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RIGOROUS ASYMPTOTICS FOR STEADY STATE VOLTAGE

POTENTIALS IN A BIDIMENSIONAL HIGHLY CONTRASTED

MEDIUM

CLAIR POIGNARD

Abstract. We study the behavior of steady state voltage potentials in a bidi-
mensional highly contrasted medium composed of a conducting cytoplasm sur-
rounded by an insulating membrane of thickness h. We provide a rigorous

derivation of the first two terms of the asymptotic expansion of steady state
voltage potentials as h tends to zero. The first two terms of the potential in the
membrane are given explicitly in local coordinates in terms of the boundary
data, while the first terms of the cytoplasmic potential are the solutions of the
so-called dielectric formulation with appropriate boundary conditions given in
terms of the boundary data. The error estimates are given in terms of the
conductivities and of the boundary data.

Introduction

We study in this paper the behavior of the solution of steady state voltage poten-
tials in a bidimensional highly contrasted medium. This work is the generalization
to a domain of class C 2 of arbitrary shape of the asymptotic expansion performed by
the author in the case of a circular domain [12] for the so-called dielectric formula-
tion with Neumann boundary condition (see Propositions III.1, III.2 and Corollary
III.1 of [12]). The motivation of the present work and of [12] comes from numerical
problems raised by the researchers in computational electromagnetics of CEGELY1,
who want to compute the electric field in the biological cell. Because of its unsusal
dielectric parameters, the computation of the vector wave equation (see [12]) leads
to matrices with very small coefficients, which are not easily invertible with the
presently available numerical methods. To avoid these numerical difficulties, they
used to neglect the curl part of the electric field. They compute the solution of the
so called dielectric formulation (see [12]), which gives the steady state potentials.
In the present paper, we give rigorous asymptotics of these potentials. In Fig. 1 we
give the dielectric and geometric parameters of the biological cell. The permeability
µ0 and the permittivity ǫ0 are constant, equal to:

µ0 = 4π 10−7, ε0 = 8.85 10−11.

In [12], we denoted by qh the following piecewise constant function, giving the non
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σc = 1S/m

ǫc = 80 ǫ0, µ = µ0

σm = 10−5 to 10−7S/m

ǫm = 10 ǫ0, µ = µ0

h = 10−3 to 10−2

2l ∼ 2 µm

O

Oh

h

Ωh

Figure 1. Typical parameters of the biological cell.

dimensionalized complex permittivity:

qh =

{
qc = l2ω2µ (εc − iσc/ω) , in O,

qm = l2ω2µ (εm − iσm/ω) , in Oh.

As has been proved in [12] in the case of a circular biological cell, up to 100GHz
the dielectric formulation gives an approximation of the solution of the vector wave
equation; in this frequency range, |qc|+ |qm| is at most 10−2 and the relative error is
of order |qc|+ |qm|. This is the reason why, in this paper, we focus on the dielectric
formulation. In upcoming papers, the author deals with the vector wave equation in
a smooth domain of arbitrary shape; the circular case for the vector wave equation
is treated in Section IV of [12].

Let Ωh be a smooth bounded bidimensional domain, composed of a smooth
domain O surrounded by a thin membrane Oh with a small constant thickness h
(see Fig. 1):

Ωh = O ∪Oh.

Since we impose a Neumann boundary condition on ∂Ωh the data φ must satisfy
the compatibility condition:

∫

∂Ωh

φ d σ = 0.

Let qc and qm be two non vanishing complex numbers. We denote by qh the
following piecewise constant function:

∀x ∈ Ωh, qh(x) =

{
qc, if x ∈ O,

qm if x ∈ Oh.
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We would like to understand the behavior for h tending to zero of the solution V
of Problem (1) with Neumann boundary condition:

div (qh gradV ) = 0 in Ωh, in the sense of distributions,(1a)

∂V

∂n
= φ on ∂Ωh.(1b)

To determine V , we impose the following gauge condition on the boundary of the
cytoplasm:

∫

∂O

V d σ = 0.(1c)

Several authors have worked on similar problems (see for instance Beretta et al.
[4] and [5]). They compared the exact solution to the so-called background solution
defined by replacing the material of the membrane by cytoplasmic material. The
difference between these two solutions has then been given through an integral
involving the polarization tensor defined for instance in [1], [2], [4], [5], [6], plus
some remainder terms. The remainder terms are estimated in terms of the measure
of the inhomogeneity. In this paper, we do not use this approach, for several reasons.

First of all, the Beretta et al. estimate of the remainder terms depends linearly on
|qm|, |qc| and |qc/qm|. Here the ratio |qm/qc| varies from 10−5 to 10−2 according to
the frequency. Secondly, qm and qc are complex-valued, hence differential operators
involved in our case are not self-adjoint, so that the Γ-convergence techniques of
Beretta et al. do not apply. Thirdly, the potential in the membrane is not given
explicitly in [4], [5] or [6], while we are definitely interested in this potential, in
order to obtain the transmembranar potential (see Fear and Stuchly [9]). In this
paper we work with bidimensional domain and we expect that the same analysis
could be perfomed in higher dimensions.

The heuristics of this work consist in performing a change of coordinates in the
membrane Oh, so as to parameterize it by local coordinates (η, θ), which vary in
a domain independently of h; in particular, if we denote by L the length of ∂O,
the variables (η, θ) should vary in [0, 1] × R/LZ. This change of coordinates leads
to an expression of the Laplacian in the membrane, which depends on h. Once
the transmission conditions of the new problem are derived, we perform a formal
asymptotic expansion of the solution of (1) in terms of h. It remains to validate
this expansion.

This paper is structured as follows. In Section 1, we make precise our geometric
conventions. We perform a change of variables in the membrane, and with the
help of some differential geometry results, we write Problem (1) in the language
of differential forms. We refer the reader to the book of Flanders [10] or those of
Dubrovin et al. [8] (or [7] for the french version) for courses on differential geometry.
We derive transmission conditions in the intrinsic language of differential forms, and
we have to express these relations in local coordinates: euclidean coordinates in the
cytoplasm, and local (η, θ) coordinates in the membrane, and this is what we do in
Section III. In Section 3, we derive formally the first two terms of the asymptotic
expansion of the solution of our problem in terms of h. Section 4 is devoted to a
proof of the estimate of the error. In the Appendix, we give some useful differential
geometry formulae.



4 CLAIR POIGNARD

1. Geometry Statement

The boundary of the domain O is assumed to be of class C
2. The orientation of

the boundary ∂O is the trigonometric orientation and we denote by ∂t the tangential
derivative along O. To simplify, we suppose that the length of ∂O is equal to 2π.
We denote by T the flat torus:

T = R/2πZ.

Since ∂O is of class C 2, we can parameterize it by a function Ψ of class C 2 from T

to R2 satisfying:

∀θ ∈ T, |Ψ′ (θ)| = 1.

Therefore the following identities holds:

∂O = {Ψ(θ), θ ∈ T},

and

∂Ωh = {Ψ(θ) + hn(θ), θ ∈ T}.

Here n(θ) is the unitary exterior normal at Ψ(θ) to ∂O. The boundary ∂Ωh of
the cell is parallel to the boundary ∂O of the cytoplasm. We parameterize the
membrane Oh as follows:

Oh = {Ψ(θ) + hηn(θ), (η, θ) ∈]0, 1[×T}.

We define now:

Φ(η, θ) = Ψ(θ) + hηn(θ).

Let us denote by κ the curvature of ∂O. Let h0 belong to (0, 1) such that:

h0 <
1

‖κ‖∞
.(2)

Then, for all h in [0, h0], there exists an open intervall I containing (0, 1) such
that Φ is a diffeomorphism of class C 2 from I × R/2πZ to its image, which is a
neighborhood of the membrane. The metric in Oh is:

h2 d η2 + (1 + hηκ)2 d θ2.(3)

Thus, we use two systems of coordinates, depending on the domains O and Oh: in
the interior domain O, we use Euclidean coordinates (x, y) and in the membrane
Oh, we use local (η, θ) coordinates with metric (3). Now, we translate into the
language of differential forms Problem (1). We refer the reader to the book of
Dubrovin, Fomenko and Novikov [8] or the book of Flanders [10] for the definition
of the exterior derivative denoted by d, the exterior product denoted by ext, the
interior derivative denoted by δ and the interior product denoted by int. In the
Appendix, we give the formulae describing these operators in the case of a general
2D metric. Our aim, while rewriting Problem (1) is to take into account nicely the
change of coordinates in the thin membrane.

Let V be the 0-form on Ωh such that, in the Euclidean coordinate (x, y), V is
equal to V , and let F be the 0-form, which is equal to φ on ∂Ωh. We denote by N
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the 1-form corresponding to the inward unit normal on the boundary Ωh (see for
example the book Gilkey and al. [11] p.33):

N = Nx d x + Ny d y,

= Nη d η.

N∗ is the inward unit normal 1-form. Problem (1) takes now the intrinsic form:

δ (qh d V) = 0, in Ωh,(4a)

int(N∗) d V = F, on ∂Ωh.(4b)

According to Green’s formula (Lemma 1.5.1 of [11]), we obtain the following trans-
mission conditions for V along ∂O:

qc int(N∗) d V|∂O = qm int(N∗) d V|∂Oh\∂Ωh
,

ext(N∗)V|∂O = ext(N∗)V|∂Oh\∂Ωh
.

(4c)

2. Statement of the problem

In this section, we write Problem (4) in local coordinates. It is convenient to
write:

∀θ ∈ T, Φ0 (θ) = Φ (0, θ) , Φ1 (θ) = Φ (1, θ) .

We denote by f the function, defined on the torus T by

∀θ ∈ T, f(θ) = φ oΦ1(θ),

and we denote by f the function defined on ∂O by

∀x ∈ ∂O, f = f oΦ−1
0 (x).(5)

Let us denote by V c the potential V in O, written in Euclidean coordinates, and
by V m the potential V in Oh in the local coordinates:

V c = V, in O,

V m = V o Φ, in [0, 1] × T.

Using the expressions of the differential operators d and δ, which are respectively
the exterior and the interior derivatives (see the Appendix), applied to the metric
(3), we can see that the Laplacian applied to V in the membrane is given in the
local coordinates (η, θ) by:

∀ (η, θ) ∈ [0, 1] × T,

(∆V )|Φ(η,θ) =
1

h(1 + hηκ)
∂η

(
1 + hηκ

h
∂ηV m

)
+

1

1 + hηκ
∂θ

(
1

1 + hηκ
∂θV

m

)
.

(6)

Therefore, we rewrite Problem (4) as follows:

∆V c = 0, in O,(7a)

∀ (η, θ) ∈ [0, 1] × T,

1

h2
∂η ((1 + hηκ)∂ηV m) + ∂θ

(
1

1 + hηκ
∂θV

m

)
= 0,(7b)
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with the following transmission conditions according to (4c) translated into local
coordinates

qc∂nV c o Φ0 =
qm

h
∂ηV m

∣∣∣
η=0

,(7c)

V c o Φ0 = V m|η=0 ,(7d)

with the boundary condition according to (4b) translated into local coordinates

(1 + hκ) ∂ηV m|η=1 = hf.(7e)

To determine completely (V c, V m), we impose the same gauge condition as in (1c):
∫

∂O

V d σ = 0.

3. Formal asymptotic expansion

In this section, we derive asymptotic expansions of the potentials (V c, V m) so-
lution of (7) in terms of the thickness h. We write the following ansatz:

V c = V c
0 + hV c

1 + · · · ,(8a)

V m = V m
0 + hV m

1 + · · · .(8b)

We multiply (7b) by h2(1 + hηκ)2 and we order the powers of h to obtain:

∀(η, θ) ∈ [0, 1] × T,

∂2
ηV m + hκ

{
3η∂2

ηV m + ∂ηV m
}

+ h2
{
3η2κ2∂2

ηV m + 2ηκ2∂ηV m + ∂2
θV m

}

+ h3
{
η3κ3∂2

ηV m + η2κ3∂ηV m + ηκ∂2
θV m − ηκ′∂θV

m
}

= 0
(9)

We are now ready to derive the first two terms of the asymptotic expansions of V c

and V m by identifying the terms of the same power in h.

First step. Substituting in (9) the potential V m by its expansion (8b), and using
the boundary condition (7e), we obtain:

{
∂2

ηV m
0 = 0,

∂ηV m
0 |η=1 = 0.

Thus, we obtain:

∀(η, θ) ∈ [0, 1]× T, V m
0 (η, θ) = V m

0 (θ).(10)

We will determine V m
0 in the following.

Second step. Substituting in (9) the potential V m by its expansion (8b), and
using boundary condition (7e) and equality (10), we obtain:

{
∂2

ηV m
1 = 0,

∂ηV m
1 |η=1 = f.

Thus, we infer:

∀(η, θ) ∈ [0, 1]× T, ∂ηV m
1 (η, θ) = f(θ).(11)
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Substituting in (7a) the potential V c by its expansion (8a), and substituting in the
transmission conditions (7c) expression (11) of ∂ηV m

1 we obtain:
{

∆V c
0 = 0, in O,

∂nV c
0 |∂O = (qm/qc)f,

(12a)

with gauge condition:

∫

∂O

V c
0 d σ = 0.(12b)

According to the transmission condition (7d), V m
0 is equal to:

∀ (η, θ) ∈ [0, L]× T, V m
0 (η, θ) = V c

0 o Φ0(θ).(13)

We have determined V c
0 and V m

0 .

Third step. As in the previous paragraph, substituting in (9) the potential V m

by its expansion (8b) and using equalities (10)–(11), we obtain:

∂2
ηV m

2 + κf + ∂2
θV m

0 = 0,(14a)

∂ηV m
2 |η=1 = −κf,(14b)

and hence integrating (14) with respect to η the following equality holds

∂ηV m
2 = −ηκf + (1 − η) ∂2

θV m
0 .(15)

By the transmission condition (7c) and equality (13), V c
1 is the solution of:

{
∆V c

1 = 0, in O,

∂nV c
1 |∂O = (qm/qc)∂

2
t V c

0 ,
(16a)

with gauge condition

∫

∂O

V c
1 d σ = 0.(16b)

Integrating (11) with respect to η we obtain the value of V m
1 :

∀ (η, θ) ∈ [0, L] × T, V m
1 (η, θ) = ηf + V m

1 (0, θ) ,(17a)

with V m
1 determined by the transmission condition (7d)

∀ θ ∈ T, V m
1 (0, θ) = V c

1 o Φ0 (θ) .(17b)

We have given the first two terms of the asymptotic expansion of V c and V m. It
remains to prove that the remainder terms are small.

4. Error Estimates

We give an error estimate, which proves that the first two terms found in Section
3 by a formal argument are indeed the first terms, in the sense that the remainder
is smaller. We have the following theorem.
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Theorem 4.1. We remember that h0 is defined in (2). Let h be in (0, h0). Let qc

and qm be two non vanishing complex numbers such that:

ℜ(qc/qm) > 0.(18)

Let φ be in H3(∂Ωh). We remember that f is defined in (5). We denote by V
the solution of Problem (1), and V c

0 , V m
0 , V c

1 , and V m
1 are defined in Section 3

respectively by equalities (12)–(13)–(16)–(17). More precisely V c
0 is the solution of

the following problem:
{

∆V c
0 = 0, in O,

∂nV c
0 |∂O = (qm/qc)f,

V c
1 satisfies

{
∆V c

1 = 0, in O,

∂nV c
1 |∂O = (qm/qc)∂

2
t V c

0 ,

with gauge conditions:

∫

∂O

V c
0 d σ = 0,

∫

∂O

V c
1 d σ = 0.

V m
0 and V c

1 are defined in [0, 1]× T by:

∀(η, θ) ∈ [0, 1]× T, V m
0 (η, θ) = V c

0 o Φ0(θ),

∀(η, θ) ∈ [0, 1]× T, V m
1 (η, θ) = ηf + V c

1 oΦ0(θ).

Let W be the function defined on Ωh by:

W =

{
V − (V c

0 + hV c
1 ) , in O,

V −
(
V m

0 oΦ−1 + hV m
1 oΦ−1

)
, in Oh.

Then, there exists a constant CO > 0 depending only on the domain O such that

‖W‖H1(Ωh) ≤ CO
1 + |qm/qc|

min (ℜ(qc/qm), 1)
h3/2‖f‖H3(∂O).

Proof. The proof of Theorem 4.1 is based on estimates of the tangential and the
second tangential derivatives of V m

0 |η=0 and V m
1 |η=0.

Denote by W c and Wm the following functions:

W c = V c − (V c
0 + hV c

1 ) , in O,(19)

Wm = V m − (V m
0 + hV m

1 ) , in [0, 1] × T.(20)

In order to simplify the notations, we introduce Lη,θ, the Laplacian in the local
coordinates (η, θ) given by (6):

Lη,θ =
1

h(1 + hηκ)

(
1

h
∂η ((1 + hηκ)∂η) + ∂θ

(
h

1 + hηκ
∂θ

))
.
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Let us write the problem satisfied by (W c, Wm). We use the expressions of V c
0 , V c

1 ,
V m

0 and V m
1 found in Section 3 to obtain, by a simple calculation:

∆W c = 0, in O,(21a)

∀(η, θ) ∈ [0, 1]× T,

Lη,θW
m = −

1

h (1 + hηκ)

{
hκf +

h

1 + hηκ
∂2

θV m
0

+ h2

(
−

ηκ′

(1 + hηκ)2
∂θV

m
0 + ∂θ

(
∂θV

m
1

1 + hηκ

))}
.

(21b)

with the transmission conditions coming from (7c)–(7d)

qc∂nW c oΦ0 =
qm

h

(
∂ηWm|η=0 − h2∂2

θV m
0

)
,(21c)

W c oΦ0 = Wm|η=0 ,(21d)

and the boundary condition

(1 + hκ) ∂ηWm|η=1 = −h2κf.(21e)

Let us denote by V2 the primitive with respect to η of ∂ηV m
2 defined in (15), which

vanishes in η = 0:

∀(η, θ) ∈ [0, 1] × T, V2(η, θ) = −(η2/2)κf + η (1 − η/2)∂2
θV m

0 .(22)

The trick of the proof consists in introducing the function Am defined on [0, 1]×T

by:

Am = Wm − h2V2.(23)

It is obvious that Am satisfies the following equalities:

∂ηAm|η=0 = ∂ηWm|η=0 − h2∂2
θV m

0 ,(24a)

Am|η=0 = Wm|η=0 ,(24b)

∂ηAm|η=1 = 0.(24c)

According to equalities (21b)–(23) a simple calculation shows that for all (η, θ) in
[0, 1]× T:

Lη,θA
m = −

1

h (1 + hηκ)

{
−h2ηκ∂2

θV m
0

1 + hηκ
− h2κ

(
2κηf − (1 − 2η)∂2

θV m
0

)

+ h2

(
−

ηκ′∂θV
m
0

(1 + hηκ)2
+ ∂θ

(
∂θV

m
1 + h∂θV2

1 + hηκ

))}
.

(24d)

Let us denote by g the right-hand side of equality (24d) multiplied by (1+hηκ)/h:

∀(η, θ) ∈ [0, 1] × T,

g(η, θ) =

{
ηκ∂2

θV m
0

1 + hηκ
− κ

(
2κηf − (1 − 2η)∂2

θV m
0

)

+
ηκ′∂θV

m
0

(1 + hηκ)2
− ∂θ

(
∂θV

m
1 + h∂θV2

1 + hηκ

)}
.
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According to (22) it is obvious that there exists a constant C > 0, depending only
on the geometry of ∂O such that:

∀θ ∈ T, sup
η∈[0,1]

|g (η, θ)| ≤ C
(
|f | + |f ′| + |f ′′| + |∂θV

m
0 | +

∣∣∂2
θV m

0

∣∣

+
∣∣∂3

θV m
0

∣∣+
∣∣∂4

θV m
0

∣∣
+ |∂θV

m
1 |η=0| +

∣∣∂2
θV m

1 |η=0

∣∣).

(25)

Let us denote by D the unit disc:

D = [0, 1]× T.

We remember that the L2 norm of a 0-form u in the [0, 1]×T with the metric (3),
denoted by ‖u‖Λ0L2

m
(D), is equal to:

‖u‖Λ0L2
m

(D) =

(∫ 1

0

∫ 2π

0

h(1 + hηκ)|u(η, θ)|2 d η d θ

)1/2

,

= ‖u‖L2(Oh),

and the L2 norm of its exterior derivative du, denoted by ‖ du‖Λ1L2
m

is equal to

‖ d u‖Λ1L2
m

(D) =

(∫ 1

0

∫ 2π

0

1 + hηκ

h
|∂ηu(η, θ)|

2
+

h

1 + hηκ
|∂θu(η, θ)|

2
d η d θ

)1/2

,

= ‖ gradu‖L2(Oh).

In O parameterized by Euclidean coordinates, the L2 norm of a 0-form v, denoted
by ‖v‖Λ0L2 , is equal to:

‖v‖Λ0L2(O) = ‖v‖L2(O),

and the L2 norm of its exterior derivative d v, denoted by ‖ du‖Λ1L2 is equal to

‖ d v‖Λ1L2(O) = ‖ gradv‖L2(O).

According to (24) and (21), (W c, Am) is the solution of the following problem:

∆W c = 0, in O,(26a)

∀(η, θ) ∈ [0, 1] × T,

Lη,θA
m =

hg(η, θ)

(1 + hηκ)
.(26b)

with the transmission conditions coming from (21c)–(21d) and from equalities (24)

qc∂nW c oΦ0 =
qm

h
∂ηAm

∣∣∣
η=0

,(26c)

W c oΦ0 = Am|η=0 ,(26d)

and the boundary condition

∂ηAm|η=1 = 0.(26e)

and with gauge condition:

∫ 2π

0

Am(0, θ) d θ = 0.(26f)
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We multiply equality (26a) by qcW c, we integrate by parts, and we multiply (26b)
by qmh(1 + hηκ)Am and we integrate by parts. Using the transmission conditions
(26c)–(26d) and the boundary condition (26e) we obtain:

−qc

∫

O

|gradW c|
2

dvolO − qm

∫ 2π

0

∫ 1

0

(
1 + hηκ

h
|∂ηAm|

2

+
h

1 + hηκ
|∂θA

m|
2

)
d η d θ

= qmh2

∫ 2π

0

∫ 1

0

g (η, θ) Am d η d θ.

Since qm 6= 0, and using hypothesis (18) we infer:

ℜ(qc/qm)‖ d W c‖2
Λ1L2(O)

+ ‖ dAm‖2
Λ1L2

m
(D) ≤ h3/2

(∫ 2π

0

∫ 1

0

|g (η, θ)|
2

1 + hηκ
d η d θ

)1/2

‖Am‖Λ0L2
m

(D).

Since ∂O is of class C
2, using equalities (13)–(17b) and problems (12)–(16) there

exists a constant C > 0 depending only on O such that:

∀i ∈ {0, 1, 2, 3, 4}, ‖∂i
θV

m
0 ‖L2(T) ≤ C

∣∣∣∣
qm

qc

∣∣∣∣ ‖f‖H3(∂O),(27)

∀j ∈ {0, 1, 2}, ‖∂j
θV

m
1 |η=0‖L2(T) ≤ C

∣∣∣∣
qm

qc

∣∣∣∣ ‖f‖H3(∂O).(28)

Using (25) we infer

min (ℜ(qc/qm), 1)
(
‖ dW c‖2

Λ1L2(O) + ‖ dAm‖2
Λ1L2

m
(D)

)
≤ Ch3/2

(
1(29)

+ |qm/qc|
)
‖f‖H3(∂O)‖A

m‖Λ0L2
m

(D).(30)

It remains to use Poincaré-Wirtinger inequality. Actually, according to gauge con-
dition (26f) and according to (26d), it is obvious that:

∫

∂O

W c dvol∂O = 0.

Thus, using Poincaré-Wirtinger inequality, there exists a constant C depending on
the domain O such that:

‖W c‖Λ0L2(O) ≤ CO‖ dW c‖Λ1L2(O).(31)

We are going to prove the existence of a constant CO depending on the domain O
such that:

‖Am‖Λ0L2
m

(D) ≤ CO‖ dAm‖Λ1L2
m

(D).(32)

Suppose that (32) holds. Thus, according to (31)–(32), and according to hypothesis
(18), we deduce from (30) the existence of a constant C > 0 depending on O such
that:

‖W c‖H1(O) +
(
‖Am‖Λ0L2

m
(D)

+ ‖ dAm‖Λ1L2
m

(D)

)
≤ C

1 + |qm/qc|

min (ℜ(qc/qm), 1)
h3/2‖f‖H3(∂O).
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According to (23) and to (27), it is obvious that there exists a constant C depending
only on O such that:

(
‖Am − Wm‖Λ0L2

m
(D)

+ ‖ dAm − d Wm‖Λ1L2
m

(D)

)
≤ Ch3/2 (1 + |qm/qc|) ‖f‖H3(∂O),

thus according to (18), and since we supposed that qm 6= 0, we have proved the
existence of CO > 0 such that:

‖W‖H1(Ωh) ≤ CO
1 + |qm/qc|

min (ℜ(qc/qm), 1)
h3/2‖f‖H3(∂O),

which ends the proof of Theorem 4.1.
It remains to prove (32). According to the definition of h0 in (2) there exists

two constants C1
O and C2

O depending on the domain O such that the following
inequalities hold:

‖Am‖2
Λ0L2

m
(D) ≤ C1

Oh

∫ 1

0

∫ 2π

0

|Am(η, θ)|2 d θ d η,(33a)

‖ d Am‖2
Λ1L2

m
(D) ≥ C2

O

(∫ 1

0

∫ 2π

0

|∂ηAm(η, θ)|2

h
+ h |∂θA

m|
2

d θ d η

)
.(33b)

Let us denote by
(
Âm
)

k
for k ∈ Z the kth-Fourier coefficient (with respect to θ)

of Am:
(
Âm
)

k
=

∫ π

0

Am(θ) e−2iπk/L d θ.

Since
(
∂̂θAm

)
k

= 2iπk
(
Âm
)

k
, it is easy to see that:

∀k 6= 0,

∫ 1

0

∣∣∣
(
Âm
)

k
(η)
∣∣∣
2

d η ≤ 4π2

∫ 1

0

∣∣∣
(
∂̂θAm

)
k
(η)
∣∣∣
2

d η.

According to gauge condition (26f), we have:
(
Âm
)

0
(0) = 0,

thus, using the equality

(
Âm
)

0
(η) =

∫ η

0

(
∂̂ηAm

)
0
(s) d s,

we infer
∫ 1

0

∣∣∣
(
Âm
)

0
(η)
∣∣∣
2

d η ≤

∫ 1

0

∣∣∣
(
∂̂ηAm

)
0
(η)
∣∣∣
2

d η.

Therefore,

∑

k∈Z

∫ 1

0

∣∣∣
(
Âm
)

k
(η, θ)

∣∣∣
2

d η ≤
∑

k∈Z

{∫ 1

0

∣∣∣
(
∂̂θAm

)
k
(η)
∣∣∣
2

d η +

∫ 1

0

∣∣∣
(
∂̂ηAm

)
k
(η)
∣∣∣
2
}

.

We end the proof of (32) by using Parseval inequality and inequalities (33). �



ASYMPTOTICS FOR STEADY STATE VOLTAGE POTENTIALS 13

Remark 4.2. If we suppose that qm = 0, which is equivalent to consider a perfectly
conducting cytoplasm, from Theorem 4.1 it is obvious to obtain:

V m
1 = κf, in [0, 1] × T,

‖V − hV m
1 oΦ−1‖H1(Oh) ≤ COh3/2‖f‖H3(∂O).

Remark 4.3. Since qc and qm are complex permittivities, there are both of the
same form (see Balanis and Constantine [3]) :

qc = ac − ibc, and qm = am − ibm,(34)

with ac, am, bc and bm positive. Thus the hypothesis (18) is always satisfied for
dielectric materials.

Appendix

Let ⋆ denote the Hodge star operator, which maps 0-forms to 2-forms, 1-forms
to 1-forms and 2-forms to 0-forms (see Flanders [10]). We give explicit formulae for
the operators d, δ, ext and int. These formulae can be easily obtained from their
definitions and from the operators ⋆, d and δ = ⋆−1 d ⋆. We refer the reader to
Dubrovin, Fomenko and Novikov [8].

We consider the metric given by the following matrix G

(35) G =

(
g11 g12

g12 g22

)
.

We denote by |G| the determinant of G. The inverse of G is denoted by G−1 =
(gij)ij , and we suppose that the signature of G is equal to 1. Thereby, the operator
⋆2 is equal to Id on the space of 0-forms and 2-forms and it is equal to − Id on
1-forms.

4.1. Star operator in R2.

4.1.1. On 0-forms and on 2-forms. Let T be a 0-form and let S be the 2-form
ν d y1 d y2. Then ⋆T is the 2-form µ d y1 d y2 and ⋆S is the 0-form f . Then, we
have:

µ =
√
|G|T,

f =
1√
|G|

ν.

4.1.2. On 1-forms. Let T be the 1-form T1 d y1 + T2 d y2. Then ⋆T is the 1-form
µ1 d y1 + µ2 d y2, and we have:

µ1 = −
√
|G|
(
g12T1 + g22T2

)
,

µ2 =
√
|G|
(
g11T1 + g12T2

)
.

4.2. The action of d acting on 0-forms in R2. Let µ be a 0 form, then we have
:

d µ =
∂µ

∂y1
d y1 +

∂µ

∂y2
d y2.



14 CLAIR POIGNARD

4.3. The action of δ acting on 1-forms on R2. Let µ be the 1-form µ1 d y1 +
µ2 d y2, and define δµ = α. Then, we have :

α = −
1√
|G|

{
∂

∂y1

(√
|G|
(
g11µ1 + g12µ2

))

+
∂

∂y2

(√
|G|
(
g12µ1 + g22µ2

))}
.

4.4. The exterior product of a 1-form with a 0-form. Let N be the 1-form
N1 d y1 + N2 d y2 and f be a 0-form. We have :

ext(N)f = fN1 d y1 + fN2 d y2.

4.5. The interior product of a 1-form with a 1-form. Let N and µ be the
1-forms N1 d y1 + N2 d y2, and µ1 d y1 + µ2 d y2. Then, we have :

int(N)µ = N1

(
µ1g

11 + µ2g
12
)

+ N2

(
µ1g

12 + µ2g
22
)
.
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