the fluctuation ampli-
tudes as a function of the water spacing σ−2(dw), along
with a fit to an exponential decay (solid line). The data
points can be fitted to an exponential function σ−2 ∝
exp(−dw/λfl), with a decay length λfl = 4.1± 0.9 Å, com-
parable to the results of the bulk study, which also re-
ports exponential behaviour (shown as a dashed line) with
λfl = 5.1 Å [3].

The lamellar periodicity d was measured for all values
of the osmotic pressure Π, up to 870 kPa. We show Π(d)
in Figure 6 (diamonds). For comparison, we also plotted
the fit by Petrache et al. of the bulk data, Figure 7, up-
per panel in their paper [4] (dashed line). They performed
the measurements at 30 ◦C and obtain d0 = d(Π = 0) =
62.7 Å, while our experiments, performed at 40 ◦C, yield
d0 = 61.9 Å. This deviation is in agreement with recent
data of d0(T ) for DMPC [26]. A quick test can be per-
formed by shifting their curve by 0.8 Å to lower d values
(solid line). The agreement is good, but a more detailed
analysis is obviously needed for a meaningful comparison.

5 Interaction potentials

We saw above that our data can be brought to agreement
with the bulk equation of state Π(d) by the 0.8 Å shift,
which can be attributed to the temperature difference.
Consequently, the interaction potentials derived from the



6 Ulrike Mennicke et al.: X-ray reflectivity of lipid lamellar stacks under osmotic pressure

4

6
8

0.1

2

4

6
8

1

16141210
dw [Å]

  σ
-2  
= π

2
/(ηd

2
)

 exponential fit
 bulk values
(Petrache et al, [3])

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

n/N

<u
n

2>

N = 16
η = 0.065
d = 59.5 Å

<
u n
2 >

 [
Å
2 ]

σ
-2

 [
Å
-2
]

A B

Fig. 5. A) Amplitude of the bilayer position fluctuations
〈

u2
n

〉

in a solid-supported membrane stack consisting of 16 DMPC
membranes at partial hydration, controlled by an osmotic pressure of 4 kPa (used for the model in Fig. 3, bottom). B) Reciprocal
of the squared fluctuation amplitudes σ−2(d) = π2/(ηd2), as determined from the reflectivity fits, and exponential fit (solid
line). Also shown is the exponential fit to the bulk data of Petrache et al. [4]. For clarity, their experimental data points are not
shown.

10
4

10
5

10
6

Π
 [P

a]

62616059585756555453
d [Å]

Fig. 6. Osmotic pressure Π as a function of the lamellar d
spacing. Diamonds : experimental data points. Dashed line :
Fit to the bulk data of Petrache et al. [4]. For clarity, their
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(see text for details).

bulk and the present data will also be identical or at least
similar. However, the choice of the functional forms for
the potentials, the geometric partitioning of the bilayer
to calculate the van der Waals part and the choice of the
bending rigidity κ can all be debated. We therefore first
give a brief discussion of the different interaction poten-
tials used for neutral lipid membranes, and then present
results based on modelling the equation of state Π(d).

The hydration potential is usually empirically described
by an exponential function of the water layer thickness dw
[27] :

fhyd(dw) = H0 exp(−dw/λ) , (5)

with a prefactor of the order of H0 = kBT/Å
2
and a decay

length on the order of a few Angstroms λ = 1− 2 Å. For
the van der Waals potential, Petrache et al. [3], used the
following expression and geometric convention:

VvdW (dw) =
HvdW

16π

[

1

dw
2 −

2

(dw + dB)2
+

1

(dw + 2dB)2

]

,

(6)
where dw is the water layer and dB = d − dw the bilayer
thickness. The expression should be regarded as an ap-
proximation to the result of a more detailed treatment, as
discussed by Fenzl [17]. Accordingly, the potential should
be calculated from

FvdW(dh, T ) = 0.9
kBT

8πd2h

∞′
∑

n=0

∫ ∞

rn

dxx (7)

ln

[

1−
(

∆n(1− exp(−ax/dh))
1−∆2

n exp(−ax/dh)

)2

exp(−x)
]

,

where dh is again the thickness of the hydrophilic lay-
ers consisting of the water layer and the headgroups and
∆n = (εH2O(ωn)− εCH2

(ωn))/(εH2O(ωn) + εCH2
(ωn)) is a

function of the frequency-dependent dielectric constants
of hydrocarbon and water. The prime symbol ′ indicates
that the static term (n = 0) has to be multiplied by
1/2. The calculation is somewhat involved, however Fenzl
has shown that a frequently used approximation of Eqs.
6 is valid for the dispersion term, but not for the static
term which dominates under salt-free conditions. More-
over, Podgornik and coworkers have shown that nonpair-
wise additive contributions to the van der Waals interac-
tion play a significant role in multilayers at large swelling
[28]. However, for the present parameters, the above treat-
ment should be sufficient.

Apart from the molecular forces discussed above, steric
forces resulting from membrane bending elasticity should
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be included, as first introduced by Helfrich [29]. Accord-
ingly, a repulsive undulation force arises

fU1 = 0.42
(kBT )

2

κd2w
, (8)

which cannot, however, be simply added to the molecular
forces. Instead, steric forces must be treated by field theo-
retical approaches which go beyond the mean field approx-
imation [1], or by self-consistent models [30], but which
to date have not been combined with realistic molecu-
lar potentials in multilamellar stacks. Facing these com-
plications, Petrache and coworkers [3] have pointed out
that the measured rms-fluctuation of the next neighbor
distance σ =

√
ηd/π can be used to experimentally de-

termine the fluctuation pressure Pfluct, which they then
added to the pressure calculated from the molecular po-
tentials to fit their data Π(d) = Pmol +Pfluct. Obviously,
this approach avoids the problematic identification of the
thermodynamic compression modulus to the bulk mod-
ulus B as defined in the Caillé model, but still assumes
that the total pressure can be written as a sum, which
may strictly only be true in mean field approximation.
The advantage of the approach is that it makes clever use
of the experimental information from either of the inter-
connected functions B(d), η(d), or σ(d) to compute the
pressure. According to [3]

Pfluct = −
(4kBT )

2

(8π)2
1

κ

dσ−2

d (dw)
. (9)

Fig. 5 shows the measured parameter the inverse of the
fluctuation amplitudes σ−2(d), along with a fit to an ex-
ponential decay (solid line). The data points can be fit-

ted to an exponential function 2.14 exp(−dw/4.17) Å
−2
.

Subtracting the corresponding fluctuation pressure Pfluct
obtained by differentiation according to Eq. 9 for a given
parameter κ from Π(d), the molecular interactions (hy-
dration and van der Waals interactions) can then be mod-
elled and compared to the data, as shown below in Fig.
7.

Below we give results for two different approaches in
the data analysis. The first approach is described in detail
in [31]. It is based on the assumption that the periodicity d
is dominated by the molecular forces, and that steric forces
are comparatively small for relatively stiff phospholipid
membranes.

First approach: The calculation of the van der Waals
interaction was based on equation (7) for the static con-
tribution. The static part for n = 0 was numerically inte-
grated between 0 and 100. For water εH2O(0) = 80 and
for hydrocarbon (tetradecane) εCH2

(0) = 2 was taken.
For the dispersion term a hydrophobic bilayer thickness
26 Å and a Hamaker constant Hdis = 0.297 was used. The
latter value has been chosen to approximate (7), evalu-
ated for dispersion relations εH2O(ω) and εCH2

(ω) which
have been parameterized by oscillator models as in [17].
Note that in this approach there is no free parameter for
the vdW interaction. Figure 1 B shows the total interac-
tion potential (solid line) with separately calculated static

and dispersion terms as described above. A calculation
based only on Eq. 6 (with adjusted Hamaker constant) is
shown for comparison (dashed curve). The parameters of
the hydration interaction which were then freely adjusted

were H0 = 4.8 kBT/Å
2
and λ = 1.88 Å. The 10% reduc-

tion from the fixed values in [17] in the van der Waals term
for equation (7) may be attributed to the fact that Helfrich
repulsive forces have not been included in the force bal-
ance. At the same time, it is interesting to note the value
obtained for κ in this approach. To estimate κ we note that
the Caillé parameter η = π

2d2
kBT√
Bκ/d

has been determined

from the full q-range fits to the reflectivity curves at differ-
ent pressures. As the compression modulus B(d) = ∂Π/∂d
has been independently determined by numerical deriva-
tion of the measuredΠ(d) curve, one can now estimate the
bending modulus κ from the experimental values of η(d).
The best agreement was obtained for κ = 23.2± 2.5 kBT .
Within these uncertainties κ ' 23 kBT compares quite
well with the value of κ = 19 kBT at 30 ◦C determined
from bulk suspensions of DMPC by Petrache et al. [3].
Note however that another study employing full q-range
fits and osmotic pressure variation reports κ = 11.5 kBT
[32], again at full hydration and comparable T . Finally,
thermal diffuse scattering analysis points to significantly
smaller values κ = 7 kBT [33]. Note that the determina-
tion of κ from the osmotic pressure series is based on a
problematic assumption, i.e. that the identification of the
bulk modulus B as defined in the Caillé model and the
thermodynamic compression modulus is correct. More de-
tails on the data analysis following this approach based on
molecular interactions only are given in [31].

In the second approach we followed exactly the pro-
cedure given by [3]. First, the fluctuation pressure is sub-
tracted from P (d), and then the resulting bare pressure
is modelled in terms of the molecular interactions. How-
ever, the calculation of the fluctuation pressure according
to equation 9 needs the bending rigidity κ as an additional
parameter. To illustrate the range of parameter variabil-
ity, we present a comparison of two different choices of
parameters: (a) all parameters and functions are kept as
close as possible to those used in [3], in particular keep-
ing κ = 18.5 kBT fixed. The corresponding values for
H0 = 0.020 J/m2 and HvdW = 4.91 · 10−21 J are practi-
cally identical to the values in [3], showing that the same
approach can explain both bulk and thin film data. The
same treatment has then been carried out for a different
choice of κ = 8 kBT . Again the simulations can be brought
into agreement with the data, but only for a different set
of parameters H0 = 0.028 J/m

2 and HvdW = 1.1 · 10−20 J.
Thus values at the lower and upper range of the κ values
reported in the literature both lead to reasonable agree-
ment, indicating that extra information from other ex-
periments is needed to unambiguously determine the po-
tentials. The potentials are shown for the two cases, and
can be compared also to the potential in Fig. 1(b), de-
rived from the data analysis under the assumption that
the fluctuation repulsion is negligible.
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Fig. 7. Osmotic pressure Π as a function of lamellar peri-
odicity d (same data as in Fig. 5(A)). The simulations have
been carried out following the approach of [3] for (a) fixed
κ = 18.5 kBT and (b) κ = 8 kBT . The parameters of the
hydration interaction H0 (Eq. 5) and the Hamaker constant
HvdW (Eq. 6) are varied to match the data. The simulations
in (a) and (b) show the total pressure (solid line), the fluctua-
tion pressure Pfluct (dotted line), the pressure corresponding to
the molecular potential (dashed line), and the potential trough
corresponding to the molecular forces (dash-dotted line). The
fluctuation pressure as determined from Eq. 9 and the data in
Fig. 5 was added to the pressure stemming from the molecular
forces.

6 Discussion and Conclusions

In conclusion, we have presented an osmotic pressure ex-
periment on thin solid-supported lipid multilayers (oligo-
membranes). The x-ray reflectivity has been measured and

modelled over the full qz-range up to 0.7 Å
−1
. From this

analysis fluctuation and structural parameters can be ob-
tained, similar to the lineshape analysis of bulk suspen-
sions [3,5]. Solid-supported oligo-membranes offer some
advantages both over thick multilamellar films and the
bulk counterpart. Long range thermal fluctuations are not
as strong as for bulk samples, and the scattering can be
probed up to higher momentum transfer. Owing to the

smaller number of bilayers, destructive interference in-
between the Bragg peaks is not quite as strong as in
thick stacks of several hundred bilayers. To achieve sat-
isfactory fits, two important effects were taken into ac-
count: (i) the static defects leading to a decreasing cov-
erage of the bilayers from the substrate to the top of the
film, and (ii) the thermal fluctuations of the bilayers sub-
ject to the boundary condition of a flat substrate [24].
While (i) most likely reflects non-equilibrium aspects of
sample deposition and/or equilibrium wetting properties
(not further analyzed here), (ii) is exploited to deduce in-
teraction parameters in the framework of linear smectic
theory. The curve B(d) derived from the osmotic pressure
series Π(d) is subsequently modelled based on different
interaction potentials. However, this modelling cannot be
carried out without assumptions or additional theoretic
arguments.

In the data analysis, we have presented two entirely
different approaches to illustrate how the determination
of interaction forces depends on the specific assumptions,
theoretical arguments, or extra information taken from
other experiments. The first approach builds upon the
rather strong assumption that steric forces are negligible
and that the derivative of the equation of state ∂Π(d)/∂d
can be identified with the modulus B(d) which controls
the thermal fluctuations. It then yields the parameters of
the hydration force necessary to balance the van der Waals
attraction at each given osmotic pressure. This approach
also gives a value for the bending constant from simulta-
neous inspection of B(d) and η(d). However, the resulting
κ ' 23 kBT , is probably an overestimation. The rather
large value may point to the fact that B is underestimated
by the contribution of only the bare potentials. Adding a
fluctuation pressure would tend to increase B and thus
decrease κ = K d. Note that this determination of κ is
conceptually very different from a more direct assessment
of κ, e.g. from the measurement of diffuse scattering.

The second approach includes the steric Helfrich un-
dulation forces. This contribution is a subtle issue for the
following reasons: (a) it has been shown by Lipowsky and
coworkers that the Helfrich term cannot be simply added
to the molecular forces. If one nevertheless uses a mean
field approach, (b) the functional form to be used as well as
the numerical prefactor are still under debate [34]. There-
fore, we have followed an idea of Petrache et al. [3], who
have carried out an osmotic pressure study on DMPC,
which is the bulk analogue of the present work. Calculat-
ing the partition function within the linear smectic elastic-
ity model, they have derived derived an expression for the
fluctuation pressure as a function of a measurable quan-
tity, namely the derivative of the fluctuation amplitudes,
see Eq. 5. In a mean field treatment, they add this pres-
sure to the bare pressure calculated from the interaction
potentials and fit the sum to the measured curve Π(d). In
this step, an assumption of κ has to be made, e.g. from
other experimental data. This approach has been carried
out for two choices of κ, see Fig. 7.

We point out, however, that the questions related to
the interaction potentials arise only on a secondary level,
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where structural results (d and σ) are interpreted and
transformed to elasticity and interaction parameters. On
the primary level that the structural results presented
here, i.e. Π(d), ρ(z,Π) and

〈

u2n
〉

(d) are well supported
by the curves and fits shown here. The second level is
necessarily model-dependent. We have presented two al-
ternative approaches to illustrate the relation and interde-
pendencies of different assumptions and results. It may be
justified to conclude that the second approach as proposed
and used by [3] is more appropriate, since steric repulsion
is known to be important. However, the choice of the van
der Waals expression may have to be improved to a more
accurate form, and the choice of κ is also an important
issue. Unfortunately, the second approach also relies on
the validity of a mean field approximation. This simplifi-
cation could be eliminated in the future by generalization
of a recent self-consistent calculation for bilayer fluctu-
ations and interactions [30] to the case of several mem-
branes or by use of the approach developed in [35]. Fur-
thermore, non-linear effects due to the asymmetry of the
potential could also be included by more general models
[36,35] and/or numeric simulations. To elucidate the valid-
ity of the linearized model a posteriori, the rms-deviation
√

〈(un − un+1)2〉 between neighboring membranes can be
compared to the width of the inter-bilayer potential well,
see Figure 1 (B). For N = 16 and η = 0.08 (full hydration)
the bilayers in the center of the stack already exhibit con-
siderable next-neighbor distance fluctuations in the range
of 4 − 5 Å, when compared to the water layer thickness.
Thus the errors made in the simplifying assumptions are
probably not negligible. We note, however, that at least
under high osmotic pressure, where fluctuations are small,
both the mean field approach and the harmonic approxi-
mation for the potential should hold.

Appendix

In this appendix, we give a sketch of the derivation of
our formula (3.1) for the reflectivity, insisting upon the
separation between the specular and diffuse components.
This is a classical result and a more detailed derivation
can be found in references [37] (equation 2.28) and [22]
(subsection 3.8.3) for the case of single interfaces and in
[38] (section 3) for multiple interfaces.

It is well known that bulk lamellar phases exhibit the
Landau-Peierls instability, leading to a characteristic power-
law variation of the scattered signal [6]. In such a system
the fluctuation amplitude 〈u2n〉 diverges. It is then more
appropriate to use the correlation of the height difference,
which remains finite for all finite values of r :

gmn(r‖) =
〈

(

um(r‖)− un(0)
)2
〉

(10)

= 〈u2m〉+ 〈u2n〉 − 2〈um(r‖)un(0)〉

It is then easy to show [37,38] that the structure fac-
tor of the lamellar stack (without taking into account the

substrate contribution, so only the third term in Eq. (3.1)
is described) reads :

S(q) =
∑

m,n

e−iqzd(m−n)
∫

dr‖ e
−iq‖r‖ e−

1
2
q2zgmn(r) . (11)

where r = |r‖|, assuming that the fluctuations are isotropic
in the membrane plane. For bulk systems, lim

r→∞
gmn(r) =

∞, so that lim
r→∞

exp
[

− 1
2q

2
zgmn(r)

]

= 0 and the Fourier

transform with respect to r‖ in formula (11) yields a ”smooth”
function S(q‖) at fixed qz. If, however, gmn(r) does not di-

verge for r →∞, the function exp
[

− 1
2q

2
zgmn(r)

]

now has

a constant background, at a value of exp
[

− 1
2q

2
zgmn(∞)

]

=

exp
[

− 1
2q

2
z

(

〈u2m〉+ 〈u2n〉
)]

, quantifying the ”remanent or-
der” in the system. Its Fourier transform is a Dirac delta
function δ(q‖) (in practice, its width is given by a com-
bination of resolution effects, beam coherence and system
size). This term is sometimes called the ”true specular
component”, because the smooth function discussed above
(the ”diffuse” component) also contributes to the specu-
lar signal S(q‖ = 0, qz). However, as the diffuse scattering
varies over a much larger q‖ range, it can be accounted
for in the first approximation by an offset scan taken close
enough to the specular sharp peak (see figure 2). Finally,
we can write :

Sspec(q‖ = 0, qz) =
∑

m,n

e−iqzd(m−n) e−
1
2
q2z(〈u2

m〉+〈u2
n〉)

(12)
which is the form employed in equation (3.1). It is note-
worthy that this ”true specular” contribution is distinct
in nature from the signal measured in SAXS experiments
on powder samples, where only the diffuse signal persists.
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