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Abstract

Let T̃ (g) be a random field indexed by an Abelian compact group G, and suppose that T̃ has the

form T̃ (g) = F (T (g)), where T is Gaussian and isotropic. The aim of this paper is to establish high-

frequency central limit theorems for the Fourier coefficients associated to T̃ . The proofs of our main
results involve recently established criteria for the weak convergence of multiple Wiener-Itô integrals.
Our research is motivated by physical applications, mainly related to the probabilistic modelization
of the Cosmic Microwave Background radiation. In this connection, the case of the n-dimensional
torus is analyzed in detail.
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1 Introduction

Let G be a connected compact Abelian group. The aim of this paper is to establish central limit theorems
(CLTs) for the Fourier coefficients associated to a random field indexed by G, and subordinated to some
real-valued isotropic Gaussian field T = {T (g) : g ∈ G}. By isotropic we mean that, for every p ≥ 1 and
every h, g1, ..., gp ∈ G,

{T (hg1) , ..., T (hgp)} law
= {T (g1) , ..., T (gp)} , (1)

i.e. the finite-dimensional distributions of the “translated” process g 7→ T (hg) coincide with those of T ,
for every h ∈ G. As a consequence of the Peter-Weyl theorem (see e.g. [11]), the Gaussian field T always
admits the expansion

T (g) =
∑

π∈Ĝ

aπχπ (g) , g ∈ G, (2)

where Ĝ is the collection of the irreducible unitary representations of G (that is, Ĝ is the dual of G – see
e.g. [26]), χπ is the character associated to a given π ∈ Ĝ, and

aπ ,

∫

G

T (g)χπ

(
g−1
)
dg (3)

with dg indicating the Haar measure (a more detailed discussion of the properties of the expansion (3)
is deferred to the next section). Now consider a real-valued F ∈ L2

(
R, exp

(
−x2/2

)
dx
)
, and define the

subordinated field F [T ] as
F [T ] (g) , F (T (g)) , ∀g ∈ G. (4)
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Plainly, for a non-linear transformation F the field F [T ] is in general not Gaussian. However, since T is
isotropic F [T ] is isotropic, and the Peter-Weyl Theorem yields again the spectral expansion

F [T ] (g) =
∑

π∈Ĝ

ãπ (F )χπ (g) , g ∈ G, (5)

where

ãπ (F ) ,

∫

G

F [T ] (g)χπ

(
g−1

)
dg. (6)

Our aim in this paper is to investigate the asymptotic behavior of the complex-valued variable ãπ (F ),
whenever the dual set Ĝ is infinite. More precisely, we shall establish sufficient (and in many cases, also
necessary) conditions for the following CLT to hold:

E

[
|ãπ (F )|2

]− 1
2

ãπ (F )
law→
{π}

N + iN ′, (7)

where N and N ′ are two independent centered Gaussian random variables with common variance equal
to 1/2. In (7), and for the rest paper, the subscript {π} means that {π} = {πl : l = 1, 2, ...} is an infinite
sequence of elements of Ĝ, and that the limit is taken as l → +∞. A central limit result such as (7) is
called a high-frequency central limit theorem, in analogy with the case of G being a the n-dimensional torus
Rn/ (2πZ)n. Indeed, in this case one has that: (i) Ĝ can be identified with the class of complex-valued

mappings of the type ϑ 7→ exp (ik′ϑ), where k ∈ Zn and ϑ ∈ (0, 2π]n, (ii) the class
{

ãπ (F ) : π ∈ Ĝ
}

reduces to the collection of the coefficients {ãk (F ) : k ∈ Zn} appearing in the usual Fourier expansion
F [T ] (ϑ) =

∑
k∈Zn ãk (F ) exp (ik′ϑ), and (iii) the subscript {π} in (7) may be replaced by the condition

‖k‖
Zn → +∞, where ‖·‖

Zn stands for the Euclidean norm.

Our work is strongly motivated by physical applications; indeed, nonlinear transformations of Gaussian
random fields emerge quite naturally in a variety of physical models. A particularly active area has
recently been related to theoretical Cosmology, and more precisely, to so-called inflationary models aimed
at the investigation of the dynamics of the gravitational potential around the Big Bang (see for instance
[10] and [25]). In this area, the aim is the understanding of the primordial fluctuations which have provided
the seeds for the large scale structure of the Universe as it is currently observed, i.e., the formation of
structures such as clusters of galaxies, filaments, walls and all those inhomogeneities which have made
our own existence possible. The currently favored scenario suggests that the primordial seeds for these
inhomogeneities have actually been provided by quantum fluctuations in the gravitational potential,
which have then been “freezed” as large scale fluctuations when the Universe experienced a phase of
superluminal expansion known as inflation. In these models, the primordial gravitational potential is
represented as a Gaussian field undergoing a small nonlinear perturbation, the simplest example being
provided by the so-called Bardeen’s potential

Φ̃(ϑ) = Φ(ϑ) + fNL(Φ2(ϑ)− EΦ2(ϑ)) , ϑ ∈ Θ , (8)

where Φ(ϑ) denotes a zero-mean, isotropic Gaussian random field, with parameter space Θ; the nonlinear-
ity parameter fNL can be usually described explicitly in terms of fundamental physical constants. There
is now an enormously vast physical literature on these Gaussian subordinated fields, see for instance [4],
[17]; a recent and comprehensive survey is in [3]. The topological structure of Θ can vary across different

physical models and it is not unusual to assume that ϑ belongs to the three-dimensional torus R3/(2πZ)
3

(see for instance [7], [8]).
Very recently it has become possible to place tight observational constraints on the predictions of

inflationary models, by means of observations on the Cosmic Microwave Background radiation (CMB).
CMB can be viewed as a snapshot of the Universe at the time of recombination, i.e. “soon after” the Big
Bang (see again [10] for more detailed statements). It is directly related to the primordial gravitational
potential, by means of a filtering equation known as the radiation transfer function. In the last few
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years huge satellite experiments by NASA and ESA have reached the level of resolution where models
like (8) can be tested on the observations. A vast literature has focussed on such testing procedures (for
instance [6], [16], [18]). An important feature of these procedures is their asymptotic behavior; in this
framework, asymptotic is meant in the so-called high resolution sense, i.e. with respect to observations
corresponding to frequencies which become higher and higher as the resolution of the experiment improves.
On these components much effort for physical investigation is focussing, and it is therefore of fundamental
importance to understand what is the high-frequency behavior of Gaussian subordinated fields (see also
[1] for other statistical motivations). The present paper is a contribution in this direction; in future work
we shall address related issues for random fields defined on homogenous spaces of non-Abelian groups,
primarily the rotation group SO(n), see [19].

The proofs of our main results rely on the classic representation of the function F (.) in (4) as an
infinite series of Hermite polynomials, and on recently established criteria for the weak convergence of
multiple Wiener-Itô integrals – as proved in [20] and [24]. Our methodology, which involves the explicit
computation of the norms associated to contraction operators, should be compared with the classic
“method of diagrams” (see e.g. [5], [12] and [27]).

The plan of the paper is as follows: in Section 2 we introduce our general setting and we review
some background material on random fields on groups. Section 3 is devoted to the statements of our
main results, whose proofs are collected in Section 5, which builds upon background material on weak
convergence of multiple stochastic integrals which is collected in Section 4. Section 6 addresses some joint
convergence issues, whereas Section 7 is devoted to the analysis of general, square integrable transforms.
Finally Section 8 specializes our results to the case of the n-dimensional torus, discussing the possible
fulfillment of our necessary and sufficient conditions for the CLT by physically motivated models.

2 General setting

Given z ∈ C, ℜ (z) and ℑ (z) stand, respectively, for the real and imaginary part of z. Let (G, G) be
a topological compact connected Abelian group, where G is a topology with a countable basis. As in
formula (2), we shall denote by Ĝ the dual of G, i.e. Ĝ is the collection of all the equivalence classes of the
unitary irreducible representations of G. The elements of Ĝ are noted π, σ, ...; the associated characters
are written χπ, χσ, and so on. It is well known that, since G is Abelian, every irreducible representation
of G has dimension one. Moreover, since G is second countable (and therefore metrizable), Ĝ is at most
countable. Recall also that Ĝ is itself an Abelian group (which in general fails to be compact), under the
commutative group operation

(π, σ) 7→ πσ , π ⊗ σ, (9)

where ⊗ indicates the tensor product between representations. The identity element of Ĝ is π0, i.e. the
trivial representation, and π−1 = π, where π indicates complex conjugation. By using this notation,
∀σ, π ∈ Ĝ one has the obvious relations

χπχσ = χπσ and χπ = χπ−1 = χπ; (10)

moreover, by connectedness, χπ is real-valued if, and only if, π = π0. Observe that, since every π ∈ Ĝ has
dimension one, the distinction between π and χπ is immaterial (see e.g. [11, Corollary 4.1.2]). However,
part of the results of this paper can be extended to the case of a non-commutative compact group (as the
group of rotations SO (3) – see e.g. [19]) and, to facilitate the connection between the two frameworks,
we choose to adopt this slightly redundant notation throughout Sections 2 to 7. We note dg the unique
Haar measure with mass 1 associated to G, and write L2 (G) = L2 (G, dg) to indicate the space of
complex-valued functions on G that are square-integrable with respect to dg. Since G is Abelian, the

class
{
χπ : π ∈ Ĝ

}
is an orthonormal basis of L2 (G). In what follows, G will always indicate a topological

compact group such that the cardinality of Ĝ is infinite. The reader is referred e.g. to [9], [11, Chapter
IV] or [14], for every unexplained notion or result concerning group representations.
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We now consider a centered real-valued Gaussian random field T = {T (g) : g ∈ G} which is isotropic

in the sense of relation (1), and we shall assume for simplicity that E

[
T (g)

2
]

= 1. As discussed in the

introduction, the Peter-Weyl theorem implies that the spectral expansion (2) holds, where the convergence
takes place in L2 (Ω×G, P×dg) . Note also that, for every fixed g ∈ G, the RHS of (2) converges in L2 (P)
(see e.g. [22] for general results concerning decompositions of isotropic fields).

Due to the isotropic and Gaussian assumptions, the class of random variables
{

aπ : π ∈ Ĝ
}

appearing

in (3) has a special structure (compare [2]). This point is summarized in the following Lemma.

Lemma 1 The family
{
aπ : π ∈ Ĝ

}
is composed of complex-valued Gaussian random variables such that

1. aπ = aπ−1 for every π ∈ Ĝ (in particular, aπ0 is real);

2. For any π, σ ∈ Ĝ such that π/∈
{
σ, σ−1

}
, the coefficients aπ and aσ are independent;

3. For every π 6= π0, the random variables ℜ (aπ) and ℑ (aπ) are Gaussian, independent, centered and

identically distributed (in particular, Eℜ (aπ)
2

= Eℑ (aπ)
2
);

4. By noting

Cπ , E |aπ|2 = 2E

(
ℜ (aπ)

2
)

= 2E

(
ℑ (aπ)

2
)

, π ∈ Ĝ, (11)

one has Cπ = Cπ−1 and
∑

π∈Ĝ Cπ < +∞.

Proof. Point 1 is a consequence of (3). The isotropic assumption implies that ∀π, σ ∈ Ĝ such that
π 6= σ, E [aπaσ] = 0. It follows that, if π /∈

{
σ, σ−1

}
, 0 = E [aπaσ] = E [aπaσ−1 ] = E [aπaσ], thus giving

Point 2. Now fix π 6= π0. Point 2, implies that

0 = E [aπaπ−1 ] = E [aπaπ]

= E

(
ℜ (aπ)

2
)
− E

(
ℑ (aπ)

2
)

+ 2iE (ℜ (aπ)ℑ (aπ)) ,

giving immediately Point 3. Point 4 follows by combining Point 1 and Point 3.

Remarks – (a) The law of a collection of random variables
{
aπ : π ∈ Ĝ

}
∈ CĜ satisfying Points 1-3

of Lemma 1 is completely determined by the coefficients Cπ defined in (11).

(b) Given a collection
{
aπ : π ∈ Ĝ

}
∈ CĜ, satisfying Points 1-3 of Lemma 1 and such that

∑
π∈Ĝ Cπ <

+∞, we may always define a real-valued Gaussian isotropic random field T by setting T (g) =
∑

π aπχπ (g).

Throughout the paper, we will systematically work under the following assumption.

Assumption I – Let
{
aπ : π ∈ Ĝ

}
be the Fourier coefficients defined in formula (3), and let {Cπ :

π ∈ Ĝ} be given by (11). Then, Cπ > 0 for every π ∈ Ĝ (or, equivalently, aπ 6= 0, a.s.-P, for every π ∈ Ĝ).

Assumption I is a mild regularity condition on the behavior of the spectral density of T . Basically, it
ensures that every field of the type g 7→ F (T (g)), where F is a polynomial, admits an expansion of the
type (5) such that ãπ (F ) 6= 0 for every π ∈ Ĝ, and therefore that the asymptotic behavior of the ãπ (F )’s
is not trivial at the limit. Observe that the results of this paper extend easily to the case of a Gaussian
field T , such that aπ 6= 0 for infinitely many π’s (at the cost of some heavier notation).

We now note L2
0

(
R, exp

(
−x2/2

)
dx
)

the class of real-valued functions on R, such that
∫

R
F (x) e−x2/2dx

= 0. For a fixed F ∈ L2
0

(
R, exp

(
−x2/2

)
dx
)
, we define the (centered) subordinated field F [T ] as in (4).
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As indicated in the introduction, F [T ] is isotropic and admits the spectral representation (5), where
the convergence of the series takes place in L2 (Ω×G, P× dg), and, for every fixed g ∈ G, in L2 (P). It
is evident that the coefficients ãπ (F ), π ∈ Ĝ, defined in (6) are complex-valued, centered and square
integrable random variables for every π, and also that ℑ (ãπ0 (F )) = 0. Moreover, by arguments similar
to those used in the proof of Lemma 1

E [ℜ (ãπ (F ))ℑ (ãπ (F ))] = 0 (12)

for every π ∈ Ĝ, and also

ãπ (F ) = ãπ−1 (F ) and ℜ (ãπ (F ))
law
= ℑ (ãπ (F )) . (13)

In general, ℜ (ãπ (F )) and ℑ (ãπ (F )) are not independent.

Remark – The results of this paper extend immediately to (not necessarily centered) functions

F ∈ L2
(
R, exp

(
−x2/2

)
dx
)
, by considering the function F ′ = F −

∫
F (x) (2π)

− 1
2 e−x2/2dx.

We are interested in studying the asymptotic behavior of the coefficients ãπ along some infinite
sequence {πl : l ≥ 1} ⊂ Ĝ. In particular, we shall determine conditions on the coefficients {Cπ} in
(11) ensuring that, for a fixed F , the central limit theorem (7) holds, where N, N ′ ∼ N (0, 1/2) are
independent. The first series of results involves Hermite polynomials.

3 Necessary and sufficient conditions for Hermite transforma-
tions (statements)

We start by giving a exhaustive characterization of the CLT (7), when F is an Hermite polynomial
of arbitrary order m ≥ 2. Recall (see e.g. [15, p. 20]) that the sequence {Hm : m ≥ 0} of Hermite
polynomials is defined through the relation

Hm (x) = (−1)
m

e
x2

2
dm

dxm

(
e−

x2

2

)
, x ∈ R, m ≥ 0; (14)

it is well known that the sequence
{
(m!)−1/2 Hm : m ≥ 0

}
constitutes an orthonormal basis of the space

L2
(
R, (2π)

−1/2
e−

x2

2 dx
)
.

To state our main results, we need to introduce some further notation. For π ∈ Ĝ and m ≥ 1, define
the coefficient Ĉπ,m as

Ĉπ,m ,
∑

σ1∈Ĝ

· · ·
∑

σm∈Ĝ

{Cσ1Cσ2 · · · Cσm
}1σ1···σm=π (15)

=
∑

σ1,...,σm∈Ĝ
σ1···σm=π

Cσ1Cσ2 · · · Cσm
(16)

=
∑

σ1,...,σm−1∈Ĝ

Cσ1Cσ2 · · · C(σ1···σm−1)
−1π. (17)

Note that, in (15)-(17), Ĝ is regarded as an Abelian group, with group operation given by (9), and that

Ĉπ,q = Ĉπ−1,q. Moreover, Ĉπ,1 = Cπ and, for every m ≥ 2 and q = 1, ..., m− 1,

Ĉπ,m =
∑

µ∈Ĝ

Ĉµ,qĈπµ−1,m−q. (18)

5



In the statements of the subsequent results, we systematically adopt the same notation and conventions
pinpointed in the introduction (see formula (7)), that is: when no further specification is given, {π} =
{πl : l = 1, 2, ...} stands for a fixed sequence of elements of Ĝ, and all limits are taken as l→ +∞.

Theorem 2 Fix m ≥ 2, and define the random variable ãπ (Hm) according to (6) and (14), i.e.

ãπ (Hm) =

∫

G

Hm (T (g))χπ

(
g−1
)
dg. (19)

Then,

E

[
|ãπ (Hm)|2

]
= m!Ĉπ,m, (20)

where Ĉπ,m is defined as in (15). Moreover, the following four asymptotic conditions are equivalent:

1.
ãπ (Hm)√
m!Ĉπ,m

law→
{π}

N + iN ′, (21)

where N, N ′ ∼ N (0, 1/2) are independent;

2. [
m!Ĉπ,m

]−2

E

[
ℜ (ãπ (Hm))4

]
→
{π}

3

4
, and

[
m!Ĉπ,m

]−2

E

[
ℑ (ãπ (Hm))4

]
→
{π}

3

4
; (22)

3.
Ĉ−2

π,m

∑

λ∈Ĝ

Ĉ2
λ,qĈ

2
πλ−1,m−q →

{π}
0, ∀q = 1, ..., m− 1; (23)

4.

max
q=1,...,m−1

supλ∈Ĝ Ĉλ,qĈπλ−1,m−q∑
µ∈Ĝ Ĉµ,qĈπµ−1,m−q

→
{π}

0. (24)

The proof of Theorem 2 is the object of the subsequent sections.

Remarks – (a) Since H1 (x) = x,

ãπ (H1)√
Ĉπ,1

=

∫
G T (g)χπ

(
g−1

)
dg√

Cπ

=
aπ√
Cπ

law
= N + iN ′,

N, N ′ ∼ N (0, 1/2) independent,

where we have used Lemma 1, (3) and the fact that Ĉπ,1 = Cπ.

(b) (An interpretation of condition (24) in terms of random walks on groups) Note C∗ ,
∑

π Cπ, and

consider a sequence of independent and identically distributed Ĝ-valued random variables {Xj : j ≥ 1},
such that

P [X1 = π] =
Cπ

C∗
, ∀π ∈ Ĝ.

We associate to the sequence {Xj} the Ĝ-valued random walk Z = {Zm : m ≥ 0}, defined as Z0 = π0,

and Zm = X1X2 · · ·Xm (m ≥ 1). Then, it is easily seen that, ∀m ≥ 2, ∀q = 1, ..., m− 1 and ∀π ∈ Ĝ, the
ratio appearing in (24) can be rewritten as

supλ∈Ĝ Ĉλ,qĈπλ−1,m−q∑
µ∈Ĝ Ĉµ,qĈπµ−1,m−q

=
supλ∈Ĝ P [Zq = λ, Zm = π]

P [Zm = π]
= sup

λ∈Ĝ

P [Zq = λ | Zm = π] ,

6



so that the CLT (21) holds if, and only if,

sup
λ∈Ĝ

P [Zq = λ | Zm = π] →
{π}

0, (25)

for every q = 1, ..., m−1. Condition (25) can be interpreted as follows. For every π ∈ Ĝ, define a “bridge”
of length m, from π0 to π, by conditioning Z to equal π at time m. Then, (25) is verified if, and only if,
the probability that the bridge hits λ at time q converges to zero, uniformly on λ, as π moves along the
sequence {π}. Plainly, when (25) is verified for every q = 1, ..., m− 1, one also has that

sup
λ1,...,λm−1∈Ĝ

P [Z1 = λ1, ..., Zm−1 = λm−1 | Zm = π] →
{π}

0,

meaning that, asymptotically, there is no “privileged path” of length m linking π0 to π.

Now recall that H2 (x) = x2 − 1: by using the fact that, for π 6= π0,
∫

G χπ (g) dg = 0, we deduce from
Theorem 2 the following criterion for squared isotropic Gaussian fields on commutative groups.

Corollary 3 Let, for Ĝ ∋ π 6= π0,

ãπ (H2) =

∫

G

(
T 2 (g)− 1

)
χπ

(
g−1

)
dg =

∫

G

T 2 (g)χπ

(
g−1

)
dg.

Then,

E

[
|ãπ (H2)|2

]
= 2Ĉπ,2 =

∑

λ∈Ĝ

CλCλ−1π,

and the following conditions are equivalent

1. (
2Ĉπ,2

)− 1
2

ãπ (H2)
law→
{π}

N + iN ′,

with N, N ′ ∼ N (0, 1/2) independent;

2.
supλ∈Ĝ CλCπλ−1∑

µ∈Ĝ CµCπµ−1

→
{π}

0 . (26)

Analogously, from the relation H3 (x) = x3 − 3x we obtain

Corollary 4 For π ∈ Ĝ, let

ãπ (H3) =

∫

G

(
T 3 (g)− 3T (g)

)
χπ

(
g−1

)
dg.

The following conditions are equivalent

1. (
6Ĉπ,3

)− 1
2

ãπ (H3)
law→
{π}

N + iN ′,

with N, N ′ ∼ N (0, 1/2) independent;

2.

lim
{π}

supλ∈Ĝ Ĉλ,2Cπλ−1

∑
µ∈Ĝ Ĉµ,2Cπµ−1

= lim
{π}

supλ∈Ĝ CλĈπλ−1,2∑
µ∈Ĝ CµĈπµ−1,2

= 0.

Our strategy to prove Theorem 2 is to represent each ãπ (Hm) as a complex-valued functional of a
centered Gaussian measure, having the special form of a multiple Wiener-Itô integral. To do this, we need
to recall several crucial facts concerning multiple stochastic integrals of real-valued kernels, and then to
establish some useful extensions to the case of complex-valued random variables.
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4 Ancillary results about multiple Wiener-Itô integrals

In this section, we summarize some basic properties of multiple Wiener-Itô integrals. The reader is
referred e.g. to [15, Chapter VII] for any explained definition or result.

Real kernels – Let (A,A, µ) be a finite measure space, with µ positive, finite and non-atomic. For
d ≥ 1, we define L2

R

(
µd
)

and L2
s,R

(
µd
)

to be the Hilbert spaces, respectively of square-integrable, and

square-integrable and symmetric real-valued functions on Ad, with respect to the product measure µd.
As usual, L2

R

(
µ1
)

= L2
s,R

(
µ1
)

= L2
R

(µ) = L2
R

(A,A, µ).

We note W =
{
W (h) : h ∈ L2 (µ)

}
a centered isonormal Gaussian process over L2 (µ). This means

that W is a centered Gaussian family indexed by L2 (µ) and such that

E [W (h′)W (h)] =

∫

A

h′ (a)h (a)µ (da) , (h′, h)L2(µ) ,

for every h, h′ ∈ L2 (µ). For every f ∈ L2
s,R

(
µd
)
, we define Id (f) to be the the multiple Wiener-Itô

integral (MWII) of f with respect to W, i.e.

Id (f) = IW
d (f) =

∫

A

· · ·
∫

A

f (a1, ..., ad)W (da) · · ·W (da) , (27)

where the multiple integration in (27) implicitly excludes diagonals. Recall that

E [Id (f) Id′ (g)] = d!δd,d′ (f, g)L2
R
(µd) , (28)

where δ is the Kronecker symbol, and therefore the application f 7→ Id (f) defines an isomorphism
between the dth Wiener chaos associated to W, and the space L2

R

(
µd
)
, endowed with the modified

norm
√

d! ‖·‖L2
R
(µd). A fundamental relation between objects such as (27) and the Hermite polynomials

introduced in (14) is the following: for every h ∈ L2
R

(µ) such that ‖h‖L2
R
(µ) = 1, and every m ≥ 1,

Hm (I1 (h)) = Im (h⊗ · · · ⊗ h) , (29)

where the tensor product inside the second integral is defined as

h⊗ · · · ⊗ h (a1, ..., am) = h (a1) · · · h (am) ∈ L2
s,R (µm) ,

∀a1, ..., am ∈ Am.

For every d ≥ 2, every f ∈ L2
s,R

(
µd
)

and every q = 1, ..., d − 1, we define the (not necessarily

symmetric) contraction kernel f ⊗q f ∈ L2
R

(
µ2(d−q)

)
as

f ⊗q f
(
x1, ..., x2(d−q)

)
(30)

,

∫

Aq

f (a1, ..., aq, x1, ..., xd−q) f
(
a1, ..., aq, xd−q+1, ..., x2(d−q)

)
µ (da1) · · · µ (daq) .

The following CLT, which has been proved in [20] (for the Part A) and [24] (for the Part B), concerns
sequences (of vectors of) MWIIs such as (27). It is the crucial element in the proof of Theorem 2.

Theorem 5 (Nualart and Peccati, 2005; Peccati and Tudor, 2004) (A) Fix d ≥ 2, and let fk ∈
L2

s,R

(
µd
)
, k ≥ 1. If the variance of Id (fk) converges to 1 (k → +∞) the following three condi-

tions are equivalent: (i) Id (fk) converges in law to a standard Gaussian random variable N (0, 1), (ii)
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E
[
Id (fk)4

]
→ 3, (iii) for every q = 1, ..., d − 1, the contraction kernel fk ⊗q fk converges to 0 in

L2
R

(
µ2(d−q)

)
.

(B) Fix integers p ≥ 2 and 1 ≤ d1 ≤ · · · ≤ dp. Consider a sequence of vectors

(
f

(1)
k , f

(2)
k , ..., f

(p)
k

)
, k ≥ 1,

such that, for each k, f
(j)
k ∈ L2

s,R

(
µdj
)
, j = 1, ..., p, and

lim
n

E

[
Idj

(
f

(j)
k

)
Idi

(
f

(i)
k

)]
= δi,j,

where δ is the Kronecker symbol. Then, if ∀ j = 1, ..., p the sequence
{
f

(j)
k : k ≥ 1

}
satisfies either one

of conditions (i)-(iii) of Part A (with dj substituting d), as k → +∞,

(
Id1

(
f

(1)
k

)
, ..., Idp

(
f

(p)
k

))
law→ Np,

where Np = (N1, ..., Np) ∼ Np (0, Ip) is a p-dimensional vector of independent, centered standard Gaus-
sian random variables.

Complex kernels – For n ≥ 1 and d ≥ 1, L2
C

(
µd
)

and L2
s,C

(
µd
)

are the Hilbert spaces, respectively
of square integrable and square integrable and symmetric complex-valued functions with respect to the
product Lebesgue measure. For every g ∈ L2

s,C

(
µd
)

with the form g = a + ib, where a, b ∈ L2
s,R

(
µd
)
, we

set Id (g) = Id (a) + iId (b). Note that, by (28),

E

[
Id (g) Id′ (f)

]
= d!δd,d′ (g, f)L2

C
(µd) . (31)

Also, a random variable such as Id (g) is real valued if, and only if, g is real valued. For every pair and
gk = ak + ibk ∈ L2

s,C

(
µd
)
, k = 1, 2, and every q = 1, ..., d− 1, we set

g1 ⊗q g2

(
x1, ..., x2(d−q)

)

=

∫

Aq

g1 (a1, ..., aq, x1, ..., xd−q) g2

(
a1, ..., aq, xd−q+1, ..., x2(d−q)

)
µ (da1) · · · µ (daq)

= a1 ⊗q a2 − b1 ⊗q b2 + i (a1 ⊗q b2 + b1 ⊗q a2) . (32)

The following result is an extension of Theorem 5.

Proposition 6 Suppose that the sequence gl = al + ibl ∈ L2
s,C

(
µd
)
, l ≥ 1, is such that

lim
l→+∞

d! ‖al‖2L2
R
(µd) = lim

l→+∞
d! ‖bl‖2L2

R
(µd) →

1

2
and (al, bl)L2

R
(µd) = 0. (33)

Then, the following conditions are equivalent: as l→ +∞,

1. Id (gl)
law→ N + iN ′, where N, N ′ ∼ N (0, 1/2) are independent;

2. gl ⊗q gl → 0 and gl ⊗q gl → 0 in L2
C

(
µ2(d−q)

)
for every q = 1, ..., d− 1;

3. gl ⊗q gl → 0 in L2
C

(
µ2(d−q)

)
for every q = 1, ..., d− 1;

4. al ⊗q al → 0, bl ⊗q bl → 0 and al ⊗q bl → 0 in L2
R

(
µ2(d−q)

)
for every q = 1, ..., d− 1;

5. al ⊗q al → 0, bl ⊗q bl → 0 in L2
R

(
µ2(d−q)

)
for every q = 1, ..., d− 1;
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6. E

[
Id (al)

4
]
→ 3/4, E

[
Id (bl)

4
]
→ 3/4 and E

[
Id (al)

2 Id (bl)
2
]
→ 1/4;

7. E

[
Id (al)

4
]
→ 3/4, E

[
Id (bl)

4
]
→ 3/4.

Proof. Note first that, due to (28) and the second part of (33),

E [Id (bl) Id (al)] = (al, bl)L2
s,R

(µd) = 0, l ≥ 1.

Now, (7→ 1) holds because of (33) and Part B of Theorem 5. (5↔ 1→ 6) is again a consequence of
(33) and Part B of Theorem 5 (note that (33) implies that all moments of the real and imaginary parts
of Id (al) and Id (bl) are uniformly bounded). (2←→ 4) derives from (32). (2→ 3), (4→ 5) and (6→ 7)
and are obvious. (5→ 4) is a consequence of

‖al ⊗q bl‖2L2
R(µ2(d−q)) =

∫

Ad−q

∫

Ad−q

∫

Aq

∫

Aq

al (sq,ad−q) bl (sq,bd−q) al (tq,ad−q)

bl (tq,bd−q)µd−q (dad−q)µd−q (dbd−q)µq (dsq) µq (dtq)

= ((al ⊗d−q al) , (bl ⊗d−q bl))L2
R
(µ2q) ,

where sq stands for a vector of the type

(s1, ..., sq) , with sj ∈ A, j = 1, ..., q,

and µq (dsq) = µ (ds1) · · · µ (dsq) (similar conventions apply to ad−q, bd−q and tq). We are left with the
implication (3→ 2), which is a consequence of the relation

‖gl ⊗q gl‖2L2
R(µ2(d−q)) ≥ ‖gl ⊗q gl‖2L2

R(µ2(d−q)) , ∀l ≥ 1. (34)

To prove (34), just write

‖gl ⊗q gl‖2L2
R(µ2(d−q)) = ‖al ⊗q al‖2L2

R(µ2(d−q)) + ‖bl ⊗q bl‖2L2
R(µ2(d−q))

+2 (al ⊗q al, bl ⊗q bl)L2
R(µ2(d−q)) + 2 ‖al ⊗q bl‖2L2

R(µ2(d−q))

−2 (al ⊗q bl, bl ⊗q al)L2
R(µ2(d−q))

and

‖gl ⊗q gl‖2L2
R(µ2(d−q)) = ‖al ⊗q al‖2L2

R(µ2(d−q)) + ‖bl ⊗q bl‖2L2
R(µ2(d−q))

−2 (al ⊗q al, bl ⊗q bl)L2
R(µ2(d−q)) + 2 ‖al ⊗q bl‖2L2

R(µ2(d−q))

+2 (al ⊗q bl, bl ⊗q al)L2
R(µ2(d−q)) ,

and finally

2 (al ⊗q al, bl ⊗q bl)L2
R(µ2(d−q)) − 2 (al ⊗q bl, bl ⊗q al)L2

R(µ2(d−q))

= 2 (al ⊗d−q bl, al ⊗d−q bl)L2
R
(µ2q) − 2 (al ⊗d−q bl, bl ⊗d−q al)L2

R
(µ2q)

= ‖al ⊗d−q bl‖2L2
R
(µ2q) + ‖bl ⊗d−q al‖2L2

R
(µ2q) − 2 (al ⊗d−q bl, bl ⊗d−q al)L2

R
(µ2q)

= ‖al ⊗d−q bl − bl ⊗d−q al‖2L2
R
(µ2q) ≥ 0.
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5 Proof of Theorem 2

Let
{
Cπ : π ∈ Ĝ

}
be defined as in (11). We start by considering a collection of complex-valued and

square integrable functions
{
fπ : π ∈ Ĝ

}
⊂ L2

C
(µ), with the following properties: (i) ℑ (fπ0) = 0, (ii)

fπ = fπ−1 , (iii)
∫

A
fπ (a) fπ (a)µ (da) = 0, ∀π 6= π0, (iv) both ℜ (fπ) and ℑ (fπ) are orthogonal (in

L2
R

(µ)) to ℜ (fσ) and ℑ (fσ) for every σ /∈
{
π, π−1

}
, (v)

∫
A
|fπ (a)|2 µ (da) = Cπ. Note that

∫

A

fπ (a) fπ (a)µ (da) =

∫

A

(
ℜ (fπ (a))

2 −ℑ (fπ (a))
2
)

µ (da) + 2i

∫

A

ℜ (fπ (a))ℑ (fπ (a))µ (da) ,

and therefore (iii) holds if, and only if,

Cπ =

∫

A

|fπ (a)|2 µ (da) = 2

∫

A

ℜ (fπ (a))2 µ (da) = 2

∫

A

ℑ (fπ (a))2 µ (da) , ∀π 6= π0,

and
∫

A
ℜ (fπ (a))ℑ (fπ (a))µ (da) = 0 for every π.

The class
{
fπ : π ∈ Ĝ

}
can be constructed as follows. Let {..., π−1, π0, π1, π2, ...} be any two-sided

enumeration of Ĝ, such that π0 is the trivial representation as before, and πj = π−1
−j for every j = 1, 2, ....

Then, consider an orthonormal basis {ek : k = ...,−1, 0, 1, 2, ...} of L2
R

(µ), and set fπ0 = e0 and, for j ≥ 1,

fπj
=

√
Cπj

2
× (ej + ie−j) and fπ−j

=

√
Cπj

2
× (ej − ie−j)

(with this notation, one has plainly that Cπj
= Cπ−j

).

The next Lemma is easily verified.

Lemma 7 The following identity in law holds

{
I1 (fπ) : π ∈ Ĝ

}
law
=
{
aπ : π ∈ Ĝ

}
, (35)

where the coefficients aπ are given by (3), and therefore

T (g)
law
=
∑

π∈Ĝ

I1 (fπ)χπ (g) , g ∈ G, (36)

where the identity in law is in the sense of stochastic processes. As a consequence, for every F ∈
L2
(
R, exp

(
−x2/2

)
dx
)

and g ∈ G

ãπ (F )
law
=

∫

G

F



∑

π∈Ĝ

I1 (fπ)χπ (g)


χπ

(
g−1

)
dg, (37)

where ãπ (F ) is defined as in (6).

Since, for any π ∈ G,

∑

π∈Ĝ

Cπ =
∑

π∈Ĝ

‖fπ‖2L2
C
(µ) =

∑

π∈Ĝ

‖fπχπ (g)‖2L2
C
(µ) < +∞,
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for every fixed g ∈ G and any sequence of finite subsets ĜN ⊂ Ĝ such that ĜN ↑ Ĝ, the sequence

∑

g∈ĜN

fπ (·) χπ (g) ∈ L2
C (µ) , N ≥ 1,

converges (as N → +∞) in L2
C

(µ) to a certain function

hg (·) ,
∑

π∈Ĝ

fπ (·)χπ (g) ∈ L2
C (µ) (38)

(we stress that in (38) g is a fixed parameter). Note that the properties of the fπ’s imply that hg is
real-valued, and also that the mapping (x, g) 7→ hg (x) is jointly measurable. By using the linearity of
MWIIs, we deduce from (36) that, as stochastic processes,

T (g)
law
= I1 (hg) , g ∈ G, (39)

and therefore (37) implies that for every π,

ãπ (F )
law
=

∫

G

F [I1 (hg)] χπ (g)dg. (40)

Now fix m ≥ 2, and consider the mth Hermite polynomial Hm. Since

1 = E

[
T (g)

2
]

= E

[
I1 (hg)

2
]

= ‖hg‖2L2
R
(µ) ,

we deduce from (29) that, for every g ∈ G, Hm [I1 (hg)] = Im (hg ⊗ · · · ⊗ hg). Thus, by using (40) in the
case F = Hm and by interchanging deterministic and stochastic integration,

ãπ (Hm)
law
=

∫

G

Hm [I1 (hg)] χπ

(
g−1

)
dg (41)

=

∫

G

Im (hg ⊗ · · · ⊗ hg)χπ

(
g−1

)
dg

= Im

(∫

G

{hg ⊗ · · · ⊗ hg}χπ

(
g−1
)
dg

)
(42)

= Im

(
h̃m,π

)
,

where

h̃m,π ,

∫

G

{hg ⊗ · · · ⊗ hg}χπ

(
g−1

)
dg ∈ L2

s,C (µm) . (43)

Remark – Since the Haar measure dg has finite mass, the “stochastic Fubini theorem” applied in
(42) can be justified by standard arguments. See for instance [21, Lemma 13].

The function h̃m,π can be made explicit by means of (38), i.e.

h̃m,π (x1, ..., xm)

=

∫

G





∑

σ1∈Ĝ

fσ1 (x1)χσ1 (g)× · · · ×
∑

σm∈Ĝ

fσm
(xm)χπm

(g)




χπ

(
g−1
)
dg (44)

=
∑

σ1∈Ĝ

∑

σ2∈Ĝ

· · ·
∑

σm−1∈Ĝ

fσ1 (x1) fσ2 (x2)× · · · × fπ(σ1···σm−1)
−1 (xm) , (x1, ..., xm) ∈ Am,
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where we used (10) and the orthogonality between characters of non-equivalent representations. By using
(41) and (31),

E

[
|ãπ (Hm)|2

]
= m!

∥∥∥h̃m,π

∥∥∥
2

L2
C
(µm)

= m!
∑

σ1,...,σm∈Ĝ
σ1···σm=π

Cσ1Cσ2 · · · Cσm
= m!Ĉπ,m,

thus proving (20). Now define

˜̃aπ (Hm) ,
ãπ (Hm)

E

[
|ãπ (Hm)|2

] 1
2

law
= Im

(
˜̃
hm,π

)
, (45)

where
˜̃
hm,π , E

[
|ãπ (Hm)|2

]− 1
2

h̃m,π =
(
m!Ĉπ,m

)−1/2

h̃m,π. (46)

Since (12) and (13) hold (with F = Hm), it is clear that, for π ∈ Ĝ,

m!

(
ℜ
(
˜̃
hm,π

)
,ℑ
(
˜̃
hm,π

))

L2
R
(µm)

= E

[
ℜ
(
˜̃aπ (Hm)

)
ℑ
(
˜̃aπ (Hm)

)]
= 0

and also m!

∥∥∥∥
˜̃
hm,π

∥∥∥∥
2

L2
C
(µm)

= E

[∣∣∣
(
˜̃aπ (Hm)

)∣∣∣
2
]

= 1, so that

E

[
ℜ
(
˜̃aπ (Hm)

)2
]

= E

[
ℑ
(
˜̃aπ (Hm)

)2
]

= m!

∥∥∥∥ℜ
(
˜̃
hm,π

)∥∥∥∥
2

L2
C
(µm)

= m!

∥∥∥∥ℑ
(
˜̃
hm,π

)∥∥∥∥
2

L2
C
(µm)

=
1

2
.

It follows that all the assumptions of Proposition 6 are satisfied, with d = m, gl =
˜̃
hm,πl

, and therefore

al = ℜ
(
˜̃
hm,πl

)
and bn,l = ℑ

(
˜̃
hm,πl

)
(recall that, in the statement of Theorem 2, {π} stands for a

sequence of the form {πl : l ≥ 1}). As a consequence, in view of (45), we deduce from the implications
(1↔ 7) in Proposition 6 that the convergence in law (21) holds if, and only if, (22) is verified. We have
therefore proved that Conditions 1 and 2 in Theorem 2 are equivalent.

To conclude the proof, we start by observing that, thanks e.g. to the implications (7←→ 1←→ 3) in
Proposition 6, either one of conditions (21) and (22) is equivalent to the following:

˜̃
hm,π ⊗q

(
˜̃
hm,π

)
→
{π}

0, in L2
C

(
µ2(m−q)

)
, ∀q ∈ {1, ..., m− 1} . (47)

It follows that the equivalence of Conditions 1, 2 and 3 in Theorem 2 is established, once it is shown that
(47) is true if, and only if, condition (23) is verified for every q = 1, ..., m − 1. Start with q = m − 1.
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Indeed,

˜̃
hm,π ⊗m−1

(
˜̃
hm,π

)
(x1, x2)

=
(
m!Ĉπ,m

)−1
∫

A

· · ·
∫

A

h̃m,π (a1, ..., am−1, x1)
(
h̃m,π

)
(a1, ..., am−1, x2)µ (da1) ...µ (dam)

=
(
m!Ĉπ,m

)−1 ∑

π1∈Ĝ

∑

π2∈Ĝ

· · ·
∑

πm−1∈Ĝ

Cπ1Cπ2 · · · Cπm−1 × fπ(π1···πm−1)
−1 (x1) fπ−1(π1···πm−1) (x2)

=
(
m!Ĉπ,m

)−1 ∑

λ∈Ĝ

∑

π1,...,πm−1∈Ĝ
π1···πm−1=λ

Cπ1Cπ2 · · · Cπm−1 × fπλ−1 (x1) fπ−1λ (x2)

=
(
m!Ĉπ,m

)−1 ∑

λ∈Ĝ

Ĉλ,m−1fπλ−1 (x1) fπ−1λ (x2) =
(
m!Ĉπ,m

)−1 ∑

λ∈Ĝ

Ĉλ,m−1fπλ−1 (x1) fπλ−1 (x2),

yielding
∥∥∥∥∥
˜̃
hm,π ⊗m−1

(
˜̃
hm,π

)∥∥∥∥∥

2

L2
C
(µ2)

=
(
m!Ĉπ,m

)−2 ∑

λ∈Ĝ

Ĉ2
λ,m−1Cπλ−1Cπ−1λ =

(
m!Ĉπ,m

)−2 ∑

λ∈Ĝ

Ĉ2
π,m−1C

2
πλ−1 ,

thus proving that (23) holds for q = m− 1 if, and only if,
˜̃
hm,π⊗m−1

(
˜̃
hm,π

)
→
{π}

0. Now suppose m ≥ 3,

and fix q = 1, ..., m− 2. In this case,

˜̃
hm,π ⊗q

(
˜̃
hm,π

)(
x1, ..., x2(m−q)

)

=
(
m!Ĉπ,m

)−1
∫

A

· · ·
∫

A

h̃m,π (a1, ..., aq, x1, ..., xm−q)×

×
(
h̃m,π

) (
a1, ..., aq, xm−q+1, ..., x2(m−q)

)
µ (da1) · · · µ (daq)

=
(
m!Ĉπ,m

)−1 ∑

π1,...,πq∈Ĝ

Cπ1 · · · Cπq
×

×
∑

ρ1,...,ρm−1−q

∑

σ1,...,σm−1−q

m−q−1∏

r=1

fρr
(xr) fσ−1

r
(xm−q+r)

× fπ(π1···πq)−1(ρ1···ρm−1−q)−1 (xm−q) fπ−1(π1···πq)(σ1···σm−1−q)

(
x2(m−q)

)

=
(
m!Ĉπ,m

)−1 ∑

ρ1,...,ρm−1−q

∑

σ1,...,σm−1−q

m−q−1∏

r=1

fρr
(xr) fσ−1

r
(xm−q+r)

×
∑

λ∈Ĝ

Ĉλ,qfπλ−1(ρ1···ρm−1−q)−1 (xm−q) fπ−1λ(σ1···σm−1−q)

(
x2(m−q)

)
,

and some calculations yield
∥∥∥∥∥
˜̃
hm,π ⊗q

(
˜̃
hm,π

)∥∥∥∥∥

2

L2
C(µ2(m−q))

=
(
m!Ĉπ,m

)−2 ∑

λ∈Ĝ

Ĉ2
λ,qĈ

2
πλ−1,m−q. (48)

Relation (48) shows in particular that, for q = 1, ..., m− 2,
˜̃
hm,π ⊗q

(
˜̃
hm,π

)
→
{π}

0 if, and only if, (23)

is verified. To see that Conditions 3 and 4 in the statement of Theorem 2 are equivalent, use (18) to
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write

Ĉ−2
π,m

∑

λ∈Ĝ

Ĉ2
λ,qĈ

2
πλ−1,m−q =

∑

λ∈Ĝ

{
Ĉλ,qĈπλ−1,m−q∑

µ∈Ĝ Ĉµ,qĈπµ−1,m−q

}2

≤ sup
λ∈Ĝ

{
Ĉλ,qĈπλ−1,m−q∑

µ∈Ĝ Ĉµ,qĈπµ−1,m−q

}
∑

λ∈Ĝ

{
Ĉλ,qĈπλ−1,m−q∑

µ∈Ĝ Ĉµ,qĈπµ−1,m−q

}

= sup
λ∈Ĝ

{
Ĉλ,qĈπλ−1,m−q∑

µ∈Ĝ Ĉµ,qĈπµ−1,m−q

}
,

and also

max
q=1,...,m−1

Ĉ−2
π,m

∑

λ∈Ĝ

Ĉ2
λ,qĈ

2
πλ−1,m−q = max

q=1,...,m−1

∑

λ∈Ĝ

{
Ĉλ,qĈπλ−1,m−q∑

µ∈Ĝ Ĉµ,qĈπµ−1,m−q

}2

≥ max
q=1,...,m−1

sup
λ∈Ĝ

{
Ĉλ,qĈπλ−1,m−q∑

µ∈Ĝ Ĉµ,qĈπµ−1,m−q

}2

.

This concludes the proof of Theorem 2. �

In Section 7, we will establish a CLT of the type (7) for functions F ∈ L2
0

(
R, e−x2/2dx

)
that are not

necessarily Hermite polynomials. As a first step, in the next section we prove a result concerning the
joint convergence of vectors of coefficients of the type ãπ (Hm).

6 Joint convergence of the ˜̃aπ (Hm)

Fix integers p ≥ 2 and 2 ≤ m1 < · · · < mp, and define, for π ∈ Ĝ, the vectors

(
ãπ (Hm1) , ..., ãπ

(
Hmp

))
and

(
˜̃aπ (Hm1) , ..., ˜̃aπ

(
Hmp

))
,

according respectively to (6) and (45).

Theorem 8 Suppose that, for any j = 1, ..., p, the coefficients
{
Cπ : π ∈ Ĝ

}
(as defined in (11)) verify

either one of conditions (21)-(24) (with mj substituting m). Then,

{
T ;

(
˜̃aπ (Hm1) , ..., ˜̃aπ

(
Hmp

))} law→
{π}

{
T ;

(
N1 + iN ′

1, ..., Np + iN ′
p

)}
(49)

where Np = (N1, ..., Np) and N′
p =

(
N ′

1, ..., N
′
p

)
are two independent vectors of N (0, 1/2) i.i.d. random

variables, such that Np and N′
p are independent of T . On the other hand, if the asymptotic relation (49)

holds, then conditions (21)-(24) are necessarily satisfied.

Remark – The convergence relation (49) is meant in the sense of finite dimensional distributions,
that is: (49) is true if, and only if, for any k ≥ 1 and every (g1, ..., gk) ∈ Gk,

(
T (g1) , ..., T (gk) , ˜̃aπ (Hm1) , ..., ˜̃aπ

(
Hmp

)) law→
{π}

(
T (g1) , ..., T (gk) , N1 + iN ′

1, ..., Np + iN ′
p

)
(50)
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Proof. For some k ≥ 1, consider vectors (g1, ..., gk) ∈ Gk and (λ1, ..., λk) ∈ R
k. Then, arguments

analogous to the ones adopted in the proof of Theorem 2 show that

(
k∑

i=1

λiT (gi) , ˜̃aπ (Hm1) , ..., ˜̃aπ

(
Hmp

)
)

law
=

(
I1

(
Σk

i=1λih
gi
)
, Im1

(
˜̃
hm1,π

)
, ..., Imp

(
˜̃
hmp,π

))
, (51)

where the hgi ’s are given by (38), and the kernels
˜̃
hmj ,π, j = 1, ..., p, are defined in (46). Note that

the kernel Σk
i=1λih

gi (which does not depend on π) is real-valued, and therefore I1

(
Σk

i=1λih
gi
)

is a real-
valued Gaussian random variable. Also, by construction the following relations hold: (i) ∀j = 1, ..., p,

ℜ
(

Imj

(
˜̃
hmj ,π

))
= Imj

(
ℜ
(
˜̃
hmj ,π

))
and ℑ

(
Imj

(
˜̃
hmj ,π

))
= Imi

(
ℑ
(
˜̃
hmj ,π

))
, and

E

[
Imj

(
ℜ
(
˜̃
hmj ,π

))
Imj

(
ℑ
(
˜̃
hmj ,π

))]
= 0

E

[
Imj

(
ℜ
(
˜̃
hmj,π

))2
]

= E

[
Imj

(
ℑ
(
˜̃
hmj ,π

))2
]

=
1

2
; (52)

(ii) ∀1 ≤ k 6= j ≤ p,

E

[
Imj

(
ℜ
(
˜̃
hmj ,π

))
Imk

(
ℑ
(
˜̃
hmk,π

))]
= E

[
Imj

(
ℜ
(
˜̃
hmj ,π

))
Imk

(
ℜ
(
˜̃
hmk,π

))]

= E

[
Imj

(
ℑ
(
˜̃
hmj ,π

))
Imk

(
ℑ
(
˜̃
hmk,π

))]
= 0; (53)

(iii) ∀j = 1, ..., p,

E

[
Imj

(
ℜ
(
˜̃
hmj ,π

))
I1

(
Σk

i=1λih
gi
)]

= E

[
Imj

(
ℑ
(
˜̃
hmj ,π

))
I1

(
Σk

i=1λih
gi
)]

= 0. (54)

Now suppose that either one of conditions (21)-(24) hold ∀mj (j = 1, ..., p). Then, Theorem 2 implies
that ∀j = 1, ..., p,

lim
{π}

E

[
Imj

(
ℜ
(
˜̃
hmj ,π

))4
]

= lim
{π}

E

[
Imj

(
ℑ
(
˜̃
hmj,π

))4
]

=
3

4
, (55)

so that Part B of Theorem 5, together with (52)-(54), yield that,

(
I1

(
Σk

i=1λih
gi
)
,ℜ
(

Im1

(
˜̃
hm1,π

))
,ℑ
(

Im1

(
˜̃
hm1,π

))
, ...

...,ℜ
(

Imp

(
˜̃
hmp,π

))
,ℑ
(

Imp

(
˜̃
hmp,π

)))
(56)

law→
{π}

(
I1

(
Σk

i=1λih
gi
)
, N1, N

′
1, ..., Np, N

′
p

)
,

where the vectors Np = (N1, ..., Np) and N′
p =

(
N ′

1, ..., N
′
p

)
are defined in the statement of Theorem 8.

Now note that, due to (51), the asymptotic relation (56) holds ∀ (λ1, ..., λk) if, and only if, (49) is verified.
The proof of the first part of Theorem 8 is therefore concluded. To prove the last part of the statement,
use the equivalence between (49) and (56) to show that (49) implies that (55) holds for every j = 1, ..., p.
But, due to (45) and (51), (55) is equivalent to the condition: for every j = 1, ..., p,

[
mj!Ĉπ,mj

]−2

E

[
ℜ
(
ãπ

(
Hmj

))4] →
{π}

3

4
, and

[
mj !Ĉπ,mj

]−2

E

[
ℑ
(
ãπ

(
Hmj

))4] →
{π}

3

4
,
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so that the proof is concluded by using once again Theorem 2.

Now define A ,

{
aπ : π ∈ Ĝ

}
, where the aπ’s are defined according to (3). An immediate consequence

of Theorem 8 is the following result.

Corollary 9 Fix a vector of integers 2 ≤ m1 < · · · < mp, and suppose that ∀j = 1, ..., p,

˜̃aπ

(
Hmj

) law→
{π}

N + iN ′, (57)

where N, N ′ ∼ N (0, 1/2) are independent. Then,
(
A ; ˜̃aπ (Hm1) , ..., ˜̃aπ

(
Hmp

)) law→
{π}

{
A ;

(
N1 + iN ′

1, ..., Np + iN ′
p

)}
,

where Np = (N1, ..., Np) and N′
p =

(
N ′

1, ..., N
′
p

)
are two independent vectors of N (0, 1/2) i.i.d. random

variables, such that Np and N′
p are independent of A.

Proof. Due to Theorem 2, (57) holds for every j = 1, ..., p, if, and only if, either one of conditions
(22)-(24) are verified for every j = 1, ..., p, with mj replacing m. The conclusion is achieved by using
Theorem 8, as well as the fact that, by (2) and (3), σ (A) = σ (T ).

7 A CLT for general F ∈ L2
0

(
R, e−x2/2dx

)

We now establish a CLT such as (7) for a general real-valued function F ∈ L2
0

(
R, e−x2/2dx

)
. Since the

sequence of normalized Hermite polynomials
{
(m!)

−1/2
Hm : m ≥ 0

}
defined by (14) is an orthonormal

basis for L2
R
(R, (2π)

−1/2
e−x2/2dx), the function F admits a unique representation of the form

F (x) =

∞∑

m=1

cm (F )

m!
Hm (x) , x ∈ R, (58)

where the coefficients cm (F ), m = 1, 2..., are such that

cm (F ) =

∫

R

e−
x2

2√
2π

Hm (x)F (x) dx, and Σm≥1
cm (F )

2

m!
< +∞ (59)

(note that the sum in (58) starts from m = 1 since F is centered, i.e. F ∈ L2
0

(
R, e−x2/2dx

)
). As a

consequence, the coefficients ãπ (F ), π ∈ Ĝ, defined in (6) can be written as

ãπ (F ) =

∞∑

m=1

cm (F )

m!

∫

G

Hm (T (g)) χπ

(
g−1

)
dg =

∞∑

m=0

cm (F )

m!
ãπ (Hm) (60)

where the series converges in L2
C

(P), and the ãπ (Hm)’s are given by (19). By combining Theorem 2 and
Theorem 8, from (60) we deduce the following result.

Theorem 10 For every π 6= π0,

E

[
|ãπ (F )|2

]
=

∞∑

m=1

(
cm (F )

m!

)2

E

[
|ãπ (Hm)|2

]
=

∞∑

m=1

cm (F )
2

m!
Ĉπ,m. (61)

Suppose moreover that the following relations hold

17



1. For every m ≥ 1,

lim
{π}

m!Ĉπ,m

E

[
|ãπ (F )|2

] → σ2
m ∈ (0, +∞) ;

2.
∑

m≥1 {cm (F ) /m!}2 σ2
m , σ2 (F ) < +∞;

3. For every m ≥ 2, the coefficients
{
Cπ : π ∈ Ĝ

}
given by (11) verify either one of conditions (23)

and (24);

4. limp→+∞ lim{π}

∑∞
m=p+1

{
cm (F )2 /m!

}
Ĉπ,m = 0.

Then,

˜̃aπ (F ) ,
ãπ (F )√

E

[
|ãπ (F )|2

]
law→
{π}

(σ2 (F ))
1
2 × {N + iN ′} ,

where N, N ′ ∼ N (0, 1/2) are independent Gaussian random variables.

Proof. Fix p ≥ 1. Assumptions 1 and 3 in the statement imply, thanks to Theorem 8, that

1√
E

[
|ãπ (F )|2

] (ãπ (H1) , ..., ãπ (Hp))
law→
{π}

(√
σ2

1 × (N1 + iN ′
1) , ...,

√
σ2

p ×
(
Np + iN ′

p

))
,

where Np = (N1, ..., Np) and N′
p =

(
N ′

1, ..., N
′
p

)
are two independent vectors of N (0, 1/2) i.i.d. random

variables. In particular, it follows that

Φ(p) (π) ,

∑p
m=1 {cm (F ) /m!} ãπ (Hm)√

E

[
|ãπ (F )|2

]
law→
{π}

p∑

m=1

{cm (F ) /m!} × {
√

σ2
m × (Nm + iN ′

m)}

law
=

[
p∑

m=1

{cm (F ) /m!}2 σ2
m

] 1
2

× {N1 + iN ′
1} .

Now take a uniformly bounded Lipschitz function g : C 7→ R, with Lipschitz coefficient equal to one.
Then

∣∣∣E
[
g
(
˜̃aπ (F )

)]
− E

[
g
(
(σ2 (F ))

1
2 × {N + iN ′}

)]∣∣∣

≤
∣∣∣E
[
g
(
˜̃aπ (F )

)]
− E

[
g
(
Φ(p) (π)

)]∣∣∣ (62)

+

∣∣∣∣∣E
[
g

(
(

p∑

m=1

{cm (F ) /m!}2 σ2
m)

1
2 × {N1 + iN ′

1}
)]
− E

[
g
(
Φ(p) (π)

)]∣∣∣∣∣

+

∣∣∣∣∣E
[
g

(
(

p∑

m=1

{cm (F ) /m!}2 σ2
m)

1
2 × {N1 + iN ′

1}
)]
− E

[
g
(
(σ2 (F ))

1
2 × {N + iN ′}

)]∣∣∣∣∣ .

Now recall that {π} stands for a sequence of the type {πl : l ≥ 1}, and replace π with πl in (62). Then,
by first taking the limit as l → +∞, and then the limit as p→ +∞ in the RHS of (62), we deduce from
Assumptions 2 and 4 in the statement that the LHS (62) converges to zero as l → +∞. This concludes
the proof.
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8 The n-dimensional torus

In this last section, we focus on the case of G being the n-dimensional torus Rn/(2πZ)
n
, which we

parameterize as (0, 2π]n with addition mod(2π) as the group operation. In this case, the dual space
Ĝ is the class of all applications of the type ϑ 7→ exp(ik′ϑ) where ϑ = (ϑ1, ..., ϑn) ∈ (0, 2π]n and k =
(k1, ..., kn) ∈ Zn (here, we identify Ĝ with the class of its associated characters). By using the notation
introduced in (15)-(18), we have also that, for every k ∈ Zn,

Ĉk,m ,
∑

j1∈Zn

· · ·
∑

jm∈Zn

{Cj1 · · · Cjm}1j1+···+jm=k.

Moreover, for any fixed l∗ ∈ Zn, condition (24) in the statement of Theorem (2) can be rewritten as:
when l→ l∗,

supj∈Zn Ĉj,m−qĈj−l,q
∑

a∈Zn Ĉa,m−qĈa−l,q

→ 0, ∀q = 1, ..., m− 1. (63)

Remark – Condition (63) bears a clear resemblance with Lindeberg-type assumptions for the Central
Limit Theorem in a martingale difference setting, see for instance [13]. Indeed, in some very simple cases
(i.e. quadratic transformations of Gaussian random fields on the 1-dimensional torus) it seems possible
to derive sufficient conditions for the CLT by means of martingale approximations and the extension
to complex-valued variables of convergence results for the real-valued martingale difference sequences.
However, this approach is clearly unfeasible for general nonlinear transforms of Gaussian random fields
on higher-dimensional tori or on abstract Abelian groups.

As discussed in the introduction, of particular interest for physical applications is the case where
‖l‖ → ∞, that is, when we analyze the behavior of high-frequency components. We discuss two examples
to illustrate the application of our results; in both cases we assume that C0 = 0 to simplify the discussion.

Example 1 (Algebraic decay on the circle) – With this example we show that the CLT fails for
general Hermite transformations, when the angular power spectrum decays algebraically. We take n = 1
(merely for notational simplicity) and for all l ∈ Z\ {0} , we assume there exist positive constants c2 > c1

and α > 1 such that
c1|l|−α ≤ Cl ≤ c2|l|−α ;

of course we thus cover any model of the form Cl = 1/h(|l|), where h(l) = h0 + h1l + ... + hpl
p−1 > 0 for

all l > 0 and 1/h(|l|) is summable.
We have

∞∑

k=−∞

CkCl−k ≤ c2

{
∞∑

k=1

1

kα

1

(k + l)α
+

l−1∑

k=1

1

kα

1

(l − k)α
+

∞∑

k=l+1

1

kα

1

(k − l)α

}
.

≤ c2

{
2

lα

∞∑

k=1

1

kα
+

l−1∑

k=1

1

kα

1

(l − k)α

}

≤ c2





2

lα

∞∑

k=1

1

kα
+ 2

[l/2]+1∑

k=1

1

kα

1

(l − k)α





≤ c2





2

lα

∞∑

k=1

1

kα
+

2

(l/2)α

[l/2]+1∑

k=1

1

kα




 ≤
c22

lα
.

On the other hand it is immediate to see that
∞∑

k=−∞

CkCl−k ≥ sup
k∈Z

CkCl−k ≥ C1Cl−1 ≥
c2
1

|l − 1|α ≥
c12

|l|α , some c12 > 0 .
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Arguing by induction, we have thus shown that there exist positive sequences c2q > c1q, q = 2, 3, ... such
that

c1q|l|−α ≤ Ĉl,q ≤ c2q|l|−α ,

and
maxk Ĉk,1Ĉl−k,m−1

Ĉl,m

≥ c1c1,m−1

c2,m
> 0 for all l ∈ Z\ {0} ,

whence the necessary conditions for the Central Limit Theorem (63) fail for each m ≥ 2.

Remark – Analogous examples where the CLT fails could be easily provided for n > 1, by considering
for instance the spectral function

Cl1...ln =
1

h(|l1|, ..., |lp|)
,

for h(., ..., .) a multivariate polynomial which takes nonnegative values on the positive integers. A poly-
nomial decay of the power spectrum is common in physical models for the large scale structure of the
Universe, for instance in the highly popular Harrison-Zeldovich model (see [25]).

Example 2 (Exponential decay on the circle) – With this example we show that the CLT holds
for arbitrary Hermite transformations when the angular power spectrum decays exponentially, up to
multiplicative algebraic factors. Assume we have

c1h(|l|) exp(−ϑ|l|) ≤ Cl ≤ c2h(|l|) exp(−ϑ|l|) , l ∈ Z\ {0} , (64)

for strictly positive constants ϑ and c2 > c1, and where h(l) = h0 + h1l + ... + hpl
p−1 > 0.

Then

Ĉl,2 ≥
l−1∑

k=1

CkCl−k ≥ c1

l−1∑

k=1

h(k)h(l − k) exp(−ϑ|l|) ≥ c12|l|2p+1 exp(−ϑ|l|) ,

for some constant c12 > 0. Iterating this argument, we obtain by induction

Ĉl,q =

∞∑

k1=−∞

Ck1Ĉl−k1,q−1 ≥
l−1∑

k1=1

Ck1Ĉl−k1,q−1 ≥ c1q|l|qp+q−1 exp(−ϑ|l|) , c1p > 0 .

On the other hand, we have also

Ĉλ,q ≤ c2q|l|qp+q−1 exp(−ϑ|l|) exp(−ϑ|l|) , some c2p > 0 ,

because

Ĉl,2 =
∑

|k|≤2l

{CkCl−k}+
∑

|k|>2l

{CkCl−k} ≤ c′2|l|2p+1 exp(−ϑ|l|) + c′′2Cl

∑

|k|>2l

Ck

≤ c22|l|2p+1 exp(−ϑ|l|) ,

and then the argument is completed by induction. Hence we have

sup
λ∈Z

Ĉλ,m−qĈl−λ,q ≤ c2q|l|qp+q−1|l|(m−q)p+m−q−1 exp(−ϑ|l|) = c2q|l|mp+m−2 exp(−ϑ|l|)
∑

µ∈Z

Ĉµ,m−qĈl−µ,q = Ĉl,m ≥ c1q|l|mp+m−1 exp(−ϑ|l|) ,

whence it is immediate to see that (63) follows.

Remark – Analogous examples where a CLT of the type (21) holds for every m ≥ 2 could be easily
provided for n > 1, considering for instance the spectral function

Cl1...ln = h(|l1|, ..., |lp|) exp(−ϑ1|l1|...− ϑn|ln|) ,
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for h(., ..., .) a multivariate polynomial which takes nonnegative values on the positive integers. An ex-
ponential decay of the angular power spectrum at very high frequencies is expected in physical models
for the CMB random field, due to the so-called Silk damping (or diffusion damping) effect (see [10]).
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