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Abstract

We prove that the non-commutative Gross-Neveu model on the two-dimensional
Moyal plane is renormalizable to all orders. Despite a remaining UV/IR mixing,
renormalizability can be achieved. However, in the massive case, this forces us to
introduce an additional counterterm of the form v y%y'1). The massless case is
renormalizable without such an addition.

1 Introduction

From the rebirth of non-commutative quantum field theories [I, 2l B], people were faced to
a major difficulty. A new (with respect to the usual commutative theories) kind of diver-
gences appeared in non-commutative field theory [4, B]. This UV/IR mixing incited people
to declare such theories non-renormalizable. Nevertheless H. Grosse and R. Wulkenhhaar
found recently the way to overcome such a problem by modifying the propagator. Such a
modification will be now called “vulcanization”. They proved the perturbative renormal-
izability, to all orders, of the non-commutative ®* theory on the four-dimensional Moyal
space [0, [7]. Their proof is written in the matrix basis. This is a basis for the Schwartz
class functions where the Moyal product becomes a simple matrix product [8,9]. A Moyal
based interaction has a non-local oscillating kernel. The main advantage of the matrix
basis is that the interaction is then of the type Tr ®*. This form is much easier to use
to get useful bounds. The main drawback is the very complicated propagator (see [10]
for a complete study of the Gross-Neveu propagator in the matrix basis). This is one
of the reasons which lead us to recover in a simplified manner the renormalizability of
the non-commutative ®* theory in z-space [I1]. The direct space has several advantages.
First of all, the propagator may be computed exactly (and used). It has a Mehler-like
form in the ®*, LSZ and Gross-Neveu theories [I0, [[T], 12]. The z-space allows to com-
pare the behaviour of commutative and non-commutative theories. It seems to allow
a simpler handling of symmetries like parity of integrals. This point is very useful for
the renormalization of the Gross-Neveu model. We also plan to extend renormalizability
proofs into the non-perturbative domain thanks to constructive techniques developed in
x-space. Finally, when we will be able to do Physics with such non-commutative models,
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we would like to have some experience with our physical space. Of course z-space has also
drawbacks. It forces to deal with non absolutely convergent integrals. We have to take
care of oscillations. Until now it is much more difficult to get the exact topological power
counting of the known non-commutative field theories in direct space than in the matrix
basis. The non-commutative parametric representation would certainly provide an other
way to get the full power counting [I3].

Apart from the @}, the modified Bosonic LSZ model [TT] and supersymmetric theories,
we now know several renormalizable non-commutative field theories. Nevertheless they
either are super-renormalizable (®3 [9]) or (and) studied at a special point in the parameter
space where they are solvable (@3, ®3 [T4, T3], the LSZ models |16, 17, [18]). Although only
logarithmically divergent for parity reasons, the non-commutative Gross-Neveu model is
a just renormalizable quantum field theory as ®. One of its main interesting features is
that it can be interpreted as a non-local Fermionic field theory in a constant magnetic
background. Then apart from strengthening the “vulcanization” procedure to get renor-
malizable non-commutative field theories, the Gross-Neveu model may also be useful for
the study of the quantum Hall effect. It is also a good first candidate for a constructive
study [19] of a non-commutative field theory as Fermionic models are usually easier to
construct. Moreover its commutative counterpart being asymptotically free and exhibit-
ing dynamical mass generation [20, 21l 22|, a study of the physics of this model would be
interesting.

In this paper, we prove the renormalizability of the non-commutative Gross-Neveu
model to all orders. For only technical reasons, we restrict ourselves to the orientable
case. An interesting feature of the model is a kind of remaining UV/IR mixing. Some
(logarithmically) divergent graphs entering the four-point function are not renormalizable
by a “local” counterterm®. Nevertheless these “critical” components only appear as sub-
divergences of two-point graphs. It turns out that the renormalization of the two-point
function make the (four-point) critical graphs finite. In the massive case, we have to add
to the Lagrangian a counterterm of the form dmv1y°y'1). The massless model is also
renormalizable without such a counterterm.

In section B, we present the model and fix the notations. We state our main result.
Section Bl is devoted to the main technical difficulty of the proof. Here is explained how
to exploit properly the vertex oscillations in order to get the power counting. In section
B we compute this power counting with a multiscale analysis. In section [, we prove that
all the divergent subgraphs can be renormalized by counterterms of the form of the initial
Lagrangian. Finally, appendices follow about technical details and additional properties.

Acknowledgement I am very grateful to J. Magnen for constant discussions and crit-
ical comments. In particular he found how to use properly the vertex oscillations. I also
thank V. Rivasseau and R. Gurau for enlightening discussions at various stages of this
work and J.-C. Wallet for careful reading.

PBy “local” we mean “of the form of the initial vertex”.



2 Model and notations

The non-commutative Gross-Neveu model (GN%) consists in a Fermionic quartically in-

teracting field theory on the (two-dimensionnal) Moyal plane R%. The algebra Ag of

“functions on R%” may be defined as S(R?) (it may also be extended to an algebra of

tempered distributions, see [23, 24, 8, 25| for rigorous descriptions) endowed with the
associative non-commutative Moyal product:

(f %0 9) (z) =(27) 2 / / dyd f(z -+ L0k)g(z + y)e (2.1)

The skew-symmetric matrix © is

0= (g _09) (2.2)

where 0 is a real parameter of dimension length?. The action of the non-commutative
Gross-Neveu model is

Sl, ¢) = / dx (¢ (= + QF +m +16m 070~ 'y) o + Vo (¥,9) + Vao(¥, 9)) (z)  (2.3)

where 7 = 207!z and V = V, + V,, is the interaction part given later. The term
in dm will be treated perturbatively as a counterterm. It appears from the two-loop
order (see section BZ2). Throughout this paper we use the Euclidean metric and the
Feynman convention ¢ = v*a,. The matrices 4° and ' constitute a two-dimensionnal
representation of the Clifford algebra {y#*,7”} = —2§*”. Note that with such a convention
the v*'s are skew-Hermitian: y#1 = —yH.

Propagator The propagator of the theory is given by the following lemma:

Lemma 2.1 (Propagator 1 [10]) The propagator of the Gross-Neveu model is

Clz,y) = (—1d + QF + m)_1 (z,y) (2.4)
= / dt C(t;z,y),

—tm? = ~
C(t, z, y) _ & € _ 6_% coth(2Qt) (z—y)2 +1QzAy (25)
07 sinh(2Qt)

X {2@ coth(2Qt)(# — Y)+QF -9 — m} e~ 2Oy
with Q = Z gnd x Ny =220y,
We also have e 21® "7 = cosh(2Qt)15 — ¢4 sinh(2Q4)70 1.

The propagator may also be considered as diagonal in some color space indices if we want
to study N copies of spin % fermions.



Interactions Concerning the interaction part V, first remind that Vf1, fo, f3, f1 € Ae,

4
/dl" (fix fox fox fa) () =— dlet 5 /Hdﬂ?jfj(il?j) 0(w1 =y + 23 —xa)e” ", (2.6)
j=1

4
=Y ()"t z; Ay (2.7)
i<j=1

This product is non-local and only cyclically invariant. Then, in contrast to the commut-
ative Gross-Neveu theory for which there is only one possible (local) interaction, the GN§
model exhibits, at least, six different ones: the orientable interactions

Vv, = %Z [ Gurtar i) @) (282)
+% ij / d (g % o % P % ) () (2.8b)
+% Xb: / dx (e * 1y * Pa x ) (2), (2.8¢)

where 9’s alternate with ¢’s and the non-orientable interactions

Voo = %ij [ e o wain) ) (2.99)
+% Xb: / dz (g % Py x Uy % ) () (2.9b)
+% Xb: / dx (Yo * o * Yy x ) (7). (2.9¢)

All these interactions have the same z-kernel thanks to (26). The indices a,b are spin
indices taking value in {0, 1} (or {f,]}). They may be additionnally color indices between
1 and N. For only technical reasons, we will restrict ourselves to orientable interactions.
Such a qualification will become clear in the next section. This paper is mainly devoted
to the proof of

Theorem 2.2 (BPHZ Theorem for GNZ) The quantum field theory defined by the
action [Z3) with V =V, is renormalizable to all orders of perturbation theory.

Multi-scale analysis In the following we use a multi-scale analysis [T9]. The first step
consists in slicing the propagator as

M—2(i—-1)
o / LAt ) ifix1
Cr=) G, Ci=""" (2.10)
=0

/ dt it ) if i — 0.
1



We have an associated decomposition of any amplitude of the theory as

Ag =) Al (2.11)
w

where p = {i;} runs over all possible attributions of a positive integer i; for each line [
in G. This index represents the “scale” of the line [. The usual ultraviolet divergences
of field theory becomes, in the multi-scale framework, the divergence of the sum over
attributions p of indices. To work with well-defined quantities, we put an ultraviolet cut-
off p: i €{0,...,p}. In each slice, the following lemma gives a bound on the propagator.

Lemma 2.3 For allt € N, there exists K, k € Ry such that
|C (2, y)| S MPe M ==, (2.12)
This bound also holds in the case m = 0.

To any assignment p and scale ¢ are associated the standard connected components

t k€ {1,...,k(i)} of the subgraph G made of all lines with scales j > i. These
tree components are partially ordered according to their inclusion relations and the (ab-
stract) tree describing these inclusion relations is called the Gallavotti-Nicolo tree [26]; its
nodes are the G%’s and its root is the complete graph G.

More precisely for an arbitrary subgraph g one defines:

(1) = infi(n), c,w)=  sup lu). (2.13)

leg l external line of g

The subgraph g is a G, for a given p if and only if i,(p) > i > e,(p). As is well known in
the commutative field theory case, the key to optimize the bound over spatial integrations
is to choose the real tree 7 compatible with the abstract Gallavotti-Nicolo tree, which
means that the restriction 7' of 7 to any G}, must still span G}. This is always possible
(by a simple induction from leaves to root).

Let us define i, (u) as the index of the line of highest scale hooked to the vertex v.
Then any (amputed) N-point function S has an “effective” expansion:

Sn(z1,...,xN;p) = Z ZH)"VA (T1,...,zN;p). (2.14)

N-point graphs G u(G) veG

Strictly speaking, we prove here that all the orders of the effective series are finite as the
cut-off goes to infinity and that there exists a constant K € R such that:

p—r00

N
lim/ [[ dzifi(e:) |A(2r, . ans p)| < K9 (2.15)
RV 5

where the f;, i € [1, N] are test functions.



2.1 Orientation and graph variables

The delta function in (ZH) implies that the vertex is parallelogram shaped. To simplify
the graphs, we will nevertheless draw it either as a lozenge (Fig. [l) or as a square.

We associate a sign, + ou —, to each of the four positions at a vertex. This sign changes
from a position to its neighbouring one and reflects the signs entering the delta function.
For example, the delta function associated to the vertex of figure [l has to be thought to
be §(z1 — 2o+ x3—1x4) and not 6(—x1 + 9 —x3+14). The vertex being cyclically invariant,
we can freely choose the sign of one among the four positions. The three other signs are
then fixed. Let us call orientable a line joining a point 4 to a point —. On the contrary
if it joins two + (or —), we call it clashing. By definition, a graph is orientable if all its
lines are orientable. We will draw orientable lines with an arrow from its — to its + end.
The — positions are then defined as outcoming a vertex and the + ones as incoming.

Let a graph G. We first choose a (optimal) spanning rooted tree 7. The x3
complete orientation of the graph, which corresponds to the choice of the
signs at each vertex, is fixed by the orientation of the tree. For the root 24 2
vertex, we choose an arbitrary position to which we give a + sign. If the
graph is not a vacuum graph, it is convenient to choose an exernal field
for this reference position. We orient then all the lines of the tree and all Figure 1:
the remaining half-loop lines or “loop fields”, following the cyclicity of the A vertex
vertices. This means that starting from an arbitrary reference orientation
at the root and inductively climbing into the tree, at each vertex we follow the cyclic
order to alternate incoming and outcoming lines as in Figure 2al (where the vertices are
pictured as points). Let us remark that with such a procedure, a tree is always orientable
(and oriented). The loop lines may now be orientable or not.

Definition 2.1 (Sets of lines). We define

X1

T = {tree lines},

L = {loop lines} = Lo U L, UL_ with
Ly = A{loop lines (+,—) or (—,+)},

L, = {loop lines (+,+)},

L_ = {loop lines (—,—)}.

It is convenient to equip each graph with a total ordering among the vertex variables.
We start from the root and turn around the tree in the trigonometrical sense. We number
all the vertex positions in the order they are met. See Figure B Then it is possible to
order the lines and external positions.

Definition 2.2 (Order relations). Let ¢ < j and p < ¢. For all lines | = (i,7), ' =
(p,q) € T UL, for all external position x, we define

I < I if i<j<p<yq

I < k 1<j<k

I c p<i<j<yq

E c 1 1 < k < j: “l contracts above x”
I x U 1<p<j<gq.



2 (x2)
(a) Orientation of a tree (b) Total ordering

Figure 2: Orientability and ordering

We extend these definitions to the sets of lines defined in X1l For example, we write
Lo x L, instead of {(¢,0") € Lo x L, £ x {'}. We also define the following set. Let S;
and S two sets of lines,

SixSy ={([,I') € S; x So, Ix 1" or I xl'}. (2.16)

For example, in Figure B, ¢, < /4, Iy C {1, I3 = x;. Note also that with such sign
conventions, orientable lines always join an even (—) to an odd (4) numbered position.
It is now convenient to define new variables. These are relative to the lines of the graph
whereas the variables used until now were vertex variables. Each orientable line [ joins an
outcoming position x;_ to an incoming one x;,. We define u; = x;, —x;_ as the difference
between the incoming and the outcoming position. For the clashing lines, w; is also the
difference between its two ends but the sign is arbitrary and chosen in definition Z3 The
u; are the short variables. The long ones are defined as the sum of the two ends of the
lines. We write them v; = z;, + z;_ for tree lines and wy = 2y, + z,_ for the loops.

Definition 2.3 (Short and long variables). Let ¢ < j. For all line [ = (i,5) € T UL,

(—1)"1s; + (—1)7+1s; Vie TU Lo,

w =1 s — s VieL,, (2.17)
sj — Si vie L_.

v =8; + 5 VieT (2.18)

w; =8; + 8 Vie L. (2.19)

Complex quantum field theory on Moyal spaces bears naturally two different orient-
ations. The first one is defined from the cyclic sign of the vertices. This is the one we

7



defined with the tree. The second one is related to the complex feature of the theory: a
field only contracts to its complex conjugate. For the Gross-Neveu model, a line can also
be oriented from its ¢ end to its ¢ end. Then we are lead to define two different signs for
a same line.

Definition 2.4 (Signs of a line). Let i < j. For all line [ = (¢,5) € T U L,

e(l) = 41 Vie TUL if i even
= +1 L
= —1 T ULy if 7 odd
= -1 Ly

el) = +1 it Y(x)v(ry)

= =1 it (x)d(ay).

Corollary 2.4 (Propagator 2) From the definitions [Z23 and the propagator cor-
responding to a line | may be written as

C’l(ul,vl) = / dtl C’(tl;ul,vl) (220)
0
—tym? = -
C(tl w Ul) _ E e " _ 6_% coth(2Qtl)u12—z%e(l)s(l)ul/\vl (221)
Y 07 sinh(2Q4))

x Li62 coth(20)e (e ()gh, + Qe (D) +m } e 707

with Q = % and where v; will be replaced by wy if the propagator corresponds to a loop
line.

2.2 Position routing

We give here a rule to solve in an optimal way the vertex delta functions. In particular
this will allow us to factorize the global delta function (see (Z@)) for each four-point
subgraph. There is no canonical way to do it but we can reject the arbitrariness of the
process into the choice of a tree. Then it is convenient to introduce a branch system. To
each tree line | we associate a branch b(l) containing the vertices above . Let us define
above. At each vertex v, there exists a unique tree line going down towards the root. We
denote it by l,. A contrario, to each tree line [ corresponds a unique vertex v such that
[, = 1. We also define P, as the unique set of tree lines joining v to the root. Then the
branch b(l) is the set of vertices defined by

b(l)={veGlleP}. (2.22)

On Figure PH, the branch b(ly) = {2,3,4}. We can now replace the set of vertex delta
functions by a new set associated to the branches. Let a graph G with n vertices. A
tree is made of n — 1 lines which give raise to n — 1 branches. At each vertex v,
we replace 6,(31,(—1)""z,,) by A1, (X vren) S (=1)"1z,,). To complete this new
system of delta functions, we add to these n — 1 first ones the “root” delta given by
da(D e Z?Zl(—l)”lx,,g). We have now a new equivalent set of n delta functions.



Let us precise the arguments of the branch delta functions in terms of short and long
variables. To this aim, we define the set b(l) of lines contracting inside a given branch

b(l):
b(l) ={l' = (z,,2) € Glv, " € b(l)} . (2.23)

There also exists lines | = (x,, x,/) with v € b(l) and ' ¢ b(l). Moreover b(l) may contain
external positions. We denote by X(1) the set made of the external positions in the
branch b(l) and of the ends (in b(l)) of lines joining b(l) to an other branch. From the
definition of short and long variables, for fixed v, we have

ZZ 1)*e dooowt Y we— Y wet Yy nle)r. (2.24)

v'eb(ly) © le(TULp)Nb(l) LeLynb(ly) LeL_nb(ly) ecX(ly)

where n(e) = 1 if the position ¢ is incoming and —1 if not. For example, the delta function
associated to the branch b(l3) in the Figure D is

0y — 2z + x5 + T4 + wpy + Uy + wyg — Wy,). (2.25)
In the same manner, the delta function of the complete branch is
0(z1 — o + T3 + T4 + Uy + upy + Uy + Uy + w — Wy,)- (2.26)

Let us emphasize the particular case of dg

(5G< Z ul+2wg ng+ Z n(e ) (2.27)

leTULy lely lel ec&(G)

where £(G) is the set of external points in G. Remark that for an orientable graph G
(L4 = L_ =10), the root delta function ([2Z1) only contains the external points and the
sum of all the wu; variables in G.

Remark. In the ®* model [TT], these delta functions were used to solve all the long tree
variables v;, [ € T. This is the optimal choice. Integrations over the long variables v; (or
w;) cost M*1. Moreover the tree being chosen optimal, the v; are the most “expensive”
long variables. From ([Z2Z4)), we have

(5b(l)< Z uy + Z Wy — Z wy + Z ) (2.28)

U'e(TUL)Nb(L) LeLnb(l) LeL_nb(l) ecX(l

There exists ¢; € X(I) such that z,, = 1(n(e;))u; + v;) (see definition EZF). This external
point is an end of the line [. Thus d;) gives

v = —n(e)u; — 277(6;)( Z up + Z wy — Z ’LUg + Z 77(6)336>.

I'e(TULo)Nb(L) teL,Nb(l) teL_nb(l ecX()\{er}

We have then used n — 1 delta functions (one per tree line). The last one is kept. It is
the equivalent of the global momentum conservation in usual field theories.



Here we won’t solve the branch delta functions. Instead we express them as oscillating
integrals. In the orientable case, we have

d2
5()( dowrt Y ) :/ (2:);' P (e Wt e Me)ze) (2.29)

’eb(l) ecX(l)

After some manipulations on these oscillations (see section B2), we will get decreasing
functions for the v;’s and p;’s. For each tree line [, we will integrate over v; and p;, the
final result being bounded by O(1).

3 From oscillations to decreasing functions

In the preceding section, we decided to express all the vertex delta functions as oscillating
integrals. Then we have 2 independant variables per internal propagator. One is integ-
rated over with the exponential decrease of the propagator (see Z4]). The other uses the
propagator and vertices oscillations. Then it is useful to precise the oscillations in terms
of the u’s and v (w)’s variables. This is done in section Bl We will see how to use the
oscillations to get enough decreasing functions in section

3.1 The rosette factor

We have seen in the preceding section that the oscillations are expressed in terms of the
vertex variables whereas the propagators are naturally expressed with short and long line
variables. It is not very convenient to deal with two equivalent sets of variables. We are
then going to express the vertex oscillations with the line variables.

In the following we call rosette factor the set of all the vertex oscillations plus the
root delta function. We also distinguish tree lines [ and loop lines ¢¢. The first step to a
complete rewriting of the vertex oscillations is a “tree reduction”. It consists in expressing
all tree variables in termes of u and v variables. Let a graph G of order n. It has 2(n — 1)
tree positions. The remaining 2n+ 2 loop and external variables are subsequently written
s;. By using the cyclic symmetry of the vertices and the delta functions, we get (see [IT]
for a proof):

Lemma 3.1 (Tree reduction) The rosette factor after the fisrt Filk move is [27, [T1):

0(s1— S2 4+ — Sopso + Zul) exp 1p (3.1)
leT

where p = Z (=1t A 55+ 3 Za(l)vl A uy + Z up Ay

1<j=0 leT T<T

+ Z w A (—1)"s; + Z —1)" s Ay,

{leT, i<} {leT, i1}

°In case a line belongs to a set containing both tree and loop lines, we write it [.
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The next step is to express all the loop variables with the corresponding v and w variables.
In [I1], we computed the result for planar regular graph (g = 0 and B = 1, see appendix
[Al for graphologic definitions and also [6, 28]). Here we need the general cased. We

now denote the (true) external variables by s, k € [1,N] = [1, N]JNN. We write
CLo= L, UL

Lemma 3.2 The rosette factor of a general graph is:

N
Z DA sy + Y+ Y we— Y wp) expup (3:2)
=1

lETULy Lely lel_

with ¢ = g + ox + Yu + ew,

N
pr= Y (~1FHHs A
k<l=1
N
pex = > (s Au+ > w A (=1 sy,
k=1 ((TULo)=3k) (TULo) >3k
U(CLoDjk)

e(l)

S
>
£
_l’_
|
m
S
g
<
>
<
<

Yu =

N | —

|
DO
(]

1 1
+ 5 Z €(€)wg N Upr + e(ﬁ’)wg/ N up + 5 Z €(€)’wg N Upr — 5(5’)104/ N Uy
LoXLo Lo KCﬁO
1
5 Z wg N upr + €(€,)w4/ N Uy
C() ><JC£0
1
+ 5 Up N\ 6(5’)1@/ + up A 5(€)w4
(L4 NXL)
U(£+ [><[:+)U(£_ [><[:_)
+ Z 6(6/)11}@/ N up + Z u; N\ 8(6/)11)4/
((TULo)CLo) (CLocCLo)
U((TULp)=CLo) U((TULo)=<CLo)
+ Z upy N\ up + Z up N\ Upr
(TUL0)=(TULo) (TULo)CCLo
1 1
+§ Z Ug//\Ug+§ Z Ug/\Ug/,
(E() l><£()) (EO X CEO)
U([~+ D<L+)U(£7 [><£,) U(£+ NL:?)U([,f ><1£+)

dStrictly speaking, we only need, in this paper, the orientable case. Nevertheless the non-orientable
one will follow.
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ow = Z e(O)we A (=1)% s, + Z 1) s, Ae(@)w,

(CLo=gr) CLo>jk
U(LoDjk)
1
+ 5 E €(€,)w4/ VAN 6(6)21]@ + E e(ﬁ’)wg/ N €(€)wg,
(E() [><[:o) (CQDEEQ)
U(G[:o D(G[:o)U([:o NCE()) U(CC()-<G£0)

where [(€) belongs to the set on the left-hand-side.

Proof. As explained in section 22 the root ¢ function is given by

]k+13]k + Z u; + Z Wy — Z w£ (33)

k=1 1ET UL o tel_

=
] =
T

We express all the loop field variables with the v and w variables. Then the quadratic
term in the external variables is

N

Z (_1)jk+jl+18jk A Sjy - (34)

k<l=1

Let an external variable s;,. The linear terms with respect to s;, are

Pijr, = Z(_l)iﬂ Jks]k + Z Sjk (—1)"* s

1<Jk 1>k
+ > (=1 Awt Y w A (=1)%s;, (3.5)
T=Jk T =k

where the s;’s are all loop variables. Let a loop line £ = (i, ) < j.
Its contribution to ¢, is:

(1) s + (1) s;] A (=1)ks;,. (3.6)

The result in terms of the w, and w, variables depends on the orientability of the loop
line. From definitions 223 and 241 we have

(1) sy 4+ (1) s;] A (—1)ksy, (3.7)
= Uy N\ (—1)jk8jk if ¢ € Ly
= —e(Dwy A (—1)*s;, iflel UL,

In the same way, if a loop line contracts above an external variable s;,, its contribution
to j, 1s:

(D)™ + (=1 s5] A (= 1), (38)
= —e(Dwy A (=1)*s;, if ¢ € L
= up A (—1)*s;, ifee L, UL .
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Finally the linear term for s;, is

0 = Z up A (—1)%s;, + Z —1)*s;, Ay (3.9)

((TULo)=Jk) (TULo)>jk

U(CLoDjk)

+ Z 1)%s;, A e(f)w, + Z Owe A (—1)*s5, .
(CLo=4k) CLo>jk
U(LoDjk)

Let us now consider a loop line ¢ = (p,q). Its contribution to the rosette factor
decomposes into a “loop-loop” term and a “tree-loop” term. We will detail the first one,
the second one being obtained with the same method. The loop-loop term is:

ou =Y (=1)"s; VPsp+ D (=1 1) s + (=17 s, A sy
1<p p<i
i7#q

+Y (D) A (<) s+ Y (= 1), A (— 1),
1<q q<t
i#p

= Z D) si A[(=1)Psp + (—=1)%s,] + Z[(_l)psp + (=1)Tsg) A (=1)" s

1<p q<t

+ (D) A (1) s, (—1)9s,) + (1P s, A s (3.10)
p<i<q

An other loop line ¢ = (i, j) has now six possibilities. It may follow or precede ¢, contain
or be contained in ¢, cross it by the left or the right. Moreover the lines ¢ and ¢ may be
orientable or not. I will not exhibit all these different contributions but will explain our
method thanks to two examples.

Let (¢,¢') € L2 such that ¢ x (. The line ¢’ crosses ¢ by the left as defined in 22
The corresponding term is:

(D)™ si AL(=1)Psp + (=1)75q] + (=1)" 5 A[(=1)P s + (—1)7sq]
(1) si A (—ue) + (=1)1s; A (—e()wy)

1

3 (wg Aug + (0 wp A up+ e(0)wg A ug + e(£)wy A e(l)wy) . (3.11)

In the same way, if £ € Lo, ¢’ € L, such that ¢ C ¢/, we have:

(—1)i+132~ N [(—1)”3,, + (—1)‘13q] + [(_1)p8p + (_1)q8q] A (—1)j+lsj
= (=15 A (—ug) + (—ue) A (1) = ug Aug (3.12)

13



We do the same for the other contributions and get:

1
vu =3 XL: e(O)we A uy (3.13)
+ Z e(ﬁ’)wy N Up + Z Up N\ €(€/)wg/
(LoCLo) (C0<C£0)U(C£0CC£0)
U(Lo>CLo)
1 / 1 /
+ = €(£)wg N Upr + €(£ )wg/ N up + 5 Z 5(6)11)4 N Upr — 8(6 )wg/ N Uy

LoxLo LoxCLo

1
+ 5 Z —€(£)wg N Upr + 5(6’)11]@ N Uy

E() ><IUE()
1
+ 5 Z Up N\ 6(6,)11]@ + up A\ €(£)wg
(LML)
ULy XL)U(LoXL)
1
+ 5 Z 6(6/)11)4/ N €(£)wg + Z 5(6,)11]@ VAN 8(6)11)4
([:() [><C())U(C£() D(U[:o) ([:()DCC())
U(Lo NCEO) U(EEQ%ECQ)
+ZU£//\Ug+ Z Up N\ Upr
Lo=Lo LocCLo
1 1
+§ Z Ug//\Ug+§ Z Up N\ Upr
(E() l><£()) (EO X CEO)
UL XLp)U(LoXL) U(L4 XL )U(L_XL)

The “tree-loop” term is:

P = Z up N ( 1) Sp + Z Sp N uy (314)

{V'eT,l'<p} {VeT,l'>p}
+ Z up A (—1)7s, + Z )9Sq A uy
{U'eT,l'<q} {VeT,l'>q}
= Z ur A [(=1)Psp + (=1)"sq] + Z [(=1)"sp + (=1)%sq] Ay
{V'eT,l'<p} {VeT,l'>q}

+ ) w A1) s+ (< 1) s,

{l'eT,p<l'<q}

= Z ’ng/\Ul/ Z Ul//\’ng

Lo=T (Lo=<T)
(CE()D'T)
+ Z e(0)we A uy + Z up A e(0)w. O
(LoDT) CLo-T
U(CLo=T)

14



Corollary 3.3 The rosette factor of an orientable graph is

6(2(_1)jk+lsjk + Z ul) exp 1p (3.15)

N
=1 leTuL

k

with ¢ = ¢ + px + Yu + Pw,
N
pp= Y (~1ts A,
k<l=1
N
px = Z (—1)Jk+18jk A\ Uu; + Z Uuy A\ (—1)]k+18jk,
k=1 (TUL)=<jx (TUL)=jk

1 1
YU = 527;8(1)’01/\Ul+§ . €(€)wg/\Ug

1
+ 5 Z €(£)wg N Upr + 5(5’)11]@ N up + Z 6(6/)11)4/ AN
LKL (TuL)CL
1
+ Z Ul//\ul+§ZUg//\Ug,
(TuL)=(TUL) LxL

ow = Z (=1)*s;, Ae(f)w, + % Z e({Ywe A e(£)wy.

LDjk LxL

Proof. 1t is enough to set £, = £_ = () in the general expression of lemma B2 O

Corollary 3.4 Let a planar regular graph (9 = 0 and B = 1). Its rosette factor is
[y

N
5(2(—1)k+1xk + Z u;) expup (3.16)

k=1 leTuL

avec ¢ = g+ Yx + Yu,
N

Yp = Z (—1)i+j+1xi VAN Zj,

N
px= > (D)o A+ > w A (1),
k=1 (TUL)<k (TUL)-k
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QOU:%Z (l)vl/\ul+ 26 wg/\ug
+ Z wg/ N up + Z up N uy.

(TuL)cL (TuL)=<(TUL)

Proof. As the graph has only one broken face, there is always an even number of fields
between two external variables. In this case, j and k have the same parity. Thus by
switching s;, into zj, the quadratic term in the external variables is:

N

> (=) e Ay, (3.17)

i<j=1

Moreover the constraints ¢ = 0 and B = 1 imply that the graph is orientable (£ = Ly).
Indeed, let us consider a clashing loop line ¢ joining s; to s;;9,. These two positions have
same parity. Between the two ends of ¢ are an odd number of positions. Then either ¢
contracts above an external variable and B > 2, or an other loop line crosses it and g > 1.
Finally by skipping from the result of lemma B2 the terms concerning crossing lines, lines
contracting above external variables and non-orientable lines, we get (BIGI). U

3.2 The masslets

Contrary to the ®* case, the Gross-Neveu propagator C* ([ZZI]) does not contain any
term of the form exp —M~*w? (we call them masslets) [LT]. This term is replaced by an
oscillation of the type u A w. Whereas masslets are not in the propagator, they appear
after integration over the u variables:

/ AP e M A g 2 = MR (3.18)

Let G a connected graph. Its amplitude is

N
Ag = /H dz; fi(x;)dq H duydvy §y0)C(ug, vr) H dugdwg Co(ug, we)e™. (3.19)

i=1 leT lel

The points z;, i € [1, N] are the external positions. For the delta functions, we use
the notations of section The total vertex oscillation ¢ is given by the lemma B2
It is convenient to split the propagator into two parts. We define, for all line | € G,
Ci(w) by Ci(u,v) = Cy(w) e13<Weurv - Opnee more we replace v by w for loop lines.
This splitting allows to gather the propagators oscillations with the vertex ones. The
total oscillation ¢q is simply deduced from ¢ by replacing the terms %e(l)vl A u; by
s(1+e()Q)e(l)v; A . The graph amplitude becomes

N
Ag = / H dz; fi(z;)og H dudv; (5b(l)C_'l(ul) H dugdwy Cy(ug)e™ . (3.20)

=1 leT lel
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In contrast with the ®* theory [IT], we won’t solve the branch delta functions. Instead
we keep dg but express the n — 1 other delta functions as oscillating integrals:

PDU i (S 1Y e n(E)2e)
5b(l>< > urt+ Y ) /(%) P (Cren uHEeexm Me)e) (3.21)

1eb(l) ecX(l)

As already explained in section 22, there exists e¢; € X'(1) such that z., = %(n(el)ul + ).
Remark that n(e;) = e(I). Then

Z up + Z ul +e(l Z up + Z n(e)xe. (3.22)

l’eb(l) ecX(l) l'eb(l ecX()\{e}

In the following we will use an additionnal notation. For all line [ € T, let us define v; as
the unique vertex such that [ = [, where [, is defined in section v, is the vertex just
above [ in the tree. We write g, for the total oscillation where we add the new oscillations
resulting from the delta functions®. The graph amplitude is now

AG = /H dzx; fz JIZ (SG H duldvldpl Cl ul H dudeg Cg(U@) w“ (323)
leT el

Remark that We have omitted the factors 27 as we have done until now and will go on doing
with the m vertex factors. To get the masslets, we could, for example, integrate over
the variables ;. This exact computation would be the equivalent of equation ([BI8). We
should integrate 2n — N/2 coupled Gaussian functions. We would get Gaussian functions
in some variables W, which would be linear combinations of wy. Apart from the difficulty
of this computation, we should then prove that the obtained decreasing functions are
independant. For general graphs, it is somewhat difficult. Then instead of computing an
exact result, we get round the difficulty by exploiting the oscillations before integrating
over the u’s, v’s and w’s. The rest of this section is devoted to the proof of

Lemma 3.5 Let G an orientable graph with n vertices and p a scale attribution. For all
Q € [0,1), there exists K € R such that the amplitude [Z23), amputed, integrated over
test functions, with the u attribution, is bounded uniformly in n by

| A% | <K”/dx1 g1(z1 +{a}) (5(;1_[de gi(z; Hdal M*'=(ay) (3.24)

leG
1

, i (wr—e(Da 1 1
HduldVldpl Mite—M2t (w—c(Dar)? H S Ve A S Ve
— Ly Ly

leT
1
ip  —M?(up+{a})?
[ ducawinrice ¢ H e 2”W2
tec
with ()Y, =3(1 4 €(l Dv + Zé Jwe — 5Py — Z Drs (3.25)
ool l’ePnl
€(€)Wg :%(1 + 6( wg + Z ’LUg/ + Z wg/ (3.26)
o>¢ e

and p = 30p, g;, i € [1,N] and Z are test functions such that ||g;]| < supgey<o ||f2-(p)]|.

¢Note that the oscillation is invariant under p; — —p; for all [ € G independently.
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Remind that we restrict our analysis to orientable graphs. We introduce a Schwartz
class function ¢ € S(R?) which, conveniently scaled, is going to mimic the decrease
of propagators on a scale M~%. We want to get a decreasing function in v; without
integrating over u;. We use

1 :/anl coth(20))€ (a; coth'/2(2Q4,)). (3.27)

The coupling between this 1 and the rest of the graph is made by an ad hoc change of
variables. We have two constraints on such a change. On one hand we want independant
decreasing functions. On the other hand, for all line I, the decresase should be of scalef
Mt ~ coth'/?(2Q1)).

We are going to make masslets line by line. Let us write x; for the root position. Let
a tree line [. We perform the change of variables

{ U —Uyg 8([)&[, (328)
1 =1 +1(1)e(l)a.

It is not difficult to check that ¢, — ¢ +a AV +a A (U + A + X;) where V) is given
by B2H) and U;, A; and X, are respectively linear combinations of u’s, a’s and external
variables x’s. Please note that such a change of variables let the global root delta function
unchanged. Writing only the terms in the amplitude Ag depending on a;, we get

-2 —1)
Agi = / day / dt; coth(200,)& (a; cothV/2(280)) (3.29)

{z(z coth(20,) (ee) (1) (4, — (1)) + Qe=) (1) (7 — e(D)ity) — m}

o= % o) u—=War’ £ (1 4 p(1)e(l)ay) e VHUHAEXD

Q

= /daldtl COth(2§tl)£(CLl COth1/2(2§tl)) e 2 COth@ﬁtl)(ul_e(l)al)Qfl (1’1 + 7](1)6([)&1)

{zﬁ coth(20;) () (1) (s, — e(Dy) + Q(ee) (1) (Fly — (1)) — m} N Ui+Art X))

L coth'?(20t)) + pu
—— | eV (3.30)
o \ coth'/2(2Qt;) + 2V,

n=

We now integrate by parts over a;. The boundary terms vanish. We give here the order
of magnitude of the result. The details of the computation are given in appendix Bl

) 2
_ 1 _
Aqy ™~ /da dt; coth(2Qt;)e' @M | | - - =(a; coth™?(20t
o o (2622) 120 (coth1/2(2S2tl) + ZVl#) (@ (2638)

e 9 COth@ﬁtl)(“l_a(l)‘”)Qe“”/\(U”“L‘lJer)gl (z1 +n(e(l)a) O( coth3/2(2§t)) . (3.31)

fIn some cases, a line may have a masslet of a scale greater than its own index. These cases are
restricted to a single class of graphs we will detail in section B4l
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Then we get the following bound

1

—iy —kM%1 (uj—e(l)a;)?
Al <KMite =< gl(xl—l—n(l)e(l)al)H1+M_2ilvl%“.

I

(3.32)

Let us now explain how to get the corresponding decreasing functions for the p; vari-
ables. We begin by performing the change of variables v; — V) for all tree line [. The
determinant of the corresponding Jacobian matrix is 2=~ [T, (1 + €(1)Q2). It is non-
vanishing for all 2 € [0,1). The total oscillation becomes

P =vp +ox +ow + Y eOVA(w—ea)+ ) p-( Y w+ Y nle)r)
T

T 'eLnb(l) ecX(D\{er}
+) (1+ (M) e(OVi-p+ WRIP + PRyP
—

1 1 , ,
+35 ;(1 + e(OQe(Owe Aug+ 5 [;:g(@wg A g + (0 )wy A ug + ;ﬁg(e Ywe A g

1
+ Z uy N u; + 5 Z (7 A Uy + ARgA + AR4U + AR5X (333)

(TUL)=(TUL) LKL

where we used the notations of corollary and R;, i € [1,5] are skew-symmetric
matrices. By using

Mt 1 Q 0
+( fE(l) BUF (1e)2) e (OVip (3.34)
M—u + um

) Vi

and integrating by parts over V;, we get a decreasing function in p; which behaves like
(1+ M%p?)_l. We now turn to the loop lines. We also want to get decreasing functions
for them. Let a loop line ¢ = (x4, 2;) € L of G with z, < 2. We make the following
change of variables®

up —ug — (0)ay,
Wy — Wy + Gy, (335)
1 —x1 +n(1)e(l)ay.

The changes concerning u, and w, correspond to “move” x,. It is easy to check that (B30)
implies i — o + ar AWp+ap A (Up + Ag + Xy + Py) where W, is given by (B2Z6) and
Us, Ay, X, and P, are respectively linear combinations of u’s, a’s, external variables x’s
and p’s. We can perform the same type of integration by parts than we used for the tree
variables v; and obtain bounds similar to (B32). This proves lemma B3l

Independance of the decreasing functions Remind that the above procedure had
two main goals. First of all we wanted to get decreasing functions of scale i; for all vari-
ables v; (w;). This should be clear from the preceding section. The second aim was the

8This change of variables is slightly different from the one we used for the tree lines (B28). This leads
to an easier proof of the independance of the decreasing functions.
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independance of those decreasing functions. Our procedure is designed to make transpar-
ent such an independance.

In section B, definition gave a way to partially order the lines. This ordering was
useful to express the vertex oscillations in terms of the u’s, v’s and w’s. But we can also
define a total ordering among the lines of a graph. We say that [ < {” if the first end (in
the trigonometric sense around the tree) of [ is met before the first end of I’. Then for all
line I € G, V, (W,) depends only on vp’s and wy’s with I’ < 1. Let V (W) and V' (W) the
vectors containing respectively the variables e(1)v; (e(£)w,) and e(1)V, (e(€)Wy). Let M1
the Jacobian matrix of the change of variables (ev ew) — (eV eW): (V! W') = M(V W).
The ordering introduced just above allows to prove that M is triangular. Its determinant
is

det M = 27N TT(1 + e(1)9). (3.36)
leG

Clearly V2 € [0,1), det M # 0 and M is invertible. The decreasing functions in V; (W)
are consequently independant.

Remark. With the non-orientable interactions (9), we were not able to find a procedure
making the independance of the masslets transparent.

3.3 Non-planarity

In the preceeding section, we proved that the vertex and propagators oscillations of the
Gross-Neveu model allow to obtain decreasing functions similar to the masslets of the
(non-commutative) ®* theory. Here we improve these decreases if the graph is non-
planar. For this the lemma is not sufficient. Before taking the module of the graph
amplitude, we would like to further exploit the oscillations.

Let 7! the Jacobian matrix of the change of variables ew — eW: W’ = TW. Let
us define the skew-symmetric matrix Qw with oy = WQwW where ¢y is given by
corollary B3l After the change of variables W — W' =TW, oy = WQy W' with
Q= T 'QwT'. T being invertible, the rank of Q;; equals Qy’s. Remark that Qy is
the intersection matrix of the graph. We have the following result rank Qw = 2¢ |13}, B].
Let us consider a non-planar graph. The rank of Qy being different from zero, there
exists a loop line ¢ such that we have an oscillation W, A Wy with W, = >, Qi p Wi +
U+ A+ X + P. Thanks to lemmaB3, we know that W, decreases on a scale M* with the
function (1+ M~%¢W2)~1. By an integration by parts similar to (B30), we get a decrease
in W, on a scale M. This decrease will be used to integrate over some W, contained
in W,. The result of such an integration will be of order M2 instead of M?¥. The gain
is then M 22

3.4 Broken faces

We remind that a broken face is a face to which belongs external points (see appendix
[A] for examples). When we do not consider vacuum graphs, there is always at least
one broken face. By definition, it is called the external face. The broken faces produce
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oscillations of the type z Aw (see lemmaB.2). In the planar case with B > 2 broken faces,
we are going to use such oscillations to get better decreases than the ones of the lemma
B3O Let Qxw the skew-symmetric matrix representing the oscillations between the x’s
and w’s variables. After the change of variables W — W’  this matrix becomes

Qs = QxwT™, (3.37)

Then rank )y, = rank Qxw. Let I a set of consecutive natural numbers indexing some
external variables z, kK € I. These ones oscillate with the variables wy, ¢ € B; where By
is the set of lines contracting above those variables. Let us now check that the variables
xk, k € I oscillate only with W,, ¢ € B;. To this aim, let us assume that two sets X and
Y of external variables oscillate with two other different sets A and B of loop lines:

Qxw = (’3 g) , T= (({; lo)) (3.38)

ACTY 0 )

Qw = QxwT ™' = ( 0 BD- (3.39)

In the planar case, W, is only function of wy with ¢/ D ¢. T (and T~') are then not only
(lower) triangular but also bloc diagonal. The oscillations between the external variables
x;, and the variables W, are

X QxwT "W, =Y _n(k)z, ACLOW,, £ € By) (3.40)

kel

where CL means “linear combination”. After the masslets and non-planar cases, it should
be clear that this new oscillation allows to get a decreasing function of scale N/~ minees; %
in the external variables. If these points are “true” external ones (of scale —1, integrated
with test functions), we will use it to improve the power counting. Usually external
points are integrated over test functions (the result is of order 1) so that the gain is here
M—2 minig.

4 Power counting

In this section, we use the previous decreases by adapting them to the multi-scale case.
By lemma B we know that it is possible to get |£| independant decreasing functions
equivalent to the masslets of the ®* theory plus n — 1 masslets for the tree lines coupled
to n — 1 strong decreases. These last two types of decreasing functions are equivalent to
the branch delta functions. The method we use to get the power counting now depends
on the topology of the considered graph®.

We only consider graphs with at least two external legs. The vacuum graphs are con-
sidered in appendix [ We use the Gallavotti-Nicolo tree. We start from its leaves and go
down towards the root which means from the scale of the ultraviolet cut-off to the scale 0.
Let Gi an orientable connected component. For all lines, we first get all the masslets by

D The main result is lemma Bl in particular in regard to the power counting of the critical function
N =4, B = 2 which manages the main technical point in providing renormalizabiblity.
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the method expounded in section B2 If G% is planar regular (g = 0, B = 1), we directly
use lemma B3 If G4 is non-planar (g > 1), we use the W AW oscillations. Thanks to the
procedure explained in section B3, we get an additionnal decrease in some W), ¢ € L} at
worst of scale M ~¢. We do the same in any non-planar “primitive” connected components
(i.e. not containing sub non-planar components). The corresponding improvements are
independant.

If a node of the Gallavotti-Nicolo tree is planar but has more than one broken face
(B > 2), we consider its number of external legs’. If N(G%) > 6, we directly use lemma
BH When N(G:) = 4, the number of broken faces is 1 or 2. Let us focus on the B = 2
case. At scale i, one or several lines contract above two external points ' and y’. In
contrast with commutative field theory, the power counting of this connected component
depends on the scales down to 0. Let & the unique path in the Gallavotti-Nicolo tree
linking G% to G. If there exists a scale 49 < i and a connected component G5 on &2
such that N(G5) = 2 then there exists lines of scales between i and iy joining 2’ to y/.
Let us call I the set of such lines and 4,,_; the scale of the first node after G& on &. If
card I = 1 then G is logarithmically divergent. If card I > 2 then G% will be convergent
as M~2(=im-1)_ Finally if there does not exist such a G5 then G} will be convergent as
M—Q(i—im_l).

Let us look at the figure Bl which is simpler than the general situation but exhibits all
its important features. We define I as the insertion made of the lines e, e; and of the
graph G;. Note that I may be empty and G; non-planar. The different scales entering
I are iy < iy,...,%m_1 (< i, =1i). The corresponding connected component at scale ig is
written G?f,. We also write £; for the set of loop lines in the insertion I.

€1 €2

(a) Typical situation (b) Insertion I

Figure 3: Connected component (potentially) critical

We first get all the scaled decreasing functions for all the tree variables v; and p; except
the lowest tree line ¢t in I. Then, down to scale i, we proceed for the loop masslets as we

iTt has been noticed in [29] that orientable graphs can’t have N = 2 and B = 2. A simple argument
on the Filk rosette [T, 27] proves it equally.
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have done for lemma, The total oscillation may be written

, 1
Vo =pr+ox+ > VI (w—e(D)a) + 5(1 + () De(t)vr A wy (4.1)
T\{1}
+ ) (L+ e e(MVirpi+ Y e(OWi A (u — e(€)ar) + W' R P + PRyP + PR3U
T\{1} c,

1
+5 > (1 + e(OQ)e(Owe Aug + 5 e(O)wy A up + (0 )wp A ug
Lr

+ Y Winu+ Y e(Cwe Aug+ Y Wi ARz + WiQuwx X

(Lru{th)cLl (Lru{th)cLr kcLi

1
+WiQwWr + Z up N\ up + 5 Z up Nup + ARyA + ARsU + ARg X
(TUﬁ)%(TUﬁ) LixLr

where we wrote Wy (Wj) for a linear combination of W, £ € L£;(L:). Let us pick one
W, £ € Li. We use the oscillation Wi A ( D cropyyce WD ke n(k)zy) to get a decreasing
function s implementing | Do ciofn Wt Dopce n(k)aze| < M.

If there are external points overflown by the line ¢, there exists & such that z, & z C /.
Then for all line in £;U{t}, we perform the change of variables (B228) and (B33) but with
z in place of z1. These modifications let the function s independant the a;, [ € £; U {t}.
This allows to get for all line I € £; U {t} a masslet of index ;.

If there are no external point apart from x and y in G}9 (see figure ), the function
s only depends on Z(Clu{t})cﬂ u; and GZO, is a two-point graph. Let us write ¢y for the
lowest line in I, 7, = 9. Note that it is necessarily a loop line. For all line ¢ € £; \ {/(},
we perform

up —up — e(0)ay,

Wy — Wy + ay,

gy —ugy + (0)ay,
wg, —we — €(lp)e(€)ay.

(4.2)

This let u;+uy, (and s) fixed. Then for all line ¢ € £\ {{y}, we get a decreasing function
in Wy —e(0)e(lo)Wy, of index ip. All these functions are independant. For ¢, we perform

Ugy —Ugy — (o) ag,,
Wy, —>ng + Qg s (43)
up —ug + (o) ag, .

We get a decreasing function allowing to integrate over W, at the cost of M > M.
Finally for the tree line ¢, we use the usual change of variables (B228)). This introduces a;
in 5. The masslet we get for V; is then of order M*. Fortunately the corresponding strong
decrease for p; is of order M~*. We recover the fact that the long tree line variables do
not cost anything.

Let us call critical a four-point connected component with N =4,9 =0, B = 2 and the
insertion I reduced to a single line. We are now ready to prove the following lemma
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Lemma 4.1 (Power counting) Let G an orientable connected graph. For all Q) € [0, 1),
there exists K € R such that its amputed amplitude A7, integrated over test functions (see

(ZZ3)) is bounded by
Al <K T M) (4.4)

ik
(N—4 if (N=20rN>6)andg=0,

if N=4,9g=0and B=1,
with w(G4) = if Gb is critical, (4.5)
N if N=4, g =0, B=2 and G., non-critical,
(N+4 ifg=>1

Remark. This bound is not optimal but sufficient to prove the perturbative renormaliz-
ability of the theory. After the study of the propagator in the matrix basis [10], we could
get the true power counting in particular the genus dependance. Concerning the broken
faces, the bound () is almost optimal. For the four-point function, it is. But for six (or
more)-point functions, we did not try to improve our bound. Nevertheless remark that
for such functions, similar situations to the four-point one may happen. The “external”
points in additionnal broken faces may be linked by only one lower line. In this situation,
the broken faces do not improve the power counting even for six (or more)-point functions.
This is one of the differences between the Gross-Neveu model and the ®*’s one.

Proof. Lemma B3 allows to bound the amplitude of a connected orientable graph G by

N
|AL] <K™ / dry gi(x1 + {a})dc | [ dai gi(:) | [ daw M*E(ay) (4.6)
=2 leG
- ! 1 1
HduldVldpl Mil€_M2” (UL—E(Z)CLL)2 H 2 5
o u=01+M QlVleLM?lpw
1

H dUgdeM"lMile_MZie (ug+{a})? H 1

1+ M—2ie?
el p=0 + W&H

where K € R and g¢;, ¢ € [1, N] and = are Schwartz-class functions. The s function
corresponding to the root delta function is given by (see section Z2)

5g< Z n(i)x; + Z ul). (4.7)

i€€(G) leTuL

We use it to integrate over one of the external positions. The other ones are integrated
with the g;’s functions. The bound (Bf) on the absolute value of the amplitude becomes

1
|AG] <K™ / 1 da M= () | duedWehaie hriee= M oot el T
leG leL p=0
1

H du;dV,dp, Mie=M*t (w—e(hay)? H

leT n=0

1

, 4.8
1+M_27'ZW£27“ ( )

1 1
L+ M=20V2 1+ M2}
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The integrations over the a, variables cost O(1). For all line [ in the graph, integration
over vy is of order O(M~%1). The integration over v; (resp. w;) is of order O(M?*). But
for tree lines, this is compensated by the integration over p; which gives O(M~2%). Then
the loops only cost O(1) whereas the tree lines earn O(M~%1). We have the following
bound

|AL] <K™ H M H M2

leG leT
gKln H Mil-‘rl H M—Q(iri—l). (49)
leG leT

We may now distribute the power counting among the connected components [19] :

[ -TIM-T I ¥~ II [[ @

leG leG i=0 leG (i,k)eN?/ (4,k)EN? 1eGE
ZGG”
HM—z(qul H H M2 H H M2 (4.11)
leT 1T (i,k)eN?/ (4,k)EN? [T}
leGY,

Then, changing K’ into K, the amplitude of a connected orientable graph is bounded by

AL <K™D ] M2+(G) (4.12)
(i,k)eN?
where w(GL) =N(GL) — (4.13)

which proves the first part of lemma E1l

If a connected component G% is non-planar, there exists ¢, € G% such that the
integration over W, gives M~%¢ < M~ instead of M?** (see section B). The gain
with respect to [EI3) is at least M ~%. The superficial degree of convergence becomes
w(Gi) = N(Gi) +4

Finally let a connected component Gi with four external legs and two broken faces.
With the notations previously defined, if GZO/ has more than two external points, we use
the function s to integrate over one of these external positions. This brings M ~% instead
of O(1). Let us write & for the path in the Gallavotti-Nicolo tree between G% and G.
The factor M~2 improves the superficial degree of convergence of all the nodes in &2
with N = 4, B = 2. It becomes w(G%) = N(GL). If G} is a two-point graph, we use
s to integrate over the w variable of the lowest line in /. This brings M~? instead of
M=%, The gain with respect to (EI3) is then M ~2(—%) But the integration over W,
costs M?* instead of M?#. The total gain is then only M ~2(—%)  This additionnal factor
allows to improve the power counting of all the four-point components with B = 2 in &
between Gi and the scale i;. Their power counting increase from N — 4 to N. But note
that between 4; (the scale of the lowest tree line in I) and ig, only loop lines may appear
in the subgraphs. Then the number of external points may only strictly decrease in &
from scale i; to scale 1. GZ,O, being a two-point graph, there may be only one divergent
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connected component in & between i; and ig. It is a four-point graph with B = 2 at
scale 71 (the lowest scale in I above ig). Moreover this happens only if there is only one
loop line of scale ig. This component is critical (by definition) and we can’t improve its
power counting which remains N — 4. This proves lemma ET1 O

5 Renormalization

Thanks to the power counting proved in lemma EJl we know that the only divergent
subgraphs are the planar two- and four-point ones. More precisely the only divergent
two-point graphs have one broken face. The divergent four-point ones have either one
broken face or are critical which means they have N = 4,9 = 0,B = 2 and the two
“external” points belonging to the second broken face are linked by one (and only one)
line of lower scale. We are going to prove that the divergent parts of those graphs are of
the form of the initial Lagrangian.

5.1 The four-point function
5.1.1 B=1

Let a planar four-point subgraph with one broken face needing renormalization. It is
then a node of the Gallavotti-Nicolo tree. There exists (i, k) € N? such that N(G%) =
4,9(G%) = 0,B(G%) = 1. The four external points of this amputed graph are written
z;, j € [1,4]. The amplitude associated to the connected component Gj is

Ay (o)) = [ TL o 02} (1) % (5.1)

1 dwdvidp, Cj (w)) T duedro Cif (ue)

leT; teLl

where e is the biggest external index of the subgraph G% and 1,1, are fields of indices
lower or equal to e < . We will perform a first order Taylor expansion which will allow
to decouple the external variables z; from the internal ones u and p and identify the
divergent part of the amplitude. We introduce a parameter s in three different places.
First of all, we expand the delta function d¢; as

dci (A + stl) X =0(A) + /1 dsil- V(A + sil) (5.2)

s=

where A =21 — x5 + 23 — 24 and Y = Zul.

leGi

For orientable graphs, the fields 1) are associated to odd positions and the 1’s to even
ones. Moreover if the graph is planar regular, corollary B4 gives the exact value of the root
delta function, in particular the alternating signs. This corollary also gives the external
oscillation ¢g. The remaining oscillation ¢, is now expanded. It is given by corollary B2l
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and by the branch delta functions oscillations. With (hopefully) self-explaining notations,
it may be written

Yo(s=1)=pp+ XQxyU + XQxpP + UQuU + PQpP + UQuwW + PQpwW. (5.3)
Remark that Qxyw = Qw = 0 for planar regular graphs. We write
eXpZ(XQXUU+XQXPP+UQUU+PQPP) (54)

1
=1+ / ds (XQxvU + XQxpP + UQuU + PQpP)esXQxuUtXQxp P)UQuU+PQpP,
0

Finally we also expand the internal propagators. For all line [ € G,

. Q[ de™™ g et =
Ci(u,s =1) =~ /0 mﬁwe—%mhmmﬁ (12 coth (2t )e()e (1), (5.5)
l

+ sQe(l)e(1)fly + sm) (cosh(2§tl)]12 — 58 sinh(2§tl)'y@_l'y)

202 [ dtye
_ 2 / e 6_—coth(2Qtl u? COth(QQtl) (De (b,
o tanh(20%)

/ / dt e_tlm ——coth(2!~2tl)ul2
sinh 2Qtl

X {(Qe( )e() iy + m)( cosh(2Q))15 — si12 sinh(QQtl)'y@_l'y)
— 12 sinh(20t;) (:Q coth (2Qt)e (1) (D)eh, + sQe(l)e () + sm)v@_lv}.

Let TA be the counterterm associated to the connected component G%. It corresponds to
the zeroth order terms of the three preceding expansions :

TAl, = / [T o ela) )5 206 (5.6)

/ H duldvldplC (ug, s =0) H d’ngd’ng (ug, s =0)e upg (s=0)

leTl éeU

where pp = 327 (=1)"+1z; A z;. Then the counterterm is of the form

1<j=1
TAZ:; = / dz (Ve * e * the * e (2) (5.7)
/ H dudvdp; C}(uy, s H dugdw, C)* (ug, s = 0)e W (s=0)
IET;i teci

To prove that TA looks like the initial vertex, it remains to show that its spinorial structure
is one of those of equation (F]). Apart from the oscillations and the exponential decreases
of the propagators, the counterterm TA involves

2n—N/2
P = H1/Ll = H (V°u) +7"My) = H P, (5.8)
leG leG =1

27



Each of the 22"~"/2 terms P; in P consist in choosing for each line I € G either 7’u) or
y'u}. BEach P; has n? u® and n} u'. Note that, apart from P, the counterterm TA is
invariant under: VI € G, u) — —u) and w} — —w}. Then the only non vanishing P; have
even nY. With a similar argument we prove that n} is also even. Each term in TA then
consists in even numbers of v° and . For the four-point function, the Taylor expansion
(&3) is possible because the number of internal lines is even (it is 2(n — 1)). We now

define the notions of chain and cycle.

Definition 5.1 (Chain and cycle). We say that two fields are in the same chain
e if they both belong to a same scalar product at a vertexy,
e if they are linked by a propagator.

A cycle is a closed chain.

The external fields are linked by chains. The other (internal) fields belong to cycles. The
7% and ~! matrices are distributed among chains and cycles. Each cycle corresponds, up
to a sign, to a term Tr ((7°)?(y')?). It does not vanish only if p and ¢ are even. Knowing
that the total number of 7° is even, that the total number of ! is even and that each cycle
contains even numbers of 4° and ~!, the chains of the graph share an even number of v°
and an even number of 4!. There are two chains in the four-point function graphs. There
are then four possibilities to distribute the gamma matrices among these two chains. Each
may contain an even or an odd number of v° or 1.

Depending on the number and the type of the vertices in these two chains, they may
link either a 9 to a ¥ or two fields of the same kind. We are faced to twelve different
spinorial structures:

o |00 ()| x| (1)

=

(V)| =010 x1d,  (5.99)

/

=

U [ OGO rw [0 ()| 6 = v x " w v xa"0, (5.9D)

ex [(0)F () s | (007 ()T 6 =t vay b (5,90

LG R O I R G e M D S e e e
(5.9d)

JFor example, the first two fields in the interaction ZXal) belong to a same scalar product.
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In the same way, we can meet

+1) % 1) % 1) % 1), (5.10a)

1) x Y0 % b x ), (5.10b)

£ %y hx U * e, (5.10c)

£ % 0y K x40y, (5.10d)

0 % e % Yo * Yalapllea, (5.11a)

i * e % Uy % VaY oy Vou (5.11b)

£1ba % e * Vb * VaVap Yo (5.11c)

g * e x Py * Va (V°71) ,, (V°71) - (5.11d)

To prove that the divergence of the four-point function is of the form of the original
vertices (28, it is convenient to rewrite them in a different way.

Non-commutative Fierz identities A basis for Mp(C) is given by a representa-
tion of the Clifford algebra {v* +*} = —DJ§" of dimension D. In dimension 2, B =
{T9=1,T' =409 T2 = 4! T3 = 499} is a basis for M,(C). Then let M € M,(C),

1
2

3
M= > nap Te(MTATP, (5.12)

A,B=0
with n =diag(—1,1,1,1).

We now use such a decomposition to rewrite the interactions of the model under a different
form. For example, let us consider interaction (2.8D)). If we define M,, = 1, x 1, and use

(BI2), we have

_ 1 _
o tha =~ 3 > sty * T, Th. (5.13)
A,B

This allows to write

_ _ _ _ 1 _ _
[vuriuminin= [devsisin = =3 Y nan [0xT b0 (510
A,B
In the same way, for interaction (2.8d), we use the decomposition

_ 1 _
My =ty = =5 > naptho * Uy Loy T, (5.15)
A,B
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and write
Bax Vs x Pax s =— 2 S tam [ Gx D45 TBy
5
a,b A,B
:__%E:/Q%ﬂulﬂ¢*¢*r3¢ (5.16)
AB

with ¢35 = diag(—1,1,1,—1). We do the same for the three other interactions. The
six possible interactions are given in table® BTl As a conclusion, the three orientable
interactions (228)) may be written as linear combinations of

t/¢*nw*¢*nw, (5.17a)

/i*ﬁw*@*%¢mﬂ (5.17D)

‘/w*ffw*w*W¢w (5.17¢)
whereas the non-orientable ones () may be written in function of

‘/w*ﬂi*i*l¢, (5.18a)

/10*7“15*15*%¢ and (5.18b)

‘/w*w¢w*w*¢¢w. (5.18¢)

In equations (BI7D) and (EI8D), the sum over g is implicit.

kRemind that we restrict our proof to the orientable case.
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1€

Interactions of the non-commutative Gross-Neveu model

Orientable

Non-orientable

. Z/dx (Vo * o >ty * ) ()
a,b

1 _ _
- _52/9343@0@%*%0*?%
A,B

o Z/dx (V% o * thy * ) ()
a,b

1Z:/QAB%Z}*FA@Z’”(@MFB%Z}

l\D

o Y [ (urvindir ) @)
a,b

=——Z/923w*FA¢*¢*FB¢
A,B

DO | =T

° Z/d$ (z@a*%*l/)b*wa) (v)
a,b

1 _ —
- _QZ/QABWF%*@/}*F%
A,B

° Z/d$ (z@a*&a*wb*%) (v)
ab

[\D}—‘

_Z/QAB¢*FA¢*¢*FBw
AB

/d$ (V% Uy * Yo * ) ()

}_x

—Z/gisz*FA@/}*@D*FBw

[\D

g' = diag(—2,0,0,0), ¢* = n = diag(—

1,1,1,1), ¢* = diag(—1,1,1, 1)

VA€ [L4], T e B={I"=1,T" =" T? =4, T% =7}

Table 1: The interactions and their different formulations




We now show that for all T'C € B, ¢y x D€« ) x TCY, ¢ x T x1p x« T and 1), * 1. %
Uy % PTG TS, may be expressed in function of the orientable interactions of table BTl
with the help of a symmetry of the model.

u/¢*IC&*¢*IC&:i/dg*wa*@b*migFg (5.19)
1 _ _
:—§§:mw¢*rw*¢*TﬁﬁT@¢
A,B
s if 79 =1
TP with g = diag(—1,1,1 — 1) if I¢ = 404!
pepape - J9pp NI g = gL L LT =0 00 )
gpp I with g = diag(—1,—1,1,1) if ['“ =«
gpp TP with g = diag(—1,1,—-1,1) if T¢ = 4*
Then we have
_ _ 1 _ _
(/w*ch*w*FC¢:>—§§:%w¢*FA¢*¢*FB¢ (5.21)
A,B
diag(—1,1,1,1) ifI'¢ =1
diag(1,1,1 —1) if [¢ = 404!
with g = 4 Hee(L L 1=1) i .7 (5.22)
dlag(l,—l 1, 1) if 9 =40
diag(1,1,—1,1) if Y =L

If 'Y = 1 or 7!, the interaction (I5:2:I]) may be written in function of the interactions
(&Td). On the contrary, if ¢ = 4% or 4! independently, it is impossible. Fortunately
there exists a symmetry implying that the counterterms associated to interaction (EZI])
for I'® = 4% and ! are equal. Each term P; in the polynomial P (E8) consists indeed to
choose, for each line in the graph, either 4° or v'. To each of these terms is canonically
associated an other term P; = P;, j # i for which we have done exactly the inverse choice.
Then to get P, we consider P; and change 7° into 7!, u) into u} and vice-versa. Each
counterterm, associated to a P;, is made of a product of gamma matrices and of integrals
over the variables u;, p;, v; and w;. The rotation

Vi€ G, u) =y (5.23)
up — —uf
wf (o) —wf (o)
wy (vp) = = w} (=v))
shows that the integrals in P; equals the ones in P; (the total number of u} is even). Let us
have a look at the products of gamma matrices. Let N € N and Vj € [0,2N +1], n; € N.

N
P =TIO0™ ()

=0
N no; no;41 1—(—1)"2¢ 1—(—1)"2i+1

:H(—l)[ 221]+[QT+] ('yo) ( 2) : (zyl> ( % . (524)
=0
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Each product of 4° (resp. ~') has been reduced thanks to (7°)° = (4!)*> = —1. The
product P, equals, up to a sign, an alternating product P; of 7% and ~4!. In the same way,

N
P =TI 6™ (0"

=0
N no; no;41 1—(—1)"2¢ 1—(—1)"2i+1

:H(—l)[ 221]+[ 22+ ] (")/1) ( 2) : (P)/O> ( % . (525)
=0

Let us remark that the signs in front of P} and Pj‘ are the same. Let n§ and nf the total
number of 7° (resp. 4') in P?. This product P2 may be

Lo A%ty nf =i

—1)P1 ifnd=nd=2
Pl = - 01 ?ng_ni_ ' (5.26)
(=1)P7%y" if g =ni =2p+1
2. 910910, nf =i
(—1)r1 ifni=ni=2p
P = Pala0 2_ i_ (5.27)
(=1)Pya" i g =ni =2p+1
3. 9%ty =ni+ 1.
—1)P40 if pd = 2
P = ( )71 LT (5.28)
(=1)Pyt ifnd=2p+1

4910yt g = nf+ 1

(—=1)Pyt ifnd =2p
P = 5.29
{(—1)1?70 if nd = 2p+ 1 (5.29)

Let us apply those results to the chains and cycles of a graph. First of all, remark that
the numbers of 7° and ! in the alternating producthave the same parity as the total
numbers in P,. Each cycle contains an even number of 7% and 7! and then corresponds to
situations of the type (B26) or (E2Z7). These are exactly symmetric under the exchange
7° <+ 41, When the two chains of a four-point graph contain an odd number of 4° and an
even number of 7!, we are faced to situations 3 or 4. They are symmetric under the ex-
change 7" <+ !, The relative sign between the products P? and ]5;‘ is + and (especially)
only depends on the parities of the total numbers of v° and v'. This sign doesn’t depend
on the configuration of the products of matrices i.e. it doesn’t depend on the n; in (24).

Then the counterterm I'“4Y1pI'®4p may only be of the form Lapla), 0y ahapy~ylep
or y*4pipy,ab. The result is the same for the two others YT I and 1,0 hphalG TS,
The sum of the last two interactions in (22)) is a linear combination of the initial inter-
actions. We would check it in the same way for zzawczzbwdF%FSd. This proves that TA is
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of the form of the initial vertices.

As expected for the four-point function, TA is logarithmically divergent. To check it,
it is sufficient to redo the procedure used in section B2 with the change of variables (B:28))
and ([B35) but without z; (the external variables are decoupled form the internal ones
in the counerterm). The remainder (1 — T)A is composed of four different terms. Each
improves the power counting and makes (1 — T)A convergent as i — e — oo :

e il VO(A + sil). Integrating by parts over an external variable, the V acts on an
external field and gives at most M¢. 4 gives at least M.

o XQxyU, XQxpP. X brings M¢ and U (resp. P) M.
e UQuU, PQpP give at least M %,

e the expansion (B3 of the propagators gives M.

As a conclusion, these termes improves the power counting by AM~¢~¢ which makes
(1 — 1) A convergent and irrelevant for renormalization.

5.1.2 B =2, critical

The power counting proved in () let us think that the critical connected components
are logarithmically divergent. Exact computations on simple graphs and the behaviour
of the theory in the matrix basis confirm this fact. But the divergent part of these
graphs are not of the form of the initial Lagrangian and particularly not of a Moyal type.
Despite such a divergence, we won’t renormalize those graphs. In fact, we will prove in
section that the renormalization of the corresponding two-point function is sufficient
to make the complete graph convergent, including the critical sub-divergence. Let ¢ the
scale of the critical component and 5 < ¢ the scale of the corresponding two-point function.
The remainder terms in the renormalization of this two-point function will give A/—¢~¢)
(< M—(j—e)).

5.2 The two-point function

5.2.1 The regular case

Let a two-point planar subgraph needing renormalization. There exists (i, k) € N? such
that N(G%) = 2,9(G%) = 0. The two external points of the amputed graph are written
x,7y. The amplitude associated to the connected component G% is

A (2,9) Z/dil?d?/ Ye (@) e ()0 e [ [ dwdvidp CF (w) T duedw, Cff (ur)
leT} teLl

Let us proceed to a second order Taylor expansion. First of all, we expand 6(;}; as

5Gz(x—y+sil) X zé(x—y)+L[-V5(x—y)+/olds(1 — 8) (- V)25 (A + sil)

(5.30)

S=
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where we used the same notations as in the preceding section. The oscillation between
x and y is expwr A y. Thanks to the delta function, we absorb this oscillation into a
redefined matrix () xy. Then we expand the oscillation:

eXpZ(XQXUU+XQXPP+UQUU+PQPP) = 1+Z(XQXUU+XQXPP) (531)
1

—/ ds <(1 — 8)(XQXUU+XQXPP)2 —Z(UQUU+PQPP))
0

zs(XQXUU+XQXPP+UQUU+PQPP).

X e

We also expand the internal propagators. For all line [ € G&,

Q dtje™t™* G s~ ~
Ci(u, s =1) = o / me 2 coth@RE (40) coth (20 )e(D)e (1), (5.32)

+ sQe(De(); + m) ( cosh(2Q;) 15 — s8 sinh(QKNZtl)y@_ly)

Q /oo dt; et th (20 )u
—_—c 3 oo ! 1Q coth (20 e, +m
07 ), o200 ' (2eoth2Bt)e(e(D, + m)

m2
/ / dtl e o coth(2§tl)ul2
sinh QQtl

x {Qe( )e (1) ( cosh (20,1 — 512 sinh(20t)70 1)
— 1% sinh(204;) (:Q coth (20t e(1)e (1), + sQe(1)e(); + m)v@_lv}.

The conscientious reader would have noticed that the expansion (B32) is different from
the one we used for the four-point function (53). Here we allow the mass term to be part
of the zeroth order term. The reason is that the number of internal lines in a two-point
function is odd (it is 2n — 1). For the mass counterterm, if all the propagators would
have contributed by a u term, the counterterm woud have vanished. In fact, the power
counting is reached when one propagator uses its mass term and all the others the term
. This implies that the mass divergence is only logarithmic. For the wave function and
Q7 counterterm, each propagator contributes with its dominant term #. The counterterm
TA associated to the connected component G% corresponds to the zeroth and first order
terms of the three preceding expansions:

TA’;;}-c = TAn + 1Ay + TAy, (5.33)
= [ dedy ()6 (0)6 ~ ) [ T] dududpi G s =0) (5.34)
leT;

H dugdwy Cyt (ug, s = 0)e wa(s=0)
teLi
TA, = /dajdy V() (y)h - V(2 — H dwdvydp; Cj (g, s = 0) (5.35)
leTg
H dugdw, Cyf (ug, s = 0)e wa(s=0)
teLi
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ey =1 [dudy . (2)0. ()6~ 9)(XQurl + X Q) (5.36)

H duydvdp Cy' (u, s = 0) H dugdwy Cyf (ug, s = 0)e¥as=0)
€Ty teLt

The counterterm TA,, contributes to the mass renormalization. Its divergence is logar-
ithmic for the parity reasons given above. TAy is the wave function counterterm.

TAy = — /dx V() VFah, () UM H du;dvdp, C’;l (uy, s =0) (5.37)
leT}

H dugdwy Cyf (ug, s = 0)e¥a+=0)
teLl

As for the four-point function, this term contains the polynomial (B.8)) here of odd degree.
The gamma matrices in each monomial are distributed among cycles and a chain (see
definition B]). The numbers of u°9° and u'y! in each cycle are even so that the number
of gamma matrices in the chain linking the external points is odd. The term 4%, is
different from zero if the number of u%9° in the chain is odd. Then the number of +! is
even. The corresponding counterterm is of the form 1.7°9y1.. We associate it the term
VU011, where we chose the inverse monomial in P (VI € G, 7%u) <+ v*u;). Thanks to
a rotation of the coordinates, we show that the complete counterterm looks like @evwe.
It is logarithmically divergent.

The counterterm TAg, also logarithmically divergent, contributes to the renormal-
ization of the “magnetic field” OF. The terms entering such a contribution look like
[ etbe(x%ut — 2'u®) -+ -. Once more we can associate two opposite monomials and per-
form a rotation to prove that the counterterm is of the form .Zv.. Remark that the
terms [ 11 (2%pg + 2'py) - -+ vanish by parity over p (beware that here p, is the “mo-
mentum” associated to a tree line and not a derivative). It is easy to check from (B33
and (E.30) that the counterterms TA, and TAy are skew-Hermitian. They are of the form

dpp and Yy
The remainder terms, gathered in (1 — T)A, are convergent:

o (U-V)2 gives M2 thanks to U? and M?¢ by integration by parts over an external
point,

o (XQxpU + XQxpP)? brings M—2(—¢),
e UQuU + PQpP give at least M %,
e The propagators expansion gives at least M.

Note that until now the ¢7°y') counterterm was not useful. Moreover if we set m = 0
(the bare mass) it remains so under radiative correction (TA,, = 0) for parity reasons over
the u’s.
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5.2.2 Critical components

Let us consider an orientable two-point graph at scale 57 with a critical subgraph at scale
i > j (see definition in section ). This two-point component is then made of a four-point
subgraph at a scale i with g = 0, B = 2 and of a single (loop) line of scale j. We renor-
malize the two-point amplitude as was done in the previous paragraph. We now want to
show that the remainder terms are of order M 20~ (and not M~2U~¢)) which implies
the convergence of the complete remainder amplitude even its four-point sub-divergence.

We proceed as is explained in section @l. Down to scale 7, we get all the necessary
masslets for the v’s and w’s and the corresponding functions for the p’s. Then we have
an oscillation Wy A u? where i, = i and «/ is the u variable of the unique loop line of
scale j. We use it to get a decreasing function s implementing |u/| < M~*. It remains
to obtain the masslet for the variable w’. Its associated w/ variable being now of order
M~ there is no mean to get a masslet of scale M7. We can only achieve M*. The gain
we had with the u/ variable is lost by its corresponding masslet and we note once again
that the critical components are divergent. But now all the w variables in the graph
are bounded by M~ which implies that the remainder terms, except the propagator
expansions, bring M —2(-¢) = N ~20=3) )f=2=¢)  All the propagator expansions except
the one concerning the lowest propagator (of scale j) give at least M~*. There is one
term in the expansion of the lowest propagator (zmg sinh(Qth)’y@_l’y) which only brings
M=% This is not sufficient to renormalize the four-point sub-divergence. The solution
consists in putting that term in the counterterm. Only for this lowest propagator, we use
a different propagator expansion:

Q [® de ™ g St [ ~
C =1 7 2 T (4,0 coth (201 )e(1)e (1 5.38
(w5 =1) «97r/ sinh(2Qt;) ) (o (GOn)e)eth 5:3%)
+ sQe(De(l)dy +m) (cosh(Q@tl)]lg — 4 sinh(QQtl)’y@_l’y)

_Q [ dt e~ tim?

o Jo tanh(QSN)tl)
cosh 2Qtl )1y — —z smh(ZQtlh@ )

/ / dt; e=trm” A e 9 o2t )u?
sinh 2Qtl

x Qe(l)e(l )%l(cosh(QQtl)]b —4 sinh(QQtl)y@_ly).

6__coth(2ﬂtz u? (ZQ coth(QQtl) (1 )5(l)?/Ll + m)

This makes convergent the four-point subgraph and the two-point one. The price to pay
is a counterterm of the form 20m 6y©~'vy. The proof of this last statement is given in
appendix Remark finally that if we set m = 0, TA,, = 0 and no ¥’y appear.

6 Conclusion

We proved that the non-commutative Gross-Neveu model, defined by the action (Z3)
with only orientable interactions, is renormalizable to all orders. We have first computed
a bound on the amputed amplitude of any graph, integrated over test functions (see

37



lemma ECTl). This power counting is the one of a renormalizable theory. This bound can
be obtained at €2 = 0. Then we showed that all the necessary counterterms are of the
form of the initial Lagrangian. This means that the non-commutative Gross-Neveu model
with orientable interactions is renormalizable even without the vulcanization procedure.
But without general argument in favour of orientable interactions, we have to consider
also non-orientable ones and then to vulcanize the Lagrangian.

The orientable Gross-Neveu model is free of (non-renormalizable) UV /IR mixing [4} 5.
Nevertheless it exhibits some remaining one. It concerns some graphs of the four-point
function. These ones have ¢ = 0 and B = 2 (see lemma [Tl). This mixing is fortunately
renormalizable in the following sense: the divergent part of the critical four-point graphs
is not “local” but the renormalization of the corresponding two-point function makes those
four-point subgraphs finite. Of course this was not the case for the usual UV /IR mixing
which prevented renormalization of non-commutative field theory before [6]. Finally note
that the bounds in lemma may have equally been proved for the full model (with
V =V, + V) but restricted to orientable graphs'. This suggests that the full theory
could be renormalizable if restricted to orientable graphs. Of course the “locality” of the
counterterms should be checked.

A Topology of Feynman graphs

Let a graph G with n vertices and I internal lines. Interactions of quantum field theories
on moyal spaces are only cyclically invariant (see (Z)). A good way to keep track of such
a reduced invariance is to draw Feynman graphs as ribbon graphs. Moreover there exists
a basis for the Schwartz class functions where the Moyal product becomes an ordinary
matrix product [9, 8. This further justifies the ribbon representation.

Let us consider the example of figure @l Propagators in a ribbon graph are made of

(a) z-space repres- (b) Ribbon representa-
entation tion

Figure 4: A graph with two broken faces

double lines. Let us call L the number of loops (made of single lines) of a ribbon graph.
The graph of figure has n = 3,1 = 3, L = 2. Each ribbon graph can be drawn on a

Orientable interactions only lead to orientable graphs but orientable graphs are not only made of
orientable interactions. Actually non-orientable interactions produce not only all the non-orientable
graphs but also orientable ones.
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manifold of genus g. The genus is computed from the Euler characteristic x = L — [ +n.
For example, the graph of figure may be drawn on a manifold of genus 0. Note that
some of the L loops of a graph may be “broken” by external legs. In our example, both
loops are broken.

B Integration by parts

We reproduce here the details of the computation showing that the procedure formed by
the change of variables (B228)) and the integration by parts (B30) allows to get a decreasing
function of the desired scale.

AG,l = /daldtl COth(2§tl)£(CLl COth1/2(2§tl)) 6_% COth@ﬁtl)(ul_e(l)al)?fl (1’1 + 7](1)6([)&1)

&ﬁc%h@ﬁhﬂ@ﬂwwf—dbﬁ)+Q@@ax%__d0@)_W*emAM+m%m
L[ coth'/?(2Qt;) + %
t\ coth/2(20t)) + 4V,

el AV GEOD

n=

Let us write ¢; = coth(QQtl).

1 1 2 9 \?2
_ 1AV -
A = /dal e g <\/c_l+ le}l,u> ( G aaél) E(arv/a) fr(zy +n(De()ar)

{Zﬁcl(eg)(l)(?ﬁl — 5(l)¢l) + Q(eg) (Z)(%l — 5([)@) — m} e_gCl(uz—a(l)al)Z—i—zal/\(Uz-i-Az-i-Xz).
We define the following notations:

{1} =Qai(ee) (1) (4, — e(D)dt,) + Qe) () — e(D)ity) — m, (B.1)
gy:—deﬁWw+§¢4wﬂyﬁﬁ. (B.2)

Let us compute the first derivative:

0 =Bt A S0 /) a1 + (D) {1 53
a
:6—%Cl(Ul—€(l)al)2+2al/\(Ul+Al+Xl){{l} [’chg(l)(ul _ 6(l)az)”§f1 4 Z(ﬁl 4 gl 4 )N(I>H§f1

VR + (D] + e
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Then the second one:

2 ~
s € e SO U0y /o) 1+ (D)) (1) (B.4)
l

=St Ly [(@eie(D) (o - () €fi + o0+ A+ Xy

+ Vel fr+ (e f) x (Qae(l)(w — e(a)"€fr+ T+ A + X))

— Qeie(DES + Q2 (wp — e(Da)*e f1 + p(Ve(Dey(uy — e(Da) < f]

/(U + A+ X)), fr +m(De) (U + A+ X,),E 11

+al” fi + 23/ ()n(De)E' fi + £ 7]

+2{} [ Qe (D) (w — e ar)“€ fr + (T + Ay + X)) i + V(@) fr +n(D)e(D)Ef] }

The terms we get are of order O(c?ﬂ). This gives (B31).

C The vacuum graphs

In this appendix, we compute the power counting of the vacuum graphs of the orientable
Gross-Neveu model. Let us first remind that the translation invariance of the usual com-
mutative field theories makes them infinite even with both ultraviolet and infrared cut-offs
(we mean in a given slice). On the contrary, the vacuum graphs of the (non-commutative)
®*4 theory are finite in a slice but the sum over their scale attribution diverges as M®'.

The quartic Moyal-type interaction is translation invariant. It can indeed be written
as

4
(1 — x9 + 3 — x4) €Xp Z (=) g A g (C.1)
i<j=1
=0(x1 — X9 + w3 — 24) expt (z1 A (29 — 23) + 13 A 23)

=0(r1 — T2 + x3 — xy) expr(x; — x2) A (T2 — T3)

Such a regularisation is then solely due to the breakdown of translation invariance by
the harmonic potential term 7 in the ®* propagator. The Gross-Neveu propagator,
whereas breaking tranlation invariance, allows to get translation invariant amplitudes for
the vacuum graphs. We verify such an invariance by performing the change of variables
Vi, x; — x; + a and by checking that the result is independant a.

AG =\" / Hduldvl Cl(ul, Ul) e’ (02)

leG

=\" / H dudv; Cy(ug, v + 2a) e*?

leG

In equation ([C2), we wrote v; for all lines to simplify notations. We have already noticed
that the vertex oscillations are translation invariant. That’s why under the change of
variables, ¢ remains unchanged. Let us consider a Y1) type interaction. In that
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case, the popagator oscillations are always exp —%ul A v;. Then the change of variables
v; — vy + 2a; implies the following a dependance for any amplitude

exp1Q2a A Zul =1 (C.3)
leG

wich is 1 because the sum of all the u variables vanishes for the vacuum graphs thanks

to the root delta function (2227)) (remind that we only consider orientable interactions).

This proves that the vacuum graphs of the orientable Gross-Neveu model are infinite.
For non-orientable interaction, this is not the case as the reader may verify on the

Figure 5: Example of non-orientable vacuum graph

example of figure B

D (Un)Modified counterterms of the two-point
function

Let us consider a two-point connected component G?, with a critical sub-divergent com-
ponent G%. We prove that, if we put the YO~y term of the lowest propagator £y in G,
into the counterterm, the divergent part of this two-point function remains of the form of
the initial Lagrangian.

For simplicity we use a lightened notation than until now: exp —2i1Qt,,y© 1y =
cosh(2SN2th)]lg — zsinh(QKNZth)'yO'yl. As explained in section Bl the propagators in a two-
point function are distributed among cycles and a chain. For any given graph G, let us
write C for the set of all cycles and Ch for the set of all chains. We also write T* for
the number of u*’s coming from the Taylor expansions™. Each cycle or chain consists in
a product of propagators. Let ¢ € C(Ch),

B HZEC(ZQ coth(QQtl)g/Ll +m) ) if o ¢ c
‘ (262 coth(282 ¢, )by, + m)e 227" [Tico\ ooy (12 coth(2Q)3h, + m)  if 4o € c.
(D.1)

P, is a sum of different terms: P, = Y1 | P! where n = 2/l if ¢ € C and n = 2ld+1 if
¢ € Ch (|¢| = cardc). Let us write |y*|* for the total number of v* in a given term i of
¢ € C(Ch). In the same way, we define |u”|'. Let i, € [1,n] for all c € CU Ch. The

MFor example, for the mass term, the Taylor expansion brings no u’s then 79 = T! = 0. The wave
function counterterm brings u°0y +u'd;. The first term has T7° = 1 and T = 0, the second the contrary.
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tracelessness of the gamma matrices and the parity properties of the integrales over the
u’s implies two constraints:

Ve € C, Vi € [1,21], Vi € {0, 1}, |7*|* is even, (D.2)
Ve {0,1}, > |utls + T is even. (D.3)
ceCUCh

From now on, we fix a N-valued sequence (i.).ccucn. Remind that in a two-point function,
|Ch| = 1 and that the total number of internal lines is odd: » ¢ cp |€| is odd. For £y, we
will always choose its 70! term otherwise the analysis is the same as in section B2 In the
following we call “mass counterterm” the expression (B34) with the expansion (E38), “p

(or Z) counterterm” the equation (E35) (or (B36)) once more with the expansion (E38).
1. Let ¢; € Ch. If |¢1| (the number of lines in the chain) is even

(L.a) and €y € ¢1, Y. |c] is odd. Equation (O.2)) implies Vi, Y . |u#| even. The
total number of lines in the cycles being odd, we chose the mass for at least
one line in C.

e For the mass counterterm, 7% = T" = 0. Equation (D.3) implies ||
even. This gives |v*|«; both odd. The counterterm may only be propor-
tionnal to 70~

e For the p or 7 counterterm, let p € Zy, T = 1 and TH+! = 0. |y*|¢} is
even and |[y#t1|s is odd. The number of lines in ¢; being even, at least
one line in ¢; “chose” the mass. Then this term is of order M ~*. Such
terms give p or #.

(1.b) Let &y ¢ c1. Equation (O2) implies Vu, > . [u#]e odd. We chose the mass
term at least once.

ffll is odd. This counterterm is proportionnal to

e Mass counterterm: |u*
gl

e j (%) counterterm: [v"|et is odd and |y#*+!
or # but is convergent as M~ since |c;| is even and at least one line in ¢,
bears a mass term.

¢! is even. This term gives p

2. If |¢q] is odd

(2.a) Let €y € c1. > .o |ut]ie is even.

e Mass counterterm: W‘\iﬁl ’s are both odd. This gives 17°v'4.

e j (%) counterterm: [v#|et is even and |y*+![e! is odd. This term gives
or 7 but is convergent as M~(=7. The number of lines in ¢; being odd,
either all the lines in ¢; chose the v term or at least two of them chose the
mass term.

(2.b) Let €y & c1. > .cc [7*]i’s are both odd. Either all the lines in C chose the u
term (the total number of lines in C is even) or at least two of them chose the
mass term. The corresponding terms are of order M (=9,

e Mass counterterm: W‘\iﬁl ’s are both odd. We get ¢y%y'4).
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icll is odd. This term gives p

e j (%) counterterm: |'y“\i§1 is even and |y#T!
or 7.

As a conclusion, the mass term only brings ¢y%y'4. The p and 7 counterterms may give
Yy and Pgap, not present in the initial Lagrangian, but these terms are convergent and
may be let in the remainder term. A way to define the new counterterms is

TAn :% Tr(tA,,), (D.4)
’ﬂ%m:—%YW”HW%Hﬂm% (D.5)
TA, =~ 2%2 Tr(ptAy), (D.6)
T%W:—£?H@Mﬁ. (D.7)

Remark that if m = 0, T4, = 0. This means that if the bare mass is zero, it remains
zero after radiative corrections and no ¥’y appear.
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