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ABSTRACT

Systematic cirrus lidar measurements performed in the south of France during 2000 are analyzed statis-
tically to search for cloud classes. The classes are based on cloud characteristics (cloud thickness, light
backscattering efficiency, and its variance), cloud absolute geometric height, cloud height relative to the
tropopause, and the temperature at the cloud level. The successive use of principal component analysis,
cluster methods, and linear discriminant analysis allows the identification of four cirrus classes. Almost all
the cirrus detections correspond to three classes with similar proportion of the total cirrus detected (around
30%). The absolute geometric height and the thickness are found to be the main discriminant variables. The
first cirrus class corresponds to thin clouds above the local tropopause (absolute geometric height: 11.5 km),
or at least around the tropopause, while another class corresponds also to thin clouds but at a lower altitude
range in the troposphere (absolute geometric height: 8.6 km). The third class corresponds to thick clouds
(thickness of 3.2 km) located below the tropopause, in an altitude range between the two first classes
(absolute geometric height: 9.8 km). As expected, the high-altitude cirrus class is characterized with the
lowest mean temperature. It is noted that the temperature is closely related to the altitude and so the role
of temperature in the cirrus classes cannot be disentangled from the role of the altitude.

1. Introduction

Cirrus clouds are a major uncertainty in climate
change assessments (Houghton et al. 2001). Despite
many studies reporting cirrus observations, sometimes
in conjunction with relevant parameters (temperature,
humidity, aerosols, wind, waves, etc.), cirrus clouds are
far from being extensively characterized, especially
their vertical distribution. Moreover, the exact role of
these different parameters in cirrus formation is not
well known (Lohmann et al. 2004). As a result, cirrus
parameterizations in numerical climate models are still
rather crude.

The lack of vertical characterization partly originates
from the small amount of observations that have the
required properties: high vertical resolution and high
sensitivity. For liquid clouds, classifications have been
developed very early on, based on simple visual infor-
mation. A range of morphological characteristics such
as color, contrast, texture, geometrical form, or spatial
extension has been used to determine different classes

of liquid clouds over different altitude ranges (i.e., low,
middle and high clouds). The classifications have
proved to be useful in the identification of cloud for-
mation processes and their parameterization in general
circulation models. In contrast, cirrus clouds are usually
described as being one class: ice clouds with no distinc-
tion according to the altitude. Most of the cirrus clouds
can only be observed visually when the sun is at low
zenith angles. With their low detection limit, lidar mea-
surements are sensitive to even optically thin cirrus lay-
ers. The comparison of visual and lidar detection has
led to two classes of ice clouds being distinguished: vis-
ible and subvisible clouds (Sassen et al. 1989). Note that
it has not been shown that these two classes represent
cirrus clouds with fundamentally different morpholo-
gies or formation processes. There have been attempts
to identify more cirrus clouds classes. For example, a
classification method based on clustering has been ap-
plied to the three channels of the Meteosat imagery
(Desbois et al. 1982). Six classes of clouds were identi-
fied according to their optical depth from thick to very
thin clouds. Three classes corresponded to cirrus
clouds.

It is important to point out that altitude range and
vertical extension of cirrus clouds are critical param-
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eters for the radiative balance of the atmosphere. A
cirrus cloud at high altitudes and, hence, a cold cloud,
influences more strongly the infrared flux than the
same cirrus at a lower altitude. In contrast, a cirrus
cloud at low altitudes has a weaker effect on the overall
infrared fluxes and therefore the albedo effect (cirrus
cloud reflecting back to space the incoming solar radia-
tion) may dominate. Lidar measurements provide ac-
curate information on the vertical distribution of cirrus
and, therefore, are now used to develop highly resolved
cirrus databases. The first height-resolved cirrus clima-
tology developed from midlatitude lidar data revealed a
frequency of cirrus occurrence of nearly 50% all year-
round (Goldfarb et al. 2001). This is consistent with
visual investigations performed on board aircraft
(Clodman 1957). Lidar observations give access to sev-
eral cirrus characteristics such as the cloud absolute
geometric height, cloud thickness, backscattering ratio
(called here intensity, which is related to the number of
particles, their size, and their mean backscattering effi-
ciencies), and its temporal variability (related to the
horizontal structures because cirrus usually are not sta-
tionary structures). From this set of parameters com-
bined with auxiliary data, one can attempt to identify
different classes of cirrus. This type of classification
could be useful for the validation of height-resolved
cirrus fields calculated by models. It would complement
actual model validations that are based on vertically
integrated quantities such as cloud cover and infrared
radiation fluxes measured from space. In addition, in
the same way as liquid cloud classifications, cirrus clas-
sifications could provide clues on the key processes
controlling cirrus formation and evolution.

In this study, a statistical multivariate analysis of one
year of lidar data acquired in the south of France is
carried out in order to determine whether distinct
classes of cirrus can be identified. In a first section, the
lidar and auxiliary data are described. In the second
section, statistical methods are briefly presented and
then the results are reported. In the last section, the
characteristics of the different classes of cirrus are dis-
cussed and conclusions drawn.

2. Data description

Data consist mainly of systematic lidar data that have
been obtained at middle latitudes in the south of
France. Temperature profiles from a nearby radio-
sonde station complement the lidar data. Also, because
cirrus are formed in the vicinity of the tropopause, their
position with respect to the dynamical tropopause is
derived from high-resolution potential vorticity (PV)
fields produced by a PV advection model.

a. Lidar measurement at OHP

Cirrus clouds have been systematically measured for
several years with a lidar in the south of France at the
Observatoire of Haute-Provence (OHP; 44°N, 6°E).
Measurements are conducted in a semiautomatic mode,
during several hours at night, depending on the weather
conditions (the lidar system does not operate when low
clouds or rain are present). The temporal resolution of
the measurements is 3 min and the vertical resolution is
75 m. Parameters such as the mean altitude of the cloud
layer are usually averaged over longer time periods.
Cirrus detected above OHP from 1997 and 1999 have
already been studied, and a first climatology of their
main characteristics (height, thickness, and mean back-
scattering ratio) has been published (Goldfarb et al.
2001). About 23% of the observations were found to be
subvisible cirrus clouds, according to the criteria of Sas-
sen et al. (1989).

The algorithm of cirrus detection used in the present
study is based on fitting the background scattering and
then estimating the scattering enhancement resulting
from ice particles. A constant lidar ratio of 18 sr�1

(Platt and Dilley 1984) is used in the retrieval algo-
rithm. This method of cloud retrieval is more sensitive
to sharp enhancement than to diffuse background aero-
sols changes. Therefore, it is well suited to the detection
of cirrus clouds. Nonetheless, because no information
on the composition of the scattering layer can be de-
rived directly with one wavelength lidar, thin particle
layers (e.g., of volcanic origin) could be interpreted as a
cloud. During the period investigated, no major volca-
nic eruptions have been reported (see information on-
line at http://toms.umbc.edu). Therefore, the scattering
particles in the upper troposphere–lower stratosphere
(UTLS) are most probably composed of ice, at least
partly, and so are treated as cirrus here. The lidar sys-
tem and the detection algorithm have already been de-
scribed in details in (Goldfarb et al. 2001). A quite low
detection level is achieved because measurements are
conducted at night with a small field of view. From
these measurements, several macroscopic parameters
associated with the vertical distribution of the clouds,
their optical properties, and temporal variability can be
derived. Cloud parameters are estimated over 3-min
measurement periods and then averaged over several
hours except when there was a change in meteorologi-
cal conditions during the averaging period. The se-
lected parameters are described hereinafter:

1) The absolute geometric height of the cloud is pro-
vided with a resolution of 75 m. The geometric
height is deduced from the top and bottom height of
the cloud.
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2) The thickness of the cloud is the mean difference
between the top and the base of the cloud. Because
cirrus appears as thin, intense enhancements of the
lidar signal, this parameter can be accurately de-
rived (within the vertical resolution of 75 m). The
optical depth can be deduced from the thickness and
the mean backscattering ratio, assuming the back-
scattering is constant within the cloud. Because the
lidar ratio is assumed to be constant within the
cloud, the optical depth cannot be accurately de-
rived and hence is not used as a cloud parameter in
the search for a classification. However, cloud cli-
matologies derived from lidar data often refer to the
optical depth. Therefore, it might be valuable to es-
timate the optical depth for each cloud and derive a
mean value for each cloud class.

3) The backscatter is the parameter measured by li-
dars; the mean backscattering ratio is usually de-
fined as the ratio of aerosol scattering to the total
backscattering. In our case, the ratio is defined as
the ratio of the cirrus backscattering (excluding
background aerosol contribution) to the total back-
scattering. It is called intensity in the following. This
parameter is related to the particle scattering effi-
ciency and particle number density.

Like liquid water clouds, horizontal patterns in cirrus
clouds (Conover 1960; Sassen et al. 1990) partly origi-
nate from the cloud formation and evolution. The tem-
poral variability (which is linked to the spatial variabil-
ity) of a cirrus cloud is quantified here with the stan-
dard deviation of the mean backscattering ratio over
the successive 3-min measurement records. Because the
amplitude of the standard deviation is strongly related
to the amplitude of the mean backscattering, we have
considered the ratio of these two quantities (i.e., scaled
standard deviation). Some sensitivity tests have shown
that the variability parameter could be discarded from
the final classification analysis because it was found to
play a very minor role in the cirrus classification.

b. Radiosonde data

Temperature is a key parameter in cloud formation.
Radiosondes are regularly launched by the French me-
teorological center (Meteo-France) at Nimes, a site
close to OHP (110 km westward). The systematic
soundings at midnight, during the lidar operation, allow
us to estimate the mean temperature at the cloud level.
Although the temperature measurements exhibit some
variability, the temperature field is supposed to be rela-
tively uniform within few kelvin between Nimes and
OHP.

The water vapor is also a critical parameter in cloud

formation. However, the accuracy of humidity mea-
surements with standard radiosondes is rather poor in
the upper troposphere. For this reason, these data are
discarded from the analysis.

c. MIMOSA

In addition to the issue of the altitude range of cirrus
clouds and of their radiative impact, the position of
cirrus clouds with respect to the tropopause is impor-
tant. Indeed, it is highly relevant to the issue of hetero-
geneous chemistry and the associated lower-strato-
spheric ozone depletion (Solomon et al. 1997). Tropo-
sphere and stratosphere exhibit radically different
properties in terms, for example, of static stability or
chemical composition. The altitude of the tropopause
used in our analysis is based on static stability and re-
lates to the altitude of 1.6 PV unit (PVU) level (WMO
1986). It is called the dynamical tropopause. In contrast
to temperature fields, PV fields are highly structured
around the tropopause. To take into account this
spatiotemporal variability, PV profiles above OHP are
derived using a three-dimensional high-resolution PV
advection model called Modèle Isentropique de Trans-
port Méso-échelle de l’Ozone Stratopshérique par Ad-
vection (MIMOSA). MIMOSA uses the potential tem-
perature as the vertical coordinate. In the present case,
the model is run on an elementary horizontal grid of 37
km � 37 km (three grid points per degree of latitude)
and is forced with winds from 6-h European Centre for
Medium-Range Weather Forecasts (ECMWF) analyses
of 1.125° latitude � 1.125° longitude resolution, corre-
sponding to a T106 truncation (Hauchecorne et al.
2002). On the time scale of a few days, PV can be
considered as a quasi-passive tracer in regions where
turbulence and convection are weak, typically in the
stratosphere and, to a lesser extent, around the tropo-
pause. The PV fields on an isentropic (constant poten-
tial temperature) surface are calculated by advecting
PV and relaxing it toward PV values from ECMWF
analyses with a time constant of 10 days. The ability of
MIMOSA to describe small-scale structures through
the advection of PV as a quasi-passive tracer has al-
ready been evaluated in the UTLS (Hauchecorne et al.
2002; Heese et al. 2001). An example of a longitudinal
distortion of PV contours on an isentropic surface is
shown is in Fig. 1. Typical PV profiles above OHP ex-
hibit small values (around or smaller than 1 PVU) for
potential temperature below around 330 K (approxi-
mately 12 km) and then, because of the static stability
of the stratosphere, increase rapidly, reaching values
around 8 PVU at 400 K (16 km). The potential tem-
perature of the local dynamical tropopause is defined
here as the level corresponding to the 1.6-PVU thresh-
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old value (WMO 1986). The geometric heights of
clouds are converted into potential temperature levels
using the radiosonde measurements and then compared
with the tropopause level. The difference between
these altitudes is one of the parameters used in the
classification analysis and is called the relative altitude.

3. Methodology of multivariate analyses

Before performing a complex multivariate analysis
(MA), we first start by studying the probability distri-
bution of the variables in our data sample in order to
see whether cirrus classes could already be identified.
The probability distribution functions (PDFs) of differ-
ent observed variables are not Gaussian (Fig. 2). There
are indications of possible different classes in the broad
features of the PDFs. For example, the PDF of the
mean cirrus suggests several modes exhibiting two
maxima centered at 8.5 and 11.5 km. The same feature

is found for the thickness of the cirrus with one group
centered at 1 km and another group centered at 3 km.
On the PDF of the temperature, there is one very large
mode centered at �45°C approximately and a small
mode at �60°C. However, visual analysis can be decep-
tive, and any conclusions from these PDFs can be
tainted with subjectivity. In addition, cirrus groups end
up being defined from one parameter at a time. To
avoid the use of any visual analysis and to take into
account the cross correlations (correlation between pa-
rameters) explicitly in the cirrus classification, thorough
multivariate analyses are carried out. The multivariate
approach should be more efficient and objective for
deciding whether different clusters can be identified
and discriminated using the available data. In the rest of
this section, principal component analysis (PCA), clus-
ter methods (CMs) and linear discriminant analysis
(LDA) are briefly described. Data reduction by PCA is
achieved by finding linear combinations (principal com-

FIG. 1. An example of the advected PV field calculated by MIMOSA for the 320-K isentropic level on 11 Feb 2000. Blue colors
correspond to PVUs around 2 and can be viewed as the region of the dynamical tropopause. One can notice a thin structure of
stratospheric air over central Europe.
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ponents) of the original variables, which account for as
much as possible of the original total variance (Jolliffe
1986). PCA is performed to create new uncorrelated
variables and reduce the data dimension. It also helps
in identifying meaningful features in data on a graphical
representation (with principal axes). The aim of CM is
to group data into clusters or classes usually using al-
gorithms that maximize distances between clusters in
the variable space and minimize distances between data
belonging to the same clusters (Anderberg 1973). We
use two different types of CM—hierarchical clustering
methods (HCM) according to the Ward’s method and
the K-means clustering (KMC). The aim of HCM is to
calculate the distance between data entries and to ag-

glomerate. The result is a hierarchical tree in which the
clusters (agglomerate of observations) are organized
based on growing distances. Hierarchical methods re-
quire so much computer storage that nonhierarchical
methods such as the KMC methods are usually pre-
ferred. MacQueen (1967) used the term “K means” for
a process where each data unit (each observation) is
assigned to that element of a set of K clusters that has
the nearest centroid (mean). The aim is to cluster the
data in order to minimize the sum of the inner distances
and to have a reasonable number of clusters. Last,
LDA are multivariate analyses used to classify or re-
classify data into two or more groups in a quantitative
manner (Cacoullos 1973). An attempt is made to inter-
pret the physical meaning of the resulting classification
with respect to the original variables. LDA produces a
small number of linear functions useful for discriminat-
ing among clusters of data obtained previously, for ex-
ample, with a CM. From the discriminant linear func-
tions, data membership probabilities to clusters can be
calculated, allowing data to be reclassified after LDA.
Overall, LDA provides the mean to validate and opti-
mize results from cluster methods, and to determine the
cluster of additional observations. Moreover, the dis-
crimination power for each original variable is esti-
mated with LDA.

The discrimination between cirrus clouds detected
above OHP relies on the successive application of the
following multivariate analyses: 1) PCA with absolute
and relative height, thickness, intensity, and tempera-
ture of cirrus clouds; 2) HCM as Ward’s technique on
the first PCs to determine the exact number of cirrus
classes; 3) KMC to compare with the results obtained
with HCM; 4) LDA to optimize the classification pro-
duced with HCM or KMC until 0% of classification
error is obtained. More details about this methodology
can be found in Borchi and Marenco (2002) where the
same approach has been used successfully on UTLS
data. Multivariate analyses are performed with the XL-
STAT software (version 4b).

4. Results of multivariate analyses

a. Principal component analysis

Ninety-two cirrus clouds were detected above OHP
in 2000. The data matrix for the 92 observations (Fig. 3)
consists of 92 rows (data � detected cirrus) and five
columns (variables � absolute and relative height,
thickness, intensity, and temperature). The first PC ac-
counts for 44% of the total variance, while the second
component account for 23%, the third for 18%, the
fourth for 12%, and the fifth for 3%. The correlation
circle shown in Fig. 3 is a synthesis of the correlation

FIG. 2. Histogram of probability distribution for three observed
variables: (a) absolute geometric altitude, (b) thickness, and (c)
mean temperature of the cirrus clouds.
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matrix and of the correlations between initial variables
and PCs.

When analyzing the PCA results, one has to keep in
mind that the original variables are not independent.
Some variables show high levels of correlation. For ex-
ample, as expected, absolute height and temperature
are both very strongly anticorrelated with r � �0.81.
The absolute height is strongly correlated with the first
PC (r � 0.92), whereas the temperature is anticorre-
lated with it (r � �0.88). The relative height is anticor-
related with the first PC (r � �0.74). The first PC ap-
pears to be a measure of cirrus according to increasing
values of absolute height and decreasing values of tem-
perature and relative height. Thickness and intensity
are correlated with the second PC with r � 0.75 and r �
0.7, respectively. Intensity is also correlated with the
third PC (r � 0.7). The five variables are rather well
represented by the first two PCs. Indeed, the projection
of variables on the factor plan is close to the circle. The
scatterplot for the first two PCs (data projection on the
first two PCs plan) shown in Fig. 3b provides a graphi-
cal representation of the distribution of the data points.
All of the data points near the right part of PC 1 cor-
respond to low values of relative height and tempera-
ture (temperature is relative so negative values) and
high values of absolute height, and therefore are char-
acteristic of the highest cirrus clouds (around the tropo-
pause). The group of points, near the left-hand side of
PC 1, corresponds to the lowest cirrus. Data points near
the upper (and conversely lower) part of PC 2, repre-
sent cirrus with high (and conversely low) values of
thickness and intensity. The left-hand lower quadrant
(with negative values of PC 1 and PC 2) corresponds to
cirrus with low values of absolute height, thickness, and
intensity, and high values of relative height and tem-
perature. Theses results suggest that some grouping of

the cirrus data points might be possible. But, do these
groups correspond to real and homogenous classes of
cirrus with distinct characteristics? And what is the
cluster for each observation and what is the exact num-
ber of clusters? Cluster methods as HCM and KMC can
help to answer to those questions.

b. Cluster methods

The use of the first three PCs (with 90% of points
having a good projection on the first three PCs) in clus-
ter methods instead of the original data allows the noise
in the data to be fit corresponding to the fourth and
fifth principal components (with, respectively, only
12% and 3% of the total variance), resulting in a better
classification. The advantage of HCM is that the hier-
archical tree provides the optimum number of clusters.
The breaking of the level index between 88 and 89
nodes (for a total of 92 observations) shows that the
processing of the data as by HCM gives four clusters
(not shown).

We also apply a different cluster method, KMC, in
order to check the robustness of the classification ob-
tained with HCM. KMC leads to results similar to
HCM with four clusters and only five different cluster
affectations on 92 observations.

c. Linear discriminant analysis

LDA is used after the cluster methods to validate and
optimize the clustering and to estimate the discrimina-
tion power of each variable. The same data matrix as
for PCA is used in discriminant analysis (DA), but it
also includes a variable containing the clusters obtained
with HCM. The clusters obtained with KMC are also
tested. Note that DA provides an estimate of the error
percentage on the classification: around 4% with clus-

FIG. 3. (a) Correlation circle and (b) scatterplot of the first two PCs for the 92 cirrus cloud
systems detected in 2000. PC1 for (a) and (b) are not exactly the same, but they are linearly
correlated.
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ters from HCM and 4% for the clusters from KMC,
validating the cluster analysis. Also, DA provides a new
refined reclassification. The process can be further op-
timized by applying DA to the new classification. It can
be done as many times as necessary until 0% of classi-
fication error is obtained. The final LDA results shown
on Figs. 4 and 5 are quite similar to those obtained with
PCA, but with linear discriminant functions instead of
principal components. The first discriminant function is
very strongly correlated to intensity (r � 0.9) and has a
discrimination power of 67% (see Fig. 4a). So, the most
discriminating variable is the intensity. The second dis-
criminant function is very well correlated to absolute
height (r � 0.83) and anticorrelated to temperature (r
� �0.72), and has a discrimination power of 19% (see
Fig. 4a). The third is very well correlated to the thick-
ness (r � 0.80) and has a discrimination power of 14%
(see Fig. 5a). The relative height is not a discriminating
variable (no correlation with the discriminant func-
tions). The function values (see Figs. 4b and 5b) show a

good discrimination between these four cirrus classes.
For example, the cirrus class 2 corresponds to a cirrus
group with high values of intensity, temperature (tem-
perature in negative values), and thickness, and low
values of absolute height. The optimization of the clas-
sification with DA after HCM or KMC gives practically
the same cirrus classes.

5. Discussions and conclusions

The principal component analysis indicates that they
are patterns in the large cloud of 92 data points plotted
as a function of five variables (absolute and relative
height, thickness, intensity and temperature of cirrus)
space. Clearly, there is strong correlation between some
variables. The use of the first principal components in
cluster methods rather than the initial data reduced the
influence of the noise in the classification analysis.
HCM and KMC lead to practically the same clusters,
showing the robustness and consistency of these two

FIG. 4. (a) Discrimination circle and (b) scatterplot of the first two discriminate functions for
the 92 cirrus cloud systems detected in 2000. DF1 for (a) and (b) are not exactly the same, but
they are linearly correlated.

FIG. 5. (a) Discrimination circle and (b) scatterplot of the second and third discriminate
functions for the 92 cirrus cloud systems detected in 2000.
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cluster methods. To optimize the cluster analysis, LDA
is applied several times to the HCM and KMC results
until 0% of classification error is obtained. The mean
and standard deviation for all the parameters of each
cirrus class are listed in Table 1, including the optical
depth and the temporal variability, even if they were
not used in the determination of the classification.

The mean value of the parameter associated with the
temporal variability of cirrus is very similar for all the
classes. It is a bit surprising because it should contain
useful information for discriminating cirrus based on
their horizontal structures (linked to temporal variabil-
ity in the scattering ratio). Nonetheless, there are a
number of reasons for this similarity in the temporal
variability for all the cirrus classes. First, the temporal
standard deviation corresponds to deviations from the
mean during the time interval of measurements, several
hours typically, without any information about the fre-
quency components of the temporal variations (which
are somewhat related to spatial variations because the
cirrus are not stationary structures usually). Second, the
temporal standard deviation is calculated from data ob-
tained when cirrus are detected (i.e., signal enhance-
ment above a certain threshold). In the case of broken
clouds, the time intervals without cloud detection are
discarded. As a result, the real variability parameter is
not properly estimated. This probably explains partly
why the mean temporal standard deviation does not
vary much from one cirrus class to another.

The frequencies of occurrence are comparable for
the first three cirrus classes whereas the cirrus clouds
from the last class are rare. This last class (episodic
highly scattering cirrus) is based on two cases only that
were exceptional in terms of intensity (mean backscat-
tering ratio). However, this class is close to the second
and third class regarding the altitude and similar to the
third class in terms of thickness and optical depth. Fur-
ther investigations on a larger data sample will be re-
quired to see whether these cirrus can be considered a
distinct class.

The second class (thick upper troposphere cirrus)
corresponds to cirrus presenting large optical depths.
This cirrus exhibits the largest thickness (3.2 km) and
are located just below the local tropopause. The top
altitude is usually defined by the local tropopause
height. By contrast, the first class (midtroposphere thin
cirrus) corresponds to thin cirrus clouds (1 km) that are
located at the lowest altitudes, on average at 8.6 km.
The corresponding mean temperature inside the cloud
is equal to �41°C. The third class (thin tropopause cir-
rus) corresponds to very similar clouds, except that they
are located at higher altitudes. They seem to be slightly
above the local tropopause on average. The amplitude
of the standard deviation reveals a large dispersion of
the cloud position relative to the tropopause. Those
clouds may be related to cumulonimbus clouds anvils
advected to midlatitudes (Garrett et al. 2004) or to
moist air masses transported isentropically from the
tropical upper troposphere into the lowermost strato-
sphere. A statistical study based on ECMWF analyses
shows that such transport of moist air from tropical
regions into the stratosphere is relatively frequent with
a transit time of several days (Fueglistaler et al. 2004).
A more thorough analysis is required for proving un-
ambiguously that they are located into the stratosphere.

The cirrus classification reflects largely the broad fea-
tures seen in the probability distributions (see Fig. 1).
The first maximum at about 9 km in the mean cirrus
height PDF corresponds clearly to class I (8.6 km),
whereas the second maximum at 11 km is a convolution
of classes II and III that are centered at 9.8 and 11.5 km,
respectively. In the same way, the first large group cen-
tered at about 1 km in the cloud thickness PDF corre-
sponds to classes I and III (0.9 km) while the second
group between 2 and 4 km could correspond to class II.
Last, the maximum at �45°C in the cloud temperature
PDF corresponds to a convolution of the distributions
of classes I and II. The secondary maximum at around
�60°C corresponds to class III.

A previous classification based on Meteosat images

TABLE 1. Characteristics of the four cirrus classes.

Class type
I: Midtroposphere

thin cirrus
II: Thick upper

troposphere cirrus
III: Thin tropopause

cirrus
IV: Episodic highly

scattering cirrus

Occurrence (%) 36 27 35 2
Geometric height (km) 8.6 � 0.9 9.8 � 0.7 11.5 � 0.9 10.6 � 0.3
Thickness (km) 0.9 � 0.6 3.2 � 0.9 0.9 � 0.6 1.0 � 0.8
Intensity of the mean backscattering ratio 8.2 � 4.8 12.9 � 5.3 8.4 � 4.2 72 � 7
Standard deviation of the backscattering ratio 0.7 � 0.3 0.9 � 0.3 0.7 � 0.4 0.9 � 0.1
Relative height (differential potential

temperature in kelvin)
7 � 8 0.5 � 13 �7 � 16 4.2 � 3.5

Mean temperature inside the cloud (°C) �41 � 6 �50 � 6 �58 � 6 �49 � 0.9
Estimated optical depth 0.2 � 0.2 0.8 � 0.4 0.13 � 0.1 1.3 � 1
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(Desbois et al. 1982) reported three classes associated
with thick, thin and very thin cirrus. This classification
is not in contradiction with the present analysis. In ad-
dition, our results provide useful complementary infor-
mation associated with the vertical cloud structure.

It is difficult to conclude from these results whether
the temperature has an effective role in discriminating
among cirrus types because temperature in the tropo-
sphere is highly correlated with altitude. A recent study
of depolarization ratio by Noel et al. (2002) has shown
different cirrus classes based on the shape ratio of the
particles when cirrus are assumed to be hexagonal crys-
tals. Noel et al. inferred four cirrus classes on a com-
parable dataset obtained with a lidar located in the vi-
cinity of Paris, about 500 km northward of OHP. In
their study, one class was associated with low tempera-
ture (mean temperature centered around �58°C) while
the other classes exhibited a similar temperature distri-
bution picking at �45°C. Their results are consistent
with our findings. They also detected on two occasions
thin (1 km) cirrus clouds located at high altitudes (11–
12 km) that were very similar to the cirrus clouds of
class III (thin tropopause cirrus). According to the au-
thors, the cirrus clouds corresponded to crystals with
long hexagonal columns of a shape ratio between 1.1
and 4, whereas the other classes exhibited a wide dis-
tribution of polarization inside the clouds that may in-
dicate the presence of mixed-phased crystals.

Because cirrus clouds are the product of injection
and freezing of water vapor into the dry and cold upper
troposphere, it is expected that local cloud properties
depend on weather processes and systems. A cirrus cli-
matology has been developed from lidar data collected
at midlatitudes in Utah (Sassen and Campbell 2001).
They derived mean morphological parameters of cirrus
clouds that are very similar to those of our study. They
found a strong seasonal cycle that is not observed at
OHP (located in Europe, 44°N latitude), probably be-
cause of the differences in prevailing weather systems.
The authors did not identify cirrus classes. However,
they presented an attempt to relate cirrus detection to
different weather patterns. They identified tree major
situations: zonal jet streamflow, strong amplitude ridge
and cases of split-jet flow. This link between weather
patterns and cirrus is not surprising because weather
patterns determine to a large extent the variations in
temperature, pressure and water vapor content in air
masses where clouds can subsequently form. The cool-
ing rate of air masses where cirrus clouds are observed
is acknowledged to be a critical parameter (Karcher
and Strom 2003), which is not accounted for in our
analysis. Subsequent work could be to search for some
relationship between weather patterns (critical for ver-

tical velocity and hence cooling rate), morphological
parameters, and, possibly, processes of cirrus forma-
tion. Note that, although this classification is represen-
tative of midlatitude cirrus, one can attempt to compare
the results with cirrus studies at tropical sites. The an-
nual cycle at our site appears to be very different from
the one observed at subtropical sites (Cadet et al. 2003).
In addition, only two classes of cirrus were identified
from data obtained at a tropical site (Comstock et al.
2002). Nonetheless, the best way to compare the differ-
ent sets of results would be to analyze tropical and
subtropical cirrus datasets with an approach similar to
the one described here.

It is worth pointing out that this type of height-
resolved cirrus classification should prove useful in
evaluating cloud models and hence help to improve
parameterizations of cirrus in large-scale models be-
cause multiple processes may need to be considered.
Even though the physical mechanisms that are respon-
sible for generating the four phenomenological cloud
classes remain uncertain, the analysis points toward the
need to increase the vertical resolution of global models
in order to better resolve different cloud layers and thus
their radiative impact. Last, the depolarization ratio
could be a very good discriminating parameter for cir-
rus classification because it provides information on the
shape of the cirrus crystals (Noel et al. 2002). It would
be valuable to add the depolarization as a cloud param-
eter in the classification analysis. Depolarization mea-
surements are being planned at the OHP lidar site.
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