
HAL Id: hal-00083561
https://hal.science/hal-00083561v1

Submitted on 23 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vectorization of a statistical segmentation
Mohammed Elhassani, Delphine Rivasseau, Marc Duranton, Stéphanie

Jehan-Besson, David Tschumperlé, Luc Brun, Marinette Revenu

To cite this version:
Mohammed Elhassani, Delphine Rivasseau, Marc Duranton, Stéphanie Jehan-Besson, David
Tschumperlé, et al.. Vectorization of a statistical segmentation. International Congress of Imaging
Science (ICIS’06), 2006, Rochester, United States. pp.321-324. �hal-00083561�

https://hal.science/hal-00083561v1
https://hal.archives-ouvertes.fr

Paper: Vectorization of a statistical segmentation
M. El Hassani, D. Rivasseau; Philips Semiconducteurs, Caen, France.
M. Duranton; Philips Research Eindhoven, Netherlands.
S. Jehan-Besson, D. Tschumperle, L. Brun, M. Revenu; Laboratory GREYC, Caen University, France.

Abstract
We propose an efficient vectorial implementation of a region

merging segmentation algorithm. In this algorithm the merging or-
der is based on edge value, and the merging predicate exploits recent
statistical investigations. A notable acceleration is obtained by ex-
ploiting two forms of parallelism, firstly the Data Level Parallelism
by processing edges of the same weight in parallel, secondlythe In-
struction Level Parallelism. Moreover, the classical UNION-FIND
data structure is improved by using local registers to reduce the ac-
cess time of FIND operations. Finally the implementation could be
easily tuned to extract textures (object analysis) or all edges (image
enhancement).

INTRODUCTION
Researchers have been working on image segmentation for

more than 30 years. Image segmentation is an ill-defined problem,
so the optimal solution could not exist, and until now no standards
were defined for this field. Nevertheless, many applicationscould
benefit widely from a good segmentation algorithm, for example
object oriented compression, pattern recognition, 2D/3D conversion
and many others. The image segmentation algorithms could beclas-
sified into two categories, namely contour-based and region-based
methods. In the first category we find out the significant object
boundaries and extract connected components [1]. The main dif-
ficulty in this category is to find boundaries closed over objects es-
pecially in noisy images. Moreover this approach doesn’t benefit
from statistical properties of the image. Because of these limita-
tions, the second category, i.e. region-based, is more often used.
In these methods, we merge neighbours regions that verify a cer-
tain similarity criterion. Two important points define completely a
region-based algorithm; the first one is the similarity criterion used
to indicate whether two regions should merge or not, the second one
is the order in which the similarity test should be done. There is an
important gap about the way these two points interact. Many simi-
larity criterions have been used in the segmentation literature, In [2]
the most used criterion are reviewed, In [3, 4, 5] some robustcrite-
rion are proposed. These similarity criterions are combined with a
data structure that establishes an order in similarity test. In [6], they
use a tree structure and propose two merging order, ”mergesquare”,
which is claimed as a parallel algorithm, and ”scanline”, which is se-
quential. The main drawback of these orders of merging is that they
don’t depend on the image content, which influence the segmenta-
tion result. The region adjacency graph approach (RAG) avoids this
drawback. In this approach, we can achieve the best local merge,
i.e. every region will merge with the most similar of its neighbours.
In [7, 8], a Valued region adjacency graph is computed and decom-
posed in a set of partial complete graph. The RAGs are also used in
pyramidal structure [9, 10, 11]. But RAGs approaches still don’t ex-
ploit global information of the image. In the implementation point of

view, segmentation algorithms are very computing-intensive. Many
works proposed parallel algorithms of segmentation to solve the im-
plementation issue. The irregular pyramids were particularly de-
signed to fit a massively parallel architecture. We can also cite [12]
in the scope of parallelizing segmentation algorithms. Butall these
works don’t conciliate the exploitation of global information with
the parallelization issue.

In this paper we propose an implementation tending toward this
conciliation. We use the algorithm proposed in [13] which com-
bine an order of merging that depends on the content of the image
with an adaptive threshold for fusion. We propose an original im-
plementation where the main parts of the algorithm are simplified
or vectorized. In the following sections, firstly the algorithm is de-
scribed, then we propose some implementation solutions where the
main steps of the algorithm are vectorized or simplified, andfinally
we propose a method to tune the algorithm in order to extract tex-
tured regions or to extract edges.

THE SEGMENTATION ALGORITHM
In [13], Nock et al proposed a region-based merging. In this

algorithm, they combine a specific order of merge with an original
similarity criterion. As far as notations are concerned, let consider
an imageI . The notationsh andw denotes respectively the horizon-
tal and vertical size of the image,|I | = h∗w is the total size of the
image,a(p) is the pixel colour level at positionp andg denotes the
maximum colour level. In the two following sections we explain the
order of merging and we present the similarity criterion.

ORDER OF MERGING
The order of merging is built based on the edges values as in

[13, 3]. The idea behind this order of merging is to merge firstwhat
is similar before merging what is different.

In our algorithm, an edge corresponds to a couple of pixels
(p, p′) in 4-connectivity. The edge valuesv correspond to the max-
imum of the three differences over the three colour components
{r,g,b} :

v(p, p′) = max
a∈{r,g,b}

(
∣

∣a(p)−a(p′)
∣

∣

)

. (1)

The edges are then sorted in an increasing order of their values and
corresponding pixels are treated in this order for fusion.

THE CRITERION OF MERGING
We use the criterion of merging proposed in [13]. Let’s explain

briefly how this criterion works. Given two neighbours regions s1
ands2, the average of the three colour components within these re-
gions are denoted byµa1, µa2 with a∈ {r,g,b}. The region cardinal
of si is denoted|si |. The criterion for merging the two regions is the

following:

Pr(s1,s2) =

{

truei f ∆µ(s1,s2) ≤ g∗
√

f (s1)+ f (s2)

f alseotherwise
(2)

∆µ(s1,s2) = max
a∈[r,g,b]

(µa1 −µa2).

The adaptive thresholdf (si) takes into account the region size|si |
as follows:

f (si) = min(g, |si |)∗
ln(|si |+1)+ ln(γ)

2∗Q∗ |si |
. γ = 6∗ |I |2.

This threshold is based on a statistical model of the image and ob-
tained using McDiarmid’s inequality, see[13] for more details. Q
is a parameter set by the user that could tune the coarseness of the
segmentation.

IMPLEMENTATION
As shown in Fig.1 the algorithm can be decomposed in three

main steps. The first step corresponds to histogramming where the
histogram of edges values is computed. This histogram is then used
to order edges. In the third step we do the merging following this
order of edges. The parallelism in the three steps is not obvious to
extract. Indeed the three operations are irregular both in data access
from the memory and in computations. In this paper we focus on
the vectorization of computation. In this vectorization weprocess a
vector ofn dataD = [d1,d2...dn] in parallel way. In the following
we detail the vectorization of the main steps of the algorithm, i.e
histogramming, sorting of edges and merging.

HISTOGRAMMING VECTORIZATION
Let us consider thatH denotes the histogram of edge values

that is computed in this step. To computeH, firstly we compute
edges valuesv as detailed in equation (1), secondly we compute the
distributionH of these values.
There is no data dependency in the computation of edges values, so
we can achieve this operation in vectorial way over a vector of edges
E = [(p1, p2)...(p2n−1, p2n)] which result on a vector of valuesV =
[v1...vn]. However, computing the distributionH of the edges values
in vectorial way, is not straightforward. Indeed two edges values
could be equal, and incrementing the histogram’s bin corresponding
to this value in parallel way will give incorrect result. To solve this
data dependency, we propose the following method:
We consider an arrayT of g cells, each cell isn bits width. Eachvi

in V set theith bit of thevth
i cell of T. Then we add the bits of each

cell of T in one instruction. The result inT is used to update the
histogramH. The algorithm is described in details in Algorithm.1.

From the hardware point of view, this vectorization requires
binary adders withn input, which is very simple.
Let us explain how the histogramH is used for the sorting step. We
consider an arrayMv of sizeh∗ (w−1)+ (h−1) ∗w which is the
number of edges in the 4-connectivity in the whole image. This
arrayMv will be used to store the order of edges. We compute the
accumulated histogramHa as detailed in equation (3). ThisHa is
used to partitionMv in g+ 1 parts, theith part is limited between
Ha[i] andHa[i + 1] addresses. In thisith part of Mv we will store
edges with values equal toi.

Algorithm 1 Vectorization of histogramming

for i ∈ [0 : n−1] do
T[i] = 0

end for
for i ∈ [0 : n−1] do

T[vi][i] = 1
end for
for i ∈ [0 : n−1] do

H[vi] = H[vi]+∑ j=n−1
j=0 T[vi][j]

end for

Figure 1. General diagram of image segmentation.

Ha[0] = 0;

Ha[i] = H[i−1]+Ha[i−1]; (3)

SORTING VECTORIZATION
In this step, we want to assign to a vectorE of edges a vector of

addressesA where they will be stored inMv. There is a data depen-
dency in this step; if two edges have the same value, the assignment
of two different addresses to these two edges in parallel wayis not
obvious. To solve this dependency, we use the same idea detailed in
the previous section. Each edgeE[i] with value equal tovi set the
ith bit of thevth

i cell in T. Then we assign toE[i] an addressA[i]as
detailed in Algorithm.2

MERGING VECTORIZATION
The algorithm of merging is described in Algorithm.3. This

algorithm uses the UNION-FIND data structure. For an edge that
corresponds to a couple of pixels(p1, p2), we use the ”FIND” op-
eration to find the couple of segments(s1,s2) containing these two
pixels, then the predicate is evaluated for(s1,s2) as described in
equation(2). If the predicate is true, we make the ”UNION” ofs1
ands2. After the ”UNION” operation, we compute the new segment
properties (|si |,µr i , µgi , µbi

)and update the main memory with these
information. In this paper we focus on the vectorization of the predi-
cate evaluation and the ”UNION” operation for a vectorSof couples
(s1,s2). The FIND operation still be hard to parallelize.

Firstly we propose a simplification for the thresholds com-
putation detailed in equation (2). We used a linearization by di-

Algorithm 2 Vectorization of sorting

for i ∈ [0 : n−1] do
T[i] = 0

end for
for i ∈ [0 : n−1] do

T[vi][i] = 1
end for
for i ∈ [0 : n−1] do

A[i] = Ha[vi]+H[vi]+∑ j=n−1
j=i T[vi][j]

end for
for i ∈ [0 : n−1] do

H[vi] = H[vi]+∑ j=n−1
j=0 T[vi][j]

end for

Algorithm 3 Vectorization of sorting
for all the edges in the sorted listdo

p1 and p2 are the pixels connected by the edge
s1 = FIND(p1)
s2 = FIND(p2)
if (Pr(s1, s2) = True)then

UNION(s1,s2)
end if

end for

chotomy. The linearization provides a Look Up Table. To compute
a threshold valuef corresponding to one region cardinal|si |, we
read the coefficientsα andβ from the LUT, and the computing is
f (si) = α ∗|si |+β . This trick simplifies the computation a lot with-
out any loss of quality.

Let us explain how the vectorization of the merging step is
achieved. We consider a vector of couples of segmentsS which is
the result of the ”FIND” operation applied on a vector of edges E.
We load the vectorSand the data corresponding to each segmentssi
(|si |,µr i , µgi , µbi

) in local registers. Processing the vectorS in par-
allel way is not straightforward because one segment labelsi could
be equal to anothersj , and the result of merging will be incorrect as
described in the example Fig.3. So the level of parallelism depends
highly on the image content.

The vectorization of the merging ofS is done in the following
way: Firstly the elements of the vectorSare classified into two parts,
the first one contains independent couples(si ,si+1) where one la-
bel si figures once only, the second part contains dependent couples
where one labelsi figures in another couple inS. Firstly we process
the first part ofS in parallel way. Secondly we process in sequen-
tial way the second part. We then investigated the optimal width n
of the vectorS that gives the best data level parallelism (DLP) ex-
ploitation. In this investigation, we computed the ratio between the
number of operations in the vectorized of merging, over the number
of operations in the sequential merging described in Algorithm.3. In
Fig.2 we show this ratio for many vector width and for many real
sequences. The acceleration is maximal for a vector length around
25.

In addition to the DLP exploited by processing the first part of
S in parallel, the processing of the second part ofS benefits from
the locality of data. Indeed, If two couples(si ,si+1), (sj ,sj+1) share
one label, they are processed sequentially. The latest one will use
the result of merge of the first one, which still be available in local

Figure 2. ratio between the number of operations of the sequential merging

and the merging when exploiting data level parallelism.

(a) (b)

Figure 3. Merging two couple of segments (S1,S2) and (S1,S3): a.Parallel

merge, after merging, S1 belongs to S2 and S3 which are two different segments,

so the result is incorrect. b.Sequential merge : after the first merge S1 belongs

to S2, after the second merge both S1 and S2 belong to S3, the result is correct

registers, instead of getting it from the main memory as in the simple
sequential merging.

In the other hand when updating segment’s properties some
of the operations are independent and could be parallelized.
Let us consider thats1 and s2 are merged, ands2 becomes the
representative of the two segments. The properties ofs2 should be
updated. The operations used for this updating are :

sum= |s1|+ |s2|.
µr2 = (µr1 ∗ |s1|+ µr2 ∗ |s2|)/sum.
µg2 =

(

µg1 ∗ |s1|+ µg2 ∗ |s2|
)

/sum.
µb2 =

(

µb1 ∗ |s1|+ µb2 ∗ |s2|
)

/sum.

Some of these operations could be executed in parallel way.
The whole computing could be done in three steps, in each stepwe
execute the independent operations as shown below :

1- First step:
o1 = |s1|+ |s2|;o2 = µr1 ∗ |s1|;o3 = µr2 ∗ |s2|;
o4 = µg1 ∗ |s1|;o5 = µg2 ∗ |s2|;
o6 = µb1 ∗ |s1|;o7 = µb2 ∗ |s2|.

2- Second step:
o8 = o2 +o3;o9 = o4 +o5;o10 = o6 +o7

3- Third step:
o11 = o8

o1
;o12 = o9

o1
;o13 = o10

o1

Therefore, if we have enough resources (6 Multiplier, 3 adder,
3 divider) we can do the updating in 3 operations instead of 12
operations.

TUNING THE SEGMENTATION
The image segmentation requirements are different depending

on the application. In Image enhancement, the main properties to
find are edges in order to process pixels belonging to homogeneous
regions in the same manner, while in many image analysis applica-
tions like pattern recognition, texture extraction is fundamental. We
propose a very simple method to switch the segmentation froma
texture-oriented to an edge-oriented segmentation. When using the
predicate of equation (2), we find out textures. But if we replace this
predicate by the one described in equation (4), we will find out all
the edges higher than a fixed threshold.

P(s1,s2) =

{

true i f ∆v(p1, p2) ≤ tr

f alse otherwise
(4)

∆v(p1, p2) = max
a∈[r,g,b]

(a1−a2).

Where(p1, p2) is the edge being processed,s1, s2 are segments con-
taining p1 and p2, tr is a threshold fixed experimentally to 10 for
g = 255. In Fig.4 we show the result of segmentation of one image
for the two predicate. In Fig.4(a) we show the result of a textured-
oriented segmentation with the first predicate of one textured image.
Notice that the textures are well segmented. In Fig.4(b) we show the
result of an edge-oriented segmentation by using the secondpredi-
cate. We can see all the edges in white colour.

CONCLUSION
Actually we are investigating to build a memory system where

data is accessed by content instead of address. With such system
we will implement the ”FIND” operation efficiently. The solutions
proposed in this paper were tested in c language and we are looking
for a real hardware implementation.

(a) (b)

(c)

Figure 4. Tuning segmentation: a.The original image. b.An edge-oriented

segmentation. c.A texture-oriented segmentation

References
[1] G. Iannizzotto and L. Vita, “Fast and accurate edge-based segmentation

with no contour smoothing in 2-d real images,”IEEE Transactions on
Image Processing, vol. 9, Issue 7, pp. 1232 – 1237, 2000.

[2] S.Bres, J.Jolion, and F.Lebourgeois, ,” inTraitement et analyse des
images numérique. Herms - Lavoisier, 2003, pp. 103–106.

[3] P.F.Felzenszwalb and D.P.Huttenlocher, “Efficient graph-based image
segmentation,”International Journal of Computer Vision, vol. 59, Is-
sue 2, pp. 167–181, 2004.

[4] S.Lallich, F.Muhlenbach, and JM.Jolion, “A test to control a region
growing process within hierarchical graph, 36,”Pattern Recognition,
pp. 2201–2211, 2003.

[5] C.Fiorio and R.Nock, “Image segmentation using a generic, fast and
non-parametric approach tools with artificial intelligence,” Tenth IEEE
International Conference, pp. 450–458, 1998.

[6] C.Fiorio and J.Gustedt, “Two linear time union-find strategies for im-
age processing,”Theoretical Computer Science, vol. 154, pp. 165–181,
1996.

[7] Jianibo Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
22, Issue 8, pp. 888 – 905, 2000.

[8] E. Sharon, A. Brandt, and R. Basri, “Fast multiscale image segmenta-
tion,” IEEE Conference on Computer Vision and Pattern Recognition,
vol. 1, pp. 70 – 77, 2000.

[9] J.M.Jolion, “Stochastic pyramid revisited,”Pattern Recognition Let-
ters, 24, vol. 24, pp. 1035–1042, 2003.

[10] Y.Haximusa, A.Ion, W.G.Kropatsch, and L.Brun, “Hierarchical image
partitioning using combinatorial maps,” .

[11] W.G.Kropatsch and S.Ben Yacoub, “A revision of pyramidsegmen-
tation,” Proceedings of the 13th International Conference on Pattern
Recognition, vol. 2, pp. 477–481, 1996.

[12] B.Gallile, M.Renaudin, P.-Y.Coulon, and F.Mamalet, “Algorithme-
architecture parallèle asynchrone pour la segmentation d’image par
ligne de partage des eaux,”CORESA, 2001.

[13] R. Nock and F. Nielsen, “Statistical region merging,”IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 24, 2004.

Author Biography
Mohammed El Hassani was born in Fkih Ben Salah, Morocco, in 1979.

He received the engineering degree in Electronics from the ENSERG school,
Grenoble, France, in 2002 and the Graduate degree in Microelectronics from
the INPG in 2003. He is a Ph.D. candidate at PHILIPS Caen in collabora-

tion with Caen University. His research interests are in video processing and
parallel architecture.

