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Abstract. The excited state dynamics of 5-fluorouracil in acetonitrile has been investigated by 

femtosecond fluorescence upconversion spectroscopy in combination with quantum chemistry TD-DFT 

calculations ((PCM/TD-PBE0). Experimentally it was found that when going from water to acetonitrile 

solution the fluorescence decay of 5FU becomes much faster. The calculations show that this is related 

to the opening of an additional decay channel in acetonitrile solution since the dark n/π* excited state 

becomes near degenerate with the bright π/π* state, forming a conical intersection close to the Franck-

Condon region. In both solvents a S1 – S0 conical intersection, governed by the out-of-plane motion of 

the fluorine atom is active, allowing an ultrafast internal conversion to the ground state.  
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Introduction. There is currently a keen interest in characterizing the electronically excited states of 

the DNA bases. These are known to undergo extremely fast non-radiative deactivation, but the 

underlying mechanisms remained largely unknown up to very recently. Rapid advances in time-resolved 

spectroscopic techniques and excited state quantum mechanical calculations have now made it possible 

to get fundamental insights in their excited state dynamics, both in the gas phase and in aqueous 

solution. 1-5 However, most recent studies explain the ultrafast decay on purely intramolecular grounds, 

only marginally affected by solvent effects. The role played by environmental effects in the excited state 

dynamics is instead far from being completely assessed. The large majority of the ultrafast studies have 

been performed in aqueous solution, whereas the number of comparative studies in different solvents is 

still very limited. 6-8 In these investigations, the excited state deactivation of DNA bases is still found to 

be ultrafast, but modulated by ± 50 % with respect to aqueous solution, depending on the base and the 

solvent. Crespo-Hernandez et al. summarized solvent effects on the singlet excited states of DNA bases 

as modest. 9 It should be noted though, that in none of these studies were the experimental results 

accompanied by any theoretical calculations.  

In this communication we show how the nature of the solvent significantly modulates, by a factor of 

four, the excited state lifetime of a pyrimidine nucleobase. More precisely, 5-fluorouracil (5FU, inset in 

Figure 2) has been investigated in acetonitrile, a polar but aprotic solvent, by femtosecond fluorescence 

upconversion. The experimental observations are compared with recent results concerning different 

uracils in aqueous solution 10 and interpreted with the aid of quantum chemistry TD-DFT calculations 

((PCM/TD-PBE0). From a purely theoretical point of view, obtaining a reliable description of the 

relaxed excited state geometry of a large organic molecule by TD-DFT calculations including solvent 

effects is today only at its beginning. 1,10-12 

 

Experimental details. 5FU was purchased from Sigma Aldrich. Acetonitrile (Merck UV 

spectroscopic grade) was used without further purification. Absorption and fluorescence spectra were 

recorded with a Perkin Lamda 900 spectrophotometer and a SPEX Fluorolog-2 spectrofluorometer 



respectively. The femtosecond fluorescence upconversion setup used has been described earlier. 13 It 

uses the frequency-tripled output at 267 nm from a Ti:S laser for excitation. The Gaussian apparatus 

function (fwhm ≈ 310 fs) allows a time resolution of about 100 fs after deconvolution. Total 

fluorescence decays shown below were constructed from the parallel and perpendicular signals (Ipar(t) 

and Iperp(t)) according to ( ) ( ) ( )tItItI perppar 2+= . All upconversion measurements were performed at 

room temperature (20 ± 1 °C) under aerated conditions. Solutions (≈2.5x10-3 mol/dm-3, 25 ml) were 

kept flowing through a 0.4 mm quartz cell, which itself was kept in continuous motion perpendicular to 

the excitation beam. 

 

Computational Details. Ground state and excited state geometry optimizations on 5FU in acetonitrile 

were performed by DFT (PCM/PBE0) and TD-DFT (PCM/TD-PBE0) calculations. These allowed the 

determination of the relative energy in the Franck-Condon region and the calculation of the minima of 

the two lowest energy excited states deriving from the bright HOMO/LUMO π/π* and the dark HOMO-

1/LUMO n/π* transitions (hereafter Sπ and Sn).  Conical Intersections (CI) between the ground and the 

π/π* excited state were located at the CASSCF(8/8)/6-31G(d) level, by using the method of Bearpark et 

al., 14 including 6 π molecular orbitals and the two nO valence orbitals. The PCM/TD-PBE0 calculations 

allowed ground- and excited- state geometry optimization including solvent effects. All the calculations 

have been performed by using a development version of the Gaussian package. 15 Further details 

regarding the calculations are given elsewhere. 10 Bulk solvent effect on the excited state has been 

calculated by using the PCM/TD-DFT implementation, based on the linear response (LR) theory, 

described in ref. 16. In some cases we have also applied the new State Specific (SS) implementation of 

TD-DFT methods, that should allow for a more balanced treatment of the n/π* and π/π* transitions. 17  

In brief, LR methods avoid the calculation of the exact excited state electron density in favor of a direct 

determination of excitation energies. On the other hand, in the SS procedure the excited state electron 



density and the corresponding response surface charges (characterizing the PCM method) are self-

consistently optimized by means of an iterative procedure. 

Several papers show that PCM alone is fully adequate to model polar solvents as CH3CN without 

including explicit solvent molecules. 18-21 The proper description of solvent shifts in aqueous solutions 

requires instead also the explicit inclusion of water molecules belonging to the first solvation shell. 1 

Taking into account experimental suggestions 22, all the PCM calculations of 5FU in water solution 

included four explicit water molecules in the first solvation shell. 10 Our model is confirmed by the 

results of a recent MD study of 5-fluorouracil, where no indication of hydrogen bonding between the 

fluorine atom and water hydrogens was found. 23 Here we only treat the diketo form of 5FU. This is the 

most stable form in the electronic ground state, 24,25 and the only tautomer identified in solution and in 

the gas phase. 4,26 

 

Results and discussion. Steady-state absorption and fluorescence spectra of 5FU in acetonitrile and 

aqueous solution are shown in Figure 1. Both absorption and fluorescence spectra are shifted toward 

shorter wavelengths in acetonitrile as compared to water, indicating a weaker solute-solvent interaction 

in the excited state. Corresponding fitted peak frequencies are given in Table 1 (see SI for details). The 

fluorescence quantum yield of 5FU in acetonitrile is about four times lower than in water. The most 

striking difference is that the fluorescence spectrum of 5FU in acetonitrile is much broader than in 

water, with a short wavelength flank that is displaced by 25 nm towards the blue while the red side is 

nearly superposable with that observed in water. 

(Figure 1) 

Fluorescence decays at 330 nm of 5-fluorouracil in H2O and CH3CN are shown in Figure 2. It is quite 

apparent that the decay in acetonitrile is much faster than that in water. We performed merged nonlinear 

fitting/deconvolution processes using mono- or bi-exponential impulse response model functions i(t) 

convoluted by the Gaussian instrument response function, I(t) ∝ i(t) ⊗ G(t). Fitted values are given in 

Table 2. Although mono-exponential fits are not perfect, such fits give easily comparable characteristic 



times, having the values of 1.4 and 0.4 ps in H2O and CH3CN, respectively. These values are in line 

with the relative fluorescence intensities mentioned above. 

(Figure 2) 

The Vertical Excitation Energy (VEE) of the Sπ state (mainly arising from the HOMO-LUMO  

excitation, with π/π* character)1,12 provided by PCM/TD-PBE0/6-311+G(2d,2p) calculations on a 

PCM/PBE0/6-31G(d) optimized geometry in acetonitrile solution is 39.700 cm-1, to be compared with a 

value of 39.400 cm-1 obtained in aqueous solution. Computed VEE's are thus in good agreement with 

experimental data. Even if the π/π* VEE is slightly overestimated (by ~ 2000 cm-1), it is noteworthy 

that our calculations provide a very good estimate of the water→acetonitrile solvent blue-shift. The 

experimental value (300 cm-1) is indeed very close to its PCM/TD-PBE0 counterpart. 

In agreement with previous computational studies on uracils in gas phase and in aqueous solution,1,9,10 

both LR and SS PCM/TD-PBE0 calculations predict that in the FC region a dark state (Sn) has a similar 

stability to Sπ....  The Sn electronic transition has a predominant HOMO-1 → LUMO character (n/π*) , 

mainly involving  the C4-O8 carbonyl group.    

Figure 3 

The structure of the Sπ state optimized in acetonitrile (see Figure 3) is very similar to that obtained in 

aqueous solution and already described in ref. 10. The pyrimidine ring adopts a "boat-like" 

conformation, with N3 and C6 atoms out of the average plane defined by N1, C2, C4, and C5 atoms. 

The largest variations of the bond lengths involve the lengthening of C4O8 and, especially, C5C6 bond 

distances in line with the bonding/antibonding character of HOMO and LUMO with respect to those 

bonds.1,10 

The computed fluorescence energy is 28.500 cm-1 to be compared to a value of 30.100 cm-1 in 

aqueous solution. The comparison with the experimental results is not straightforward, since the 

observed fluorescence spectrum of 5FU in acetonitrile is abnormally broad and the lifetime is much 

shorter than in water. For acetonitrile the main part of the fluorescence could thus come from the 



Franck-Condon region and the excited state population be quenched before it reaches the Sπ local 

minimum. 

The stabilities of the Sπ and the "dark" Sn excited states are comparable: in particular, state specific 

PCM/TD-PBE0/6-311+G(2d,2p) calculations provide 0-0 transition energies of 37000 and 36700 cm-1 

for the Sπ and the Sn state, respectively.  PCM/TD-PBE0 geometry optimizations predict that the 

equilibrium geometry of Sn is planar, as the ground state. The most relevant geometry shifts with respect 

to the ground state geometry involves instead the C4O8 and C5C6 bond lengths that increase by 0.1 Å 

and 0.04 Å, respectively. The n/π* transition involves indeed the transfer of an electron from the orbital 

corresponding mainly to the O8 lone pair to a π* orbital localized mainly on the C5C6 and C4O8 bonds. 

Except for the loss of planarity, the geometry shifts of the Sn minimum are thus quite similar to that of 

the Sπ minimum. The latter exhibits a longer C5C6 bond distance, since the π HOMO has a bonding 

C5C6 character; the former has a longer C4O8 bond distance, due to the involvement of the O8 lone 

pair.  On the balance, however, it is likely that, at least in the first instants after excitation to the Sπ state, 

the geometry shifts induced by the absorption also lead to a stabilization of the close lying Sn state. In 

fact, preliminary PCM/TD-PBE0 calculations along a one-dimensional path leading from the FC region 

to the Sπ minimum indicates the presence of crossing between Sπ and Sn states.  

  These results suggest that the dynamical behavior of the Sπ    state could be influenced by the Sn state, 

especially in the proximity of the Franck-Condon region corresponding to a planar geometry. In this 

respect, it is worth noticing that resonant Raman experiments on uracil show that all but one of the 

vibrational modes that are more strongly affected by the electronic transition involve in-plane stretching 

and bending 27,28, suggesting that, soon after excitation to the Sπ state, uracil-like molecules keep the 

planar geometry characteristic of the Franck-Condon region.  

In order to better investigate this point, we have optimized the geometry of the Sπ state under the 

constrain of planarity: it is noteworthy that now the Sπ    state is just 0.3 eV more stable than Sn (solvent 

fully equilibrated with the Sπ state) and that the difference between the energy of the two states is just 



0.1 eV, when considering the equilibrium solvation energy of Sn. The presence of a conical intersection 

between these two states in this region is thus likely, and solvent fluctuations could act as coupling 

modes between Sπ and Sn. As a matter of fact, CASSCF calculations predicts that a Conical Intersection 

between Sn and Sπ states (hereafter CIn/π) does exist in vacuo for a geometry close to planarity. The 

structure of CIn/π is very similar to that found for uracil in the gas phase by Matsika at the CASSCF 

level, 5,29 and PCM/TDPBE0 calculations confirm that this CI is present also in CH3CN solution, since 

the energy difference between the two states is only 0.09 eV (PCM/TD-PBEO 6-31G(d) calculations). 

The main process governing the ultrafast internal conversion from Sπ to the S0 ground state is the 

conical intersection CIS1/S0. Confirming our previous results concerning aqueous solution, also in 

acetonitrile the reaction path on Sπ is dominated by a pyramidalisation of C5 and an out-of-plane motion 

of the 5-substituent (φ dihedral), leading to the CIS1/S0. In order to ascertain if solvent affects the energy 

barrier possibly present on the Sπ potential energy surface (PES) when moving from the FC region 

towards CIS1/S0, we have performed a fully relaxed energy scan of the Sπ state as a function of the out of 

plane motion of the Fluoro substituent (φ dihedral) in CH3CN (5F) and in water (5F•4H2O), by 

performing excited state PCM/TD-PBE0 geometry optimizations for fixed values of the φ dihedral. The 

resulting curves are shown in Figure 4. 

(Figure 4) 

The picture obtained in the two solvents is very similar. The curves exhibit a very shallow minimum 

for φ = 170°, i.e. the value corresponding to the Sπ energy minimum and rise slowly up to φ=140°. After 

this point, the energy of the Sπ state drops and the geometry starts approaching that of the CI, where 

TD-PBE0 geometry optimizations suffer from severe convergence problems.  Nevertheless, a partially 

relaxed single-point calculation for φ = 135° confirms that the energy of Sπ decreases with respect to 

φ = 140 suggesting that this point is a saddle point on the isomerization path.  

The computed energy barriers on the Sπ state surface, separating the Franck-Condon region from the 

CIS1/S0 conical intersection, are very similar: 0.13 eV in CH3CN and 0.15 eV in H2O (PCM/TD-PBE0/6-



31G(d) calculations). At the 6-311+G(2d,2p) level the energy barrier increases to 0.15 eV in CH3CN 

and to 0.165 eV in H2O. The stabilization with respect to the Franck-Condon region is ca. 0.4 eV in both 

solvents.  

Even if the present computational analysis does not allow excluding the possibility that the solvent 

can modulate also the barrier heights on the path towards the CIS1/S0 conical intersection, the comparison 

of the computational results obtained for 5FU in acetonitrile with those obtained for water solution 10 

strongly suggests that it affects the Sπ lifetime mainly by tuning the relative energy of the Sπ state and 

the close lying Sn dark state. The stability of π/π* states increases both with the polarity and, especially, 

the hydrogen bonding ability of the solvent, implying that in water the dynamics on Sπ is not influenced 

by Sn.  In acetonitrile, instead, the Sn and the Sπ states are very close (their relative energy being within 

0.1 eV) in the region of the configuration space close to the Franck-Condon region and the S1 local 

minimum.  

According to the picture that emerges from this study (schematically illustrated in Figure 5, an 

additional decay channel, very likely a conical intersection between Sπ    and Sn, opens up for 5FU in 

acetonitrile, leading to a decrease of its lifetime, in full agreement with experiments. The broad 

fluorescence spectrum of 5FU in acetonitrile is another hint of the possible involvement of an additional 

electronic state.  

(Figure 5) 

The efficiency of non-radiative decay through CIn/π could be even more important in the gas phase or in 

nonpolar solvents, where the relative stability of the Sn state is larger than in CH3CN. This is supported 

by experimental results on thymine in the gas phase indicating that following photoexcitation to the Sπ 

state, the system is trapped in a dark state. 22 

Further experimental and theoretical (for example, dynamical computational studies) work is 

obviously necessary to fully assess the precise role of the solvent in these processes. We are currently 

extending our ultrafast fluorescence studies to other bases and other solvent environments.  



On the balance, the present study represents a very promising step towards a deeper understanding of 

the microscopic mechanisms underlying the photophysical behavior of nucleic acids and their 

constituents, showing the potentialities of the combined application of experimental and computational 

methods in comparative studies of different nucleobases in different solvents. 
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Supporting Information. Steady-state absorption and fluorescence spectra on a wavenumber scale 

with fits, fluorescence decays on a linear scale with fits and PCM/PBE0/6-31G(d) calculated cartesian 

coordinates of the S0 , Sπ and S1 minima. This material is available free of charge via the Internet at 

http://pubs.acs.org.



 

 

Table 1. Characteristic parameters of the first absorption and fluorescence bands of 5-fluorouracil in 

acetonitrile and water. The peak frequencies νmax and the Stokes shift ∆ν (peak absorption minus peak 

fluorescence). Also given are π/π* vertical transition energies and fluorescence transitions. All values 

are in 1000 cm-1. 

 

  νmax (abs) νmax (fluo) ∆ν (cm-1) x103 

CH3CN Exp 37.9 29.9 8.0 

 Th 39.7 28.5 8.0 

H2O Exp 37.6 29.5 8.1 

 Th 39.4 30.1 8.1 

 

 

 

Table 2. Characteristic times of the fluorescence decays of 5-fluorouracil in room-temperature 

acetonitrile and aqueous solutions (~2.5x10-3 M). Results are from bi-exponential (τ1, τ2) and mono-

exponential fits (τ0). Also given is the mean time (<τ> = ατ1 + (1−α)τ2) of the bi-exponential fit. 

 

 α τ1 (ps) τ2 (ps) <τ> (ps) τ0 (ps) 

CH3CN 0.81 ± 0.11 0.26±0.04 0.74±0.18 0.36±0.06 0.39±0.07 

H2O 0.39 ± 0.04 0.69±0.06 1.74±0.05 1.32±0.05 1.38±0.01 



Figure Captions 

 

Figure 1. Steady-state absorption and fluorescence spectra of 5-fluorouracil in room-temperature H2O 

and CH3CN. 

 

Figure 2. Fluorescence decays at 330 nm of 5-fluorouracil in CH3CN and H2O (≈2.5x10-3 M) after 

excitation at 267 nm. Also shown is the Gaussian apparatus function (fwhm ≈ 310 fs). 

 

Figure 3: Minimum of the Sn (a) and Sπ (b) states, according PCM/TD-PBE0-631G(d) excited state 

geometry optimizations in acetonitrile solution. Some selected bond distances (in Å) are also reported. 

In the ground state they are, respectively: C4O8=1.22 Å, C4C5=1.45 Å, C5C6 1.34 Å.  

 

Figure 4. Energies of the S0 and the Sπ states as a function of the out of plane motion of the 5-substituent 

according to PCM/TD-PBE0/6-31G(d) excited state geometry optimization in acetonitrile. For 

comparison, the corresponding curves in water are also shown. 

 

Figure 5. Schematic picture of the most important processes involving the electronically excited states 

of 5FU in acetonitrile solution. The destabilization of the Sn state in water solution is also schematically 

depicted.



 

 

Figure 1. Steady-state absorption and fluorescence spectra of 5-fluorouracil in room-temperature H2O  

(dashed lines) and CH3CN (solid lines). 



 

 

 

Figure 2. Fluorescence decays at 330 nm of 5-fluorouracil in CH3CN and H2O (≈2.5x10-3 M) after 

excitation at 267 nm. Note that a semi-log scale is used. Also shown is the Gaussian apparatus function 

(fwhm ≈ 310 fs). 
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Figure 3: Minimum of the Sn (a) and Sπ (b) states, according PCM/TD-PBE0-631G(d) excited state 

geometry optimizations in acetonitrile solution. Some selected bond distances (in Å) are also reported. 

In the ground state they are, respectively: C4O8=1.22 Å, C4C5=1.45 Å, C5C6 1.34 Å.  

 



 

 

 

Figure 4. Energies of the S0 and the Sπ states as a function of the out-of-plane motion of the 5-

substituent according to PCM/TD-PBE0/6-31G(d) excited state geometry optimization in acetonitrile. 

For comparison, the corresponding curves in water are also shown (dotted curves). 



 

 

 

Figure 5. Schematic picture of the most important processes involving the electronically excited states 

of 5FU in acetonitrile solution. The destabilization of the Sn state in water solution is also schematically 

depicted (dashed red    lines). 
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