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Abstra
t

We prove that the non-
ommutative Gross-Neveu model on the two-dimensional

Moyal plane is renormalizable to all orders. Despite a remaining UV/IR mixing,

renormalizability 
an be a
hieved. However, in the massive 
ase, this for
es us to

introdu
e an additional 
ounterterm of the form ψ̄ ıγ0γ1ψ. The massless 
ase is

renormalizable without su
h an addition.

1 Introdu
tion

From the rebirth of non-
ommutative quantum �eld theories [1, 2, 3℄, people were fa
ed to

a major di�
ulty. A new (with respe
t to the usual 
ommutative theories) kind of diver-

gen
es appeared in non-
ommutative �eld theory [4, 5℄. This UV/IR mixing in
ited people

to de
lare su
h theories non-renormalizable. Nevertheless H. Grosse and R. Wulkenhhaar

found re
ently the way to over
ome su
h a problem by modifying the propagator. Su
h a

modi�
ation will be now 
alled �vul
anization�. They proved the perturbative renormal-

izability, to all orders, of the non-
ommutative Φ4
theory on the four-dimensional Moyal

spa
e [6, 7℄. Their proof is written in the matrix basis. This is a basis for the S
hwartz


lass fun
tions where the Moyal produ
t be
omes a simple matrix produ
t [8, 9℄. A Moyal

based intera
tion has a non-lo
al os
illating kernel. The main advantage of the matrix

basis is that the intera
tion is then of the type TrΦ4
. This form is mu
h easier to use

to get useful bounds. The main drawba
k is the very 
ompli
ated propagator (see [10℄

for a 
omplete study of the Gross-Neveu propagator in the matrix basis). This is one

of the reasons whi
h lead us to re
over in a simpli�ed manner the renormalizability of

the non-
ommutative Φ4
theory in x-spa
e [11℄. The dire
t spa
e has several advantages.

First of all, the propagator may be 
omputed exa
tly (and used). It has a Mehler-like

form in the Φ4
, LSZ and Gross-Neveu theories [10, 11, 12℄. The x-spa
e allows to 
om-

pare the behaviour of 
ommutative and non-
ommutative theories. It seems to allow

a simpler handling of symmetries like parity of integrals. This point is very useful for

the renormalization of the Gross-Neveu model. We also plan to extend renormalizability

proofs into the non-perturbative domain thanks to 
onstru
tive te
hniques developed in

x-spa
e. Finally, when we will be able to do Physi
s with su
h non-
ommutative models,

a
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we would like to have some experien
e with our physi
al spa
e. Of 
ourse x-spa
e has also
drawba
ks. It for
es to deal with non absolutely 
onvergent integrals. We have to take


are of os
illations. Until now it is mu
h more di�
ult to get the exa
t topologi
al power


ounting of the known non-
ommutative �eld theories in dire
t spa
e than in the matrix

basis. The non-
ommutative parametri
 representation would 
ertainly provide an other

way to get the full power 
ounting [13℄.

Apart from the Φ4
4, the modi�ed Bosoni
 LSZ model [11℄ and supersymmetri
 theories,

we now know several renormalizable non-
ommutative �eld theories. Nevertheless they

either are super-renormalizable (Φ4
2 [9℄) or (and) studied at a spe
ial point in the parameter

spa
e where they are solvable (Φ3
2,Φ

3
4 [14, 15℄, the LSZ models [16, 17, 18℄). Although only

logarithmi
ally divergent for parity reasons, the non-
ommutative Gross-Neveu model is

a just renormalizable quantum �eld theory as Φ4
4. One of its main interesting features is

that it 
an be interpreted as a non-lo
al Fermioni
 �eld theory in a 
onstant magneti


ba
kground. Then apart from strengthening the �vul
anization� pro
edure to get renor-

malizable non-
ommutative �eld theories, the Gross-Neveu model may also be useful for

the study of the quantum Hall e�e
t. It is also a good �rst 
andidate for a 
onstru
tive

study [19℄ of a non-
ommutative �eld theory as Fermioni
 models are usually easier to


onstru
t. Moreover its 
ommutative 
ounterpart being asymptoti
ally free and exhibit-

ing dynami
al mass generation [20, 21, 22℄, a study of the physi
s of this model would be

interesting.

In this paper, we prove the renormalizability of the non-
ommutative Gross-Neveu

model to all orders. For only te
hni
al reasons, we restri
t ourselves to the orientable


ase. An interesting feature of the model is a kind of remaining UV/IR mixing. Some

(logarithmi
ally) divergent graphs entering the four-point fun
tion are not renormalizable

by a �lo
al� 
ounterterm

b

. Nevertheless these �
riti
al� 
omponents only appear as sub-

divergen
es of two-point graphs. It turns out that the renormalization of the two-point

fun
tion make the (four-point) 
riti
al graphs �nite. In the massive 
ase, we have to add

to the Lagrangian a 
ounterterm of the form δm ψ̄ıγ0γ1ψ. The massless model is also

renormalizable without su
h a 
ounterterm.

In se
tion 2, we present the model and �x the notations. We state our main result.

Se
tion 3 is devoted to the main te
hni
al di�
ulty of the proof. Here is explained how

to exploit properly the vertex os
illations in order to get the power 
ounting. In se
tion

4, we 
ompute this power 
ounting with a multis
ale analysis. In se
tion 5, we prove that

all the divergent subgraphs 
an be renormalized by 
ounterterms of the form of the initial

Lagrangian. Finally, appendi
es follow about te
hni
al details and additional properties.

A
knowledgement I am very grateful to J. Magnen for 
onstant dis
ussions and 
rit-

i
al 
omments. In parti
ular he found how to use properly the vertex os
illations. I also

thank V. Rivasseau and R. Gurau for enlightening dis
ussions at various stages of this

work and J.-C. Wallet for 
areful reading.

b

By �lo
al� we mean �of the form of the initial vertex�.
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2 Model and notations

The non-
ommutative Gross-Neveu model (GN

2
Θ) 
onsists in a Fermioni
 quarti
ally in-

tera
ting �eld theory on the (two-dimensionnal) Moyal plane R2
Θ. The algebra AΘ of

�fun
tions on R2
Θ� may be de�ned as S(R2) (it may also be extended to an algebra of

tempered distributions, see [23, 24, 8, 25℄ for rigorous des
riptions) endowed with the

asso
iative non-
ommutative Moyal produ
t:

(f ⋆Θ g) (x) =(2π)−2

∫

R2

∫

R2

dydk f(x+ 1
2
Θk)g(x+ y)eık·y (2.1)

The skew-symmetri
 matrix Θ is

Θ =

(
0 −θ
θ 0

)
(2.2)

where θ is a real parameter of dimension length

2
. The a
tion of the non-
ommutative

Gross-Neveu model is

S[ψ̄, ψ] =

∫
dx
(
ψ̄
(
−ı/∂ + Ω/̃x+m+ ıδm θγΘ−1γ

)
ψ + V

o

(ψ̄, ψ) + V
no

(ψ̄, ψ)
)
(x) (2.3)

where x̃ = 2Θ−1x and V = V
o

+ V
no

is the intera
tion part given later. The term

in δm will be treated perturbatively as a 
ounterterm. It appears from the two-loop

order (see se
tion 5.2.2). Throughout this paper we use the Eu
lidean metri
 and the

Feynman 
onvention /a = γµaµ. The matri
es γ0 and γ1 
onstitute a two-dimensionnal

representation of the Cli�ord algebra {γµ, γν} = −2δµν . Note that with su
h a 
onvention

the γµ's are skew-Hermitian: γµ† = −γµ.

Propagator The propagator of the theory is given by the following lemma:

Lemma 2.1 (Propagator 1 [10℄) The propagator of the Gross-Neveu model is

C(x, y) =
(
−ı/∂ + Ω/̃x+m

)−1
(x, y) (2.4)

=

∫ ∞

0

dtC(t; x, y),

C(t; x, y) = − Ω

θπ

e−tm2

sinh(2Ω̃t)
e−

Ω̃
2
coth(2Ω̃t)(x−y)2+ıΩx∧y

(2.5)

×
{
ıΩ̃ coth(2Ω̃t)(/x− /y) + Ω(/̃x− /̃y)−m

}
e−2ıΩtγΘ−1γ

with Ω̃ = 2Ω
θ

and x ∧ y = 2xΘ−1y.

We also have e−2ıΩtγΘ−1γ = cosh(2Ω̃t)12 − ı θ
2
sinh(2Ω̃t)γΘ−1γ.

The propagator may also be 
onsidered as diagonal in some 
olor spa
e indi
es if we want

to study N 
opies of spin

1
2
fermions.
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Intera
tions Con
erning the intera
tion part V , �rst remind that ∀f1, f2, f3, f4 ∈ AΘ,

∫
dx (f1 ⋆ f2 ⋆ f3 ⋆ f4) (x) =

1

π2 detΘ

∫ 4∏

j=1

dxjfj(xj) δ(x1 − x2 + x3 − x4)e
−ıϕ, (2.6)

ϕ =
4∑

i<j=1

(−1)i+j+1xi ∧ xj . (2.7)

This produ
t is non-lo
al and only 
y
li
ally invariant. Then, in 
ontrast to the 
ommut-

ative Gross-Neveu theory for whi
h there is only one possible (lo
al) intera
tion, the GN

2
Θ

model exhibits, at least, six di�erent ones: the orientable intera
tions

V
o

=
λ1
4

∑

a,b

∫
dx
(
ψ̄a ⋆ ψa ⋆ ψ̄b ⋆ ψb

)
(x) (2.8a)

+
λ2
4

∑

a,b

∫
dx
(
ψa ⋆ ψ̄a ⋆ ψb ⋆ ψ̄b

)
(x) (2.8b)

+
λ3
4

∑

a,b

∫
dx
(
ψ̄a ⋆ ψb ⋆ ψ̄a ⋆ ψb

)
(x), (2.8
)

where ψ's alternate with ψ̄'s and the non-orientable intera
tions

V
no

=
λ4
4

∑

a,b

∫
dx
(
ψ̄a ⋆ ψ̄b ⋆ ψa ⋆ ψb

)
(x) (2.9a)

+
λ5
4

∑

a,b

∫
dx
(
ψ̄a ⋆ ψ̄b ⋆ ψb ⋆ ψa

)
(x) (2.9b)

+
λ6
4

∑

a,b

∫
dx
(
ψ̄a ⋆ ψ̄a ⋆ ψb ⋆ ψb

)
(x). (2.9
)

All these intera
tions have the same x-kernel thanks to (2.6). The indi
es a, b are spin

indi
es taking value in {0, 1} (or {↑, ↓}). They may be additionnally 
olor indi
es between

1 and N . For only te
hni
al reasons, we will restri
t ourselves to orientable intera
tions.

Su
h a quali�
ation will be
ome 
lear in the next se
tion. This paper is mainly devoted

to the proof of

Theorem 2.2 (BPHZ Theorem for GN

2

Θ
) The quantum �eld theory de�ned by the

a
tion (2.3) with V = V
o

is renormalizable to all orders of perturbation theory.

Multi-s
ale analysis In the following we use a multi-s
ale analysis [19℄. The �rst step


onsists in sli
ing the propagator as

Cl =

∞∑

i=0

C i
l , C

i
l =





∫ M−2(i−1)

M−2i

dtCl(t; ) if i > 1

∫ ∞

1

dtCl(t; ) if i = 0.

(2.10)
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We have an asso
iated de
omposition of any amplitude of the theory as

AG =
∑

µ

Aµ
G (2.11)

where µ = {il} runs over all possible attributions of a positive integer il for ea
h line l
in G. This index represents the �s
ale� of the line l. The usual ultraviolet divergen
es

of �eld theory be
omes, in the multi-s
ale framework, the divergen
e of the sum over

attributions µ of indi
es. To work with well-de�ned quantities, we put an ultraviolet 
ut-

o� ρ: i ∈ {0, . . . , ρ}. In ea
h sli
e, the following lemma gives a bound on the propagator.

Lemma 2.3 For all i ∈ N, there exists K, k ∈ R+ su
h that

∣∣C i(x, y)
∣∣ 6KM ie−kM i|x−y|. (2.12)

This bound also holds in the 
ase m = 0.

To any assignment µ and s
ale i are asso
iated the standard 
onne
ted 
omponents

Gi
k, k ∈ {1, . . . , k(i)} of the subgraph Gi

made of all lines with s
ales j > i. These

tree 
omponents are partially ordered a

ording to their in
lusion relations and the (ab-

stra
t) tree des
ribing these in
lusion relations is 
alled the Gallavotti-Ni
olò tree [26℄; its

nodes are the Gi
k's and its root is the 
omplete graph G.

More pre
isely for an arbitrary subgraph g one de�nes:

ig(µ) = inf
l∈g

il(µ), eg(µ) = sup
l external line of g

il(µ). (2.13)

The subgraph g is a Gi
k for a given µ if and only if ig(µ) > i > eg(µ). As is well known in

the 
ommutative �eld theory 
ase, the key to optimize the bound over spatial integrations

is to 
hoose the real tree T 
ompatible with the abstra
t Gallavotti-Ni
olò tree, whi
h

means that the restri
tion T i
k of T to any Gi

k must still span Gi
k. This is always possible

(by a simple indu
tion from leaves to root).

Let us de�ne iν(µ) as the index of the line of highest s
ale hooked to the vertex ν.
Then any (amputed) N-point fun
tion S has an �e�e
tive� expansion:

SN(x1, . . . , xN ; ρ) =
∑

N-point graphs G

∑

µ(G)

∏

ν∈G

λiνA
µ
G(x1, . . . , xN ; ρ). (2.14)

Stri
tly speaking, we prove here that all the orders of the e�e
tive series are �nite as the


ut-o� goes to in�nity and that there exists a 
onstant K ∈ R su
h that:

lim
ρ→∞

∫

R2N

N∏

i=1

dxifi(xi) |Aµ
G(x1, . . . , xN ; ρ)| 6 Kn(G)

(2.15)

where the fi, i ∈ J1, NK are test fun
tions.
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2.1 Orientation and graph variables

The delta fun
tion in (2.6) implies that the vertex is parallelogram shaped. To simplify

the graphs, we will nevertheless draw it either as a lozenge (Fig. 1) or as a square.

We asso
iate a sign, + ou −, to ea
h of the four positions at a vertex. This sign 
hanges

from a position to its neighbouring one and re�e
ts the signs entering the delta fun
tion.

For example, the delta fun
tion asso
iated to the vertex of �gure 1 has to be thought to

be δ(x1−x2+x3−x4) and not δ(−x1+x2−x3+x4). The vertex being 
y
li
ally invariant,

we 
an freely 
hoose the sign of one among the four positions. The three other signs are

then �xed. Let us 
all orientable a line joining a point + to a point −. On the 
ontrary

if it joins two + (or −), we 
all it 
lashing. By de�nition, a graph is orientable if all its

lines are orientable. We will draw orientable lines with an arrow from its − to its + end.

The − positions are then de�ned as out
oming a vertex and the + ones as in
oming.

Let a graph G. We �rst 
hoose a (optimal) spanning rooted tree T . The

x1

x2

x3

x4 − −

+

+

Figure 1:

A vertex


omplete orientation of the graph, whi
h 
orresponds to the 
hoi
e of the

signs at ea
h vertex, is �xed by the orientation of the tree. For the root

vertex, we 
hoose an arbitrary position to whi
h we give a + sign. If the

graph is not a va
uum graph, it is 
onvenient to 
hoose an exernal �eld

for this referen
e position. We orient then all the lines of the tree and all

the remaining half-loop lines or �loop �elds�, following the 
y
li
ity of the

verti
es. This means that starting from an arbitrary referen
e orientation

at the root and indu
tively 
limbing into the tree, at ea
h vertex we follow the 
y
li


order to alternate in
oming and out
oming lines as in Figure 2a (where the verti
es are

pi
tured as points). Let us remark that with su
h a pro
edure, a tree is always orientable

(and oriented). The loop lines may now be orientable or not.

De�nition 2.1 (Sets of lines). We de�ne

T = {tree lines} ,
L = {loop lines} = L0 ∪ L+ ∪ L− with

L0 = {loop lines (+,−) or (−,+)} ,
L+ = {loop lines (+,+)} ,
L− = {loop lines (−,−)} .
It is 
onvenient to equip ea
h graph with a total ordering among the vertex variables.

We start from the root and turn around the tree in the trigonometri
al sense. We number

all the vertex positions in the order they are met. See Figure 2b. Then it is possible to

order the lines and external positions.

De�nition 2.2 (Order relations). Let i < j and p < q. For all lines l = (i, j), l′ =
(p, q) ∈ T ∪ L, for all external position xk, we de�ne

l ≺ l′ if i < j < p < q
l ≺ k i < j < k
l ⊂ l′ p < i < j < q
k ⊂ l i < k < j: �l 
ontra
ts above xk�
l ⋉ l′ i < p < j < q.

6



(a) Orientation of a tree

−

+

−

+

+

−

+

−

+

−

+

−

+

−

+

−

2 (x2)

1 (x1) 3

4

5 (y)

6

7

8 (z)

9 (x3)

10

11

12

13

14

15 (x4)

16

ℓ4

ℓ1

l6 l3

l2

4 3

2

1

(b) Total ordering

Figure 2: Orientability and ordering

We extend these de�nitions to the sets of lines de�ned in 2.1. For example, we write

L0 ⋉ L+ instead of {(ℓ, ℓ′) ∈ L0 × L+, ℓ⋉ ℓ′}. We also de�ne the following set. Let S1

and S2 two sets of lines,

S1⋉⋊S2 = {(l, l′) ∈ S1 × S2, l ⋉ l′ or l ⋊ l′} . (2.16)

For example, in Figure 2b, ℓ1 ≺ ℓ4, l2 ⊂ ℓ1, l3 ≻ x1. Note also that with su
h sign


onventions, orientable lines always join an even (−) to an odd (+) numbered position.

It is now 
onvenient to de�ne new variables. These are relative to the lines of the graph

whereas the variables used until now were vertex variables. Ea
h orientable line l joins an
out
oming position xl− to an in
oming one xl+. We de�ne ul = xl+−xl− as the di�eren
e

between the in
oming and the out
oming position. For the 
lashing lines, ul is also the

di�eren
e between its two ends but the sign is arbitrary and 
hosen in de�nition 2.3. The

ul are the short variables. The long ones are de�ned as the sum of the two ends of the

lines. We write them vl = xl+ + xl− for tree lines and wℓ = xℓ+ + xℓ− for the loops.

De�nition 2.3 (Short and long variables). Let i < j. For all line l = (i, j) ∈ T ∪ L,

ul =






(−1)i+1si + (−1)j+1sj ∀l ∈ T ∪ L0,

si − sj ∀l ∈ L+,

sj − si ∀l ∈ L−.

(2.17)

vl =si + sj ∀l ∈ T (2.18)

wl =si + sj ∀l ∈ L. (2.19)

Complex quantum �eld theory on Moyal spa
es bears naturally two di�erent orient-

ations. The �rst one is de�ned from the 
y
li
 sign of the verti
es. This is the one we

7



de�ned with the tree. The se
ond one is related to the 
omplex feature of the theory: a

�eld only 
ontra
ts to its 
omplex 
onjugate. For the Gross-Neveu model, a line 
an also

be oriented from its ψ end to its ψ̄ end. Then we are lead to de�ne two di�erent signs for

a same line.

De�nition 2.4 (Signs of a line). Let i < j. For all line l = (i, j) ∈ T ∪ L,

ε(l) = +1 ∀l ∈ T ∪ L0 if i even
= +1 L−

= −1 T ∪ L0 if i odd
= −1 L+

ǫ(l) = +1 if ψ(xi)ψ̄(xj)
= −1 if ψ̄(xi)ψ(xj).

Corollary 2.4 (Propagator 2) From the de�nitions 2.3 and 2.4, the propagator 
or-

responding to a line l may be written as

Cl(ul, vl) =

∫ ∞

0

dtl C(tl; ul, vl) (2.20)

C(tl; ul, vl) =
Ω

θπ

e−tlm
2

sinh(2Ω̃tl)
e−

Ω̃
2
coth(2Ω̃tl)u

2
l
−ıΩ

2
ǫ(l)ε(l)ul∧vl

(2.21)

×
{
ıΩ̃ coth(2Ω̃tl)ǫ(l)ε(l)/ul + Ωǫ(l)ε(l)/̃ul +m

}
e−2ıΩtlγΘ

−1γ

with Ω̃ = 2Ω
θ

and where vl will be repla
ed by wℓ if the propagator 
orresponds to a loop

line.

2.2 Position routing

We give here a rule to solve in an optimal way the vertex delta fun
tions. In parti
ular

this will allow us to fa
torize the global delta fun
tion (see (2.6)) for ea
h four-point

subgraph. There is no 
anoni
al way to do it but we 
an reje
t the arbitrariness of the

pro
ess into the 
hoi
e of a tree. Then it is 
onvenient to introdu
e a bran
h system. To

ea
h tree line l we asso
iate a bran
h b(l) 
ontaining the verti
es above l. Let us de�ne
above. At ea
h vertex ν, there exists a unique tree line going down towards the root. We

denote it by lν. A 
ontrario, to ea
h tree line l 
orresponds a unique vertex ν su
h that

lν = l. We also de�ne Pν as the unique set of tree lines joining ν to the root. Then the

bran
h b(l) is the set of verti
es de�ned by

b(l) = {ν ∈ G| l ∈ Pν} . (2.22)

On Figure 2b, the bran
h b(l2) = {2, 3, 4}. We 
an now repla
e the set of vertex delta

fun
tions by a new set asso
iated to the bran
hes. Let a graph G with n verti
es. A

tree is made of n − 1 lines whi
h give raise to n − 1 bran
hes. At ea
h vertex ν,
we repla
e δν(

∑4
i=1(−1)i+1xνi) by δlν (

∑
ν′∈b(lν)

∑4
i=1(−1)i+1xν′i). To 
omplete this new

system of delta fun
tions, we add to these n − 1 �rst ones the �root� delta given by

δG(
∑

ν′∈G

∑4
i=1(−1)i+1xν′i). We have now a new equivalent set of n delta fun
tions.
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Let us pre
ise the arguments of the bran
h delta fun
tions in terms of short and long

variables. To this aim, we de�ne the set b(l) of lines 
ontra
ting inside a given bran
h

b(l):
b(l) = {l′ = (xν , xν′) ∈ G|ν, ν ′ ∈ b(l)} . (2.23)

There also exists lines l = (xν , xν′) with ν ∈ b(l) and ν ′ /∈ b(l). Moreover b(l) may 
ontain

external positions. We denote by X (l) the set made of the external positions in the

bran
h b(l) and of the ends (in b(l)) of lines joining b(l) to an other bran
h. From the

de�nition 2.3 of short and long variables, for �xed ν, we have

∑

ν′∈b(lν)

4∑

i=1

(−1)i+1xν′i =
∑

l∈(T ∪L0)∩b(lν )

ul+
∑

ℓ∈L+∩b(lν)

wℓ−
∑

ℓ∈L−∩b(lν)

wℓ+
∑

e∈X (lν)

η(e)xe (2.24)

where η(e) = 1 if the position i is in
oming and −1 if not. For example, the delta fun
tion

asso
iated to the bran
h b(l2) in the Figure 2b is

δ(y − z + x3 + x4 + ul3 + uℓ5 + ul6 − wℓ4). (2.25)

In the same manner, the delta fun
tion of the 
omplete bran
h is

δ(x1 − x2 + x3 + x4 + uℓ1 + ul2 + ul3 + uℓ5 + ul6 − wℓ4). (2.26)

Let us emphasize the parti
ular 
ase of δG

δG

( ∑

l∈T ∪L0

ul +
∑

ℓ∈L+

wℓ −
∑

ℓ∈L−

wℓ +
∑

e∈E(G)

η(e)xe

)
(2.27)

where E(G) is the set of external points in G. Remark that for an orientable graph G
(L+ = L− = ∅), the root delta fun
tion (2.27) only 
ontains the external points and the

sum of all the ul variables in G.

Remark. In the Φ4
model [11℄, these delta fun
tions were used to solve all the long tree

variables vl, l ∈ T . This is the optimal 
hoi
e. Integrations over the long variables vl (or
wl) 
ost M

2il
. Moreover the tree being 
hosen optimal, the vl are the most �expensive�

long variables. From (2.24), we have

δb(l)

( ∑

l′∈(T ∪L0)∩b(l)

ul′ +
∑

ℓ∈L+∩b(l)

wℓ −
∑

ℓ∈L−∩b(l)

wℓ +
∑

e∈X (l)

η(e)xe

)
. (2.28)

There exists el ∈ X (l) su
h that xel =
1
2
(η(el)ul + vl) (see de�nition 2.3). This external

point is an end of the line l. Thus δb(l) gives

vl = −η(el)ul − 2η(el)
( ∑

l′∈(T ∪L0)∩b(l)

ul′ +
∑

ℓ∈L+∩b(l)

wℓ −
∑

ℓ∈L−∩b(l)

wℓ +
∑

e∈X (l)\{el}

η(e)xe

)
.

We have then used n − 1 delta fun
tions (one per tree line). The last one is kept. It is

the equivalent of the global momentum 
onservation in usual �eld theories.
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Here we won't solve the bran
h delta fun
tions. Instead we express them as os
illating

integrals. In the orientable 
ase, we have

δb(l)

( ∑

l′∈b(l)

ul′ +
∑

e∈X (l)

η(e)xe

)
=

∫
d2pl
(2π)2

eıpl·(
∑

l′∈b(l) ul′+
∑

e∈X(l) η(e)xe). (2.29)

After some manipulations on these os
illations (see se
tion 3.2), we will get de
reasing

fun
tions for the vl's and pl's. For ea
h tree line l, we will integrate over vl and pl, the
�nal result being bounded by O(1).

3 From os
illations to de
reasing fun
tions

In the pre
eding se
tion, we de
ided to express all the vertex delta fun
tions as os
illating

integrals. Then we have 2 independant variables per internal propagator. One is integ-

rated over with the exponential de
rease of the propagator (see 2.4). The other uses the

propagator and verti
es os
illations. Then it is useful to pre
ise the os
illations in terms

of the u's and v (w)'s variables. This is done in se
tion 3.1. We will see how to use the

os
illations to get enough de
reasing fun
tions in se
tion 3.2.

3.1 The rosette fa
tor

We have seen in the pre
eding se
tion that the os
illations are expressed in terms of the

vertex variables whereas the propagators are naturally expressed with short and long line

variables. It is not very 
onvenient to deal with two equivalent sets of variables. We are

then going to express the vertex os
illations with the line variables.

In the following we 
all rosette fa
tor the set of all the vertex os
illations plus the

root delta fun
tion. We also distinguish tree lines l and loop lines ℓ
. The �rst step to a


omplete rewriting of the vertex os
illations is a �tree redu
tion�. It 
onsists in expressing

all tree variables in termes of u and v variables. Let a graph G of order n. It has 2(n− 1)
tree positions. The remaining 2n+2 loop and external variables are subsequently written

sj. By using the 
y
li
 symmetry of the verti
es and the delta fun
tions, we get (see [11℄

for a proof):

Lemma 3.1 (Tree redu
tion) The rosette fa
tor after the �srt Filk move is [27, 11℄:

δ(s1 − s2 + · · · − s2n+2 +
∑

l∈T

ul) exp ıϕ (3.1)

where ϕ =

2n+2∑

i<j=0

(−1)i+j+1si ∧ sj +
1

2

∑

l∈T

ε(l)vl ∧ ul +
∑

T ≺T

ul′ ∧ ul

+
∑

{l∈T , i≺l}

ul ∧ (−1)i+1si +
∑

{l∈T , i≻l}

(−1)i+1si ∧ ul.




In 
ase a line belongs to a set 
ontaining both tree and loop lines, we write it l.

10



The next step is to express all the loop variables with the 
orresponding u and w variables.

In [11℄, we 
omputed the result for planar regular graph (g = 0 and B = 1, see appendix
A for graphologi
 de�nitions and also [6, 28℄). Here we need the general 
ase

d

. We

now denote the (true) external variables by sjk , k ∈ J1, NK
def

= [1, N ] ∩ N. We write

∁L0
def

= L+ ∪ L−.

Lemma 3.2 The rosette fa
tor of a general graph is:

δ
( N∑

k=1

(−1)jk+1sjk +
∑

l∈T ∪L0

ul +
∑

ℓ∈L+

wℓ −
∑

ℓ∈L−

wℓ

)
exp ıϕ (3.2)

with ϕ = ϕE + ϕX + ϕU + ϕW ,

ϕE =
N∑

k<l=1

(−1)jk+jl+1sjk ∧ sjl,

ϕX =

N∑

k=1

∑

((T ∪L0)≺jk)
∪(∁L0⊃jk)

(−1)jk+1sjk ∧ ul +
∑

(T ∪L0)≻jk

ul ∧ (−1)jk+1sjk ,

ϕU =
1

2

∑

T

ε(l)vl ∧ ul +
1

2

∑

L

ε(ℓ)wℓ ∧ uℓ

+
1

2

∑

L0⋉L0

ε(ℓ)wℓ ∧ uℓ′ + ε(ℓ′)wℓ′ ∧ uℓ +
1

2

∑

L0⋉∁L0

ε(ℓ)wℓ ∧ uℓ′ − ε(ℓ′)wℓ′ ∧ uℓ

+
1

2

∑

L0⋊∁L0

−ε(ℓ)wℓ ∧ uℓ′ + ε(ℓ′)wℓ′ ∧ uℓ

+
1

2

∑

(L+⋉⋊L−)
∪(L+⋉L+)∪(L−⋉L−)

uℓ ∧ ε(ℓ′)wℓ′ + uℓ′ ∧ ε(ℓ)wℓ

+
∑

((T ∪L0)⊂L0)
∪((T ∪L0)≻∁L0)

ε(ℓ′)wℓ′ ∧ ul +
∑

(∁L0⊂∁L0)
∪((T ∪L0)≺∁L0)

ul ∧ ε(ℓ′)wℓ′

+
∑

(T ∪L0)≺(T ∪L0)

ul′ ∧ ul +
∑

(T ∪L0)⊂∁L0

ul ∧ uℓ′

+
1

2

∑

(L0⋉L0)
∪(L+⋉L+)∪(L−⋉L−)

uℓ′ ∧ uℓ +
1

2

∑

(L0⋉⋊∁L0)
∪(L+⋊L−)∪(L−⋊L+)

uℓ ∧ uℓ′,

d

Stri
tly speaking, we only need, in this paper, the orientable 
ase. Nevertheless the non-orientable

one will follow.
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ϕW =
∑

(∁L0≺jk)
∪(L0⊃jk)

ε(ℓ)wℓ ∧ (−1)jk+1sjk +
∑

∁L0≻jk

(−1)jk+1sjk ∧ ε(ℓ)wℓ

+
1

2

∑

(L0⋉L0)

∪(∁L0⋉∁L0)∪(L0⋉⋊∁L0)

ε(ℓ′)wℓ′ ∧ ε(ℓ)wℓ +
∑

(L0⊃∁L0)
∪(∁L0≺∁L0)

ε(ℓ′)wℓ′ ∧ ε(ℓ)wℓ,

where l(ℓ) belongs to the set on the left-hand-side.

Proof. As explained in se
tion 2.2, the root δ fun
tion is given by

δ
( N∑

k=1

(−1)jk+1sjk +
∑

l∈T ∪L0

ul +
∑

ℓ∈L+

wℓ −
∑

ℓ∈L−

wℓ

)
. (3.3)

We express all the loop �eld variables with the u and w variables. Then the quadrati


term in the external variables is

N∑

k<l=1

(−1)jk+jl+1sjk ∧ sjl . (3.4)

Let an external variable sjk . The linear terms with respe
t to sjk are

ϕjk =
∑

i<jK

(−1)i+1si ∧ (−1)jksjk +
∑

i>jk

(−1)jksjk ∧ (−1)i+1si

+
∑

T ≻jk

(−1)jksjk ∧ ul +
∑

T ≺jk

ul ∧ (−1)jksjk (3.5)

where the si's are all loop variables. Let a loop line ℓ = (i, j) ≺ jk.
Its 
ontribution to ϕjk is:

[
(−1)i+1si + (−1)j+1sj

]
∧ (−1)jksjk . (3.6)

The result in terms of the uℓ and wℓ variables depends on the orientability of the loop

line. From de�nitions 2.3 and 2.4, we have

[
(−1)i+1si + (−1)j+1sj

]
∧ (−1)jksjk (3.7)

= uℓ ∧ (−1)jksjk if ℓ ∈ L0

= − ε(l)wℓ ∧ (−1)jksjk if ℓ ∈ L+ ∪ L−.

In the same way, if a loop line 
ontra
ts above an external variable sjk , its 
ontribution
to ϕjk is:

[
(−1)i+1si + (−1)jsj

]
∧ (−1)jksjk (3.8)

= − ε(l)wℓ ∧ (−1)jksjk if ℓ ∈ L0

= uℓ ∧ (−1)jksjk if ℓ ∈ L+ ∪ L−.
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Finally the linear term for sjk is

ϕjk =
∑

((T ∪L0)≺jk)
∪(∁L0⊃jk)

ul ∧ (−1)jksjk +
∑

(T ∪L0)≻jk

(−1)jksjk ∧ ul (3.9)

+
∑

(∁L0≺jk)
∪(L0⊃jk)

(−1)jksjk ∧ ε(ℓ)wℓ +
∑

∁L0≻jk

ε(ℓ)wℓ ∧ (−1)jksjk .

Let us now 
onsider a loop line ℓ = (p, q). Its 
ontribution to the rosette fa
tor

de
omposes into a �loop-loop� term and a �tree-loop� term. We will detail the �rst one,

the se
ond one being obtained with the same method. The loop-loop term is:

ϕll =
∑

i<p

(−1)i+1si ∧ (−1)psp +
∑

p<i
i 6=q

(−1)psp ∧ (−1)i+1si + (−1)p+q+1sp ∧ sq

+
∑

i<q
i 6=p

(−1)i+1si ∧ (−1)qsq +
∑

q<i

(−1)qsq ∧ (−1)i+1si

=
∑

i<p

(−1)i+1si ∧ [(−1)psp + (−1)qsq] +
∑

q<i

[(−1)psp + (−1)qsq] ∧ (−1)i+1si

+
∑

p<i<q

(−1)i+1si ∧ [(−1)p+1sp + (−1)qsq] + (−1)p+q+1sp ∧ sq . (3.10)

An other loop line ℓ′ = (i, j) has now six possibilities. It may follow or pre
ede ℓ, 
ontain
or be 
ontained in ℓ, 
ross it by the left or the right. Moreover the lines ℓ and ℓ′ may be

orientable or not. I will not exhibit all these di�erent 
ontributions but will explain our

method thanks to two examples.

Let (ℓ, ℓ′) ∈ L2
0 su
h that ℓ′ ⋉ ℓ. The line ℓ′ 
rosses ℓ by the left as de�ned in 2.2.

The 
orresponding term is:

(−1)i+1si ∧ [(−1)psp + (−1)qsq] + (−1)j+1sj ∧ [(−1)p+1sp + (−1)qsq]

= (−1)i+1si ∧ (−uℓ) + (−1)j+1sj ∧ (−ε(ℓ)wℓ)

=
1

2
(uℓ ∧ uℓ′ + ε(ℓ′)wℓ′ ∧ uℓ + ε(ℓ)wℓ ∧ uℓ′ + ε(ℓ)wℓ ∧ ε(ℓ′)wℓ′) . (3.11)

In the same way, if ℓ ∈ L0, ℓ
′ ∈ L+ su
h that ℓ ⊂ ℓ′, we have:

(−1)i+1si ∧ [(−1)psp + (−1)qsq] + [(−1)psp + (−1)qsq] ∧ (−1)j+1sj

= (−1)i+1si ∧ (−uℓ) + (−uℓ) ∧ (−1)j+1sj = uℓ ∧ uℓ′ (3.12)
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We do the same for the other 
ontributions and get:

ϕll =
1

2

∑

L

ε(ℓ)wℓ ∧ uℓ (3.13)

+
∑

(L0⊂L0)
∪(L0≻∁L0)

ε(ℓ′)wℓ′ ∧ uℓ +
∑

(L0≺∁L0)∪(∁L0⊂∁L0)

uℓ ∧ ε(ℓ′)wℓ′

+
1

2

∑

L0⋉L0

ε(ℓ)wℓ ∧ uℓ′ + ε(ℓ′)wℓ′ ∧ uℓ +
1

2

∑

L0⋉∁L0

ε(ℓ)wℓ ∧ uℓ′ − ε(ℓ′)wℓ′ ∧ uℓ

+
1

2

∑

L0⋊∁L0

−ε(ℓ)wℓ ∧ uℓ′ + ε(ℓ′)wℓ′ ∧ uℓ

+
1

2

∑

(L+⋉⋊L−)
∪(L+⋉L+)∪(L−⋉L−)

uℓ ∧ ε(ℓ′)wℓ′ + uℓ′ ∧ ε(ℓ)wℓ

+
1

2

∑

(L0⋉L0)∪(∁L0⋉∁L0)

∪(L0⋉⋊∁L0)

ε(ℓ′)wℓ′ ∧ ε(ℓ)wℓ +
∑

(L0⊃∁L0)
∪(∁L0≺∁L0)

ε(ℓ′)wℓ′ ∧ ε(ℓ)wℓ

+
∑

L0≺L0

uℓ′ ∧ uℓ +
∑

L0⊂∁L0

uℓ ∧ uℓ′

+
1

2

∑

(L0⋉L0)
∪(L+⋉L+)∪(L−⋉L−)

uℓ′ ∧ uℓ +
1

2

∑

(L0⋉⋊∁L0)
∪(L+⋊L−)∪(L−⋊L+)

uℓ ∧ uℓ′

The �tree-loop� term is:

ϕtl =
∑

{l′∈T , l′≺p}

ul′ ∧ (−1)psp +
∑

{l′∈T , l′≻p}

(−1)psp ∧ ul′ (3.14)

+
∑

{l′∈T , l′≺q}

ul′ ∧ (−1)qsq +
∑

{l′∈T , l′≻q}

(−1)qsq ∧ ul′

=
∑

{l′∈T , l′≺p}

ul′ ∧ [(−1)psp + (−1)qsq] +
∑

{l′∈T , l′≻q}

[(−1)psp + (−1)qsq] ∧ ul′

+
∑

{l′∈T , p≺l′≺q}

ul′ ∧
[
(−1)p+1sp + (−1)qsq

]

=
∑

L0≻T

uℓ ∧ ul′ +
∑

(L0≺T )
∪(∁L0⊃T )

ul′ ∧ uℓ

+
∑

(L0⊃T )
∪(∁L0≺T )

ε(ℓ)wℓ ∧ ul′ +
∑

∁L0≻T

ul′ ∧ ε(ℓ)wℓ. �
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Corollary 3.3 The rosette fa
tor of an orientable graph is

δ
( N∑

k=1

(−1)jk+1sjk +
∑

l∈T ∪L

ul
)
exp ıϕ (3.15)

with ϕ = ϕE + ϕX + ϕU + ϕW ,

ϕE =
N∑

k<l=1

(−1)jk+jl+1sjk ∧ sjl,

ϕX =
N∑

k=1

∑

(T ∪L)≺jk

(−1)jk+1sjk ∧ ul +
∑

(T ∪L)≻jk

ul ∧ (−1)jk+1sjk ,

ϕU =
1

2

∑

T

ε(l)vl ∧ ul +
1

2

∑

L

ε(ℓ)wℓ ∧ uℓ

+
1

2

∑

L⋉L

ε(ℓ)wℓ ∧ uℓ′ + ε(ℓ′)wℓ′ ∧ uℓ +
∑

(T ∪L)⊂L

ε(ℓ′)wℓ′ ∧ ul

+
∑

(T ∪L)≺(T ∪L)

ul′ ∧ ul +
1

2

∑

L⋉L

uℓ′ ∧ uℓ,

ϕW =
∑

L⊃jk

(−1)jksjk ∧ ε(ℓ)wℓ +
1

2

∑

L⋉L

ε(ℓ′)wℓ′ ∧ ε(ℓ)wℓ.

Proof. It is enough to set L+ = L− = ∅ in the general expression of lemma 3.2. �

Corollary 3.4 Let a planar regular graph (g = 0 and B = 1). Its rosette fa
tor is

[11℄

δ
( N∑

k=1

(−1)k+1xk +
∑

l∈T ∪L

ul
)
exp ıϕ (3.16)

ave
 ϕ = ϕE + ϕX + ϕU ,

ϕE =

N∑

i<j=1

(−1)i+j+1xi ∧ xj ,

ϕX =

N∑

k=1

∑

(T ∪L)≺k

(−1)k+1xk ∧ ul +
∑

(T ∪L)≻k

ul ∧ (−1)k+1xk,
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ϕU =
1

2

∑

T

ε(l)vl ∧ ul +
1

2

∑

L

ε(ℓ)wℓ ∧ uℓ

+
∑

(T ∪L)⊂L

ε(ℓ′)wℓ′ ∧ ul +
∑

(T ∪L)≺(T ∪L)

ul′ ∧ ul.

Proof. As the graph has only one broken fa
e, there is always an even number of �elds

between two external variables. In this 
ase, jk and k have the same parity. Thus by

swit
hing sjk into xk, the quadrati
 term in the external variables is:

N∑

i<j=1

(−1)i+j+1xi ∧ xj. (3.17)

Moreover the 
onstraints g = 0 and B = 1 imply that the graph is orientable (L = L0).

Indeed, let us 
onsider a 
lashing loop line ℓ joining si to si+2p. These two positions have

same parity. Between the two ends of ℓ are an odd number of positions. Then either ℓ

ontra
ts above an external variable and B > 2, or an other loop line 
rosses it and g > 1.
Finally by skipping from the result of lemma 3.2 the terms 
on
erning 
rossing lines, lines


ontra
ting above external variables and non-orientable lines, we get (3.16). �

3.2 The masslets

Contrary to the Φ4

ase, the Gross-Neveu propagator C i

(2.21) does not 
ontain any

term of the form exp−M−2iw2
(we 
all them masslets) [11℄. This term is repla
ed by an

os
illation of the type u ∧ w. Whereas masslets are not in the propagator, they appear

after integration over the u variables:

∫
d2u e−M2iu2+ıu∧w = KM−2i e−M−2iw2

. (3.18)

Let G a 
onne
ted graph. Its amplitude is

AG =

∫ N∏

i=1

dxi fi(xi)δG
∏

l∈T

duldvl δb(l)Cl(ul, vl)
∏

ℓ∈L

duℓdwℓCℓ(uℓ, wℓ)e
iϕ. (3.19)

The points xi, i ∈ J1, NK are the external positions. For the delta fun
tions, we use

the notations of se
tion 2.2. The total vertex os
illation ϕ is given by the lemma 3.2.

It is 
onvenient to split the propagator into two parts. We de�ne, for all line l ∈ G,
C̄ l(ul) by Cl(ul, vl) = C̄l(ul) e

−ıΩ
2
ǫ(l)ε(l)ul∧vl

. On
e more we repla
e v by w for loop lines.

This splitting allows to gather the propagators os
illations with the vertex ones. The

total os
illation ϕΩ is simply dedu
ed from ϕ by repla
ing the terms

1
2
ε(l)vl ∧ ul by

1
2
(1 + ǫ(l)Ω)ε(l)vl ∧ ul. The graph amplitude be
omes

AG =

∫ N∏

i=1

dxi fi(xi)δG
∏

l∈T

duldvl δb(l)C̄l(ul)
∏

ℓ∈L

duℓdwℓ C̄ℓ(uℓ)e
iϕΩ . (3.20)
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In 
ontrast with the Φ4
theory [11℄, we won't solve the bran
h delta fun
tions. Instead

we keep δG but express the n− 1 other delta fun
tions as os
illating integrals:

δb(l)

( ∑

l′∈b(l)

ul′ +
∑

e∈X (l)

η(e)xe

)
=

∫
d2pl
(2π)2

eıpl·(
∑

l′∈b(l) ul+
∑

e∈X(l) η(e)xe). (3.21)

As already explained in se
tion 2.2, there exists el ∈ X (l) su
h that xel =
1
2
(η(el)ul + vl).

Remark that η(el) = ε(l). Then
∑

l′∈b(l)

ul′ +
∑

e∈X (l)

η(e)xe =
1

2
(ul + ε(l)vl) +

∑

l′∈b(l)

ul′ +
∑

e∈X (l)\{el}

η(e)xe. (3.22)

In the following we will use an additionnal notation. For all line l ∈ T , let us de�ne νl as
the unique vertex su
h that l = lν where lν is de�ned in se
tion 2.2. νl is the vertex just

above l in the tree. We write ϕ′
Ω for the total os
illation where we add the new os
illations

resulting from the delta fun
tions

e

. The graph amplitude is now

AG =

∫ N∏

i=1

dxi fi(xi)δG
∏

l∈T

duldvldpl C̄l(ul)
∏

ℓ∈L

duℓdwℓ C̄ℓ(uℓ)e
iϕ′

Ω . (3.23)

Remark that we have omitted the fa
tors 2π as we have done until now and will go on doing

with the

−λ
4π2 detΘ

vertex fa
tors. To get the masslets, we 
ould, for example, integrate over

the variables ul. This exa
t 
omputation would be the equivalent of equation (3.18). We

should integrate 2n−N/2 
oupled Gaussian fun
tions. We would get Gaussian fun
tions

in some variables Wl whi
h would be linear 
ombinations of wℓ′. Apart from the di�
ulty

of this 
omputation, we should then prove that the obtained de
reasing fun
tions are

independant. For general graphs, it is somewhat di�
ult. Then instead of 
omputing an

exa
t result, we get round the di�
ulty by exploiting the os
illations before integrating

over the u's, v's and w's. The rest of this se
tion is devoted to the proof of

Lemma 3.5 Let G an orientable graph with n verti
es and µ a s
ale attribution. For all

Ω ∈ [0, 1), there exists K ∈ R su
h that the amplitude (3.23), amputed, integrated over

test fun
tions, with the µ attribution, is bounded uniformly in n by

|Aµ
G| 6Kn

∫
dx1 g1(x1 + {a})δG

N∏

i=2

dxi gi(xi)
∏

l∈G

dalM
2ilΞ(al) (3.24)

∏

l∈T

duldVldplM
ile−M2il (ul−ε(l)al)

2
1∏

µ=0

1

1 +M−2ilV2
l,µ

1

1 +M2ilp2l,µ

∏

ℓ∈L

duℓdWℓM
iℓe−M2iℓ (uℓ+{a})2

1∏

µ=0

1

1 +M−2iℓW2
ℓ,µ

with ε(l)Vl =
1
2
(1 + ǫ(l)Ω)ε(l)vl +

∑

ℓ′⊃l

ε(ℓ′)wℓ′ − 1
2
p̃l −

∑

l′∈Pvl

p̃l′, (3.25)

ε(ℓ)Wℓ =
1
2
(1 + ǫ(ℓ)Ω)ε(ℓ)wℓ +

∑

ℓ′⊃ℓ

ε(ℓ′)wℓ′ +
∑

ℓ′⋉ℓ

ε(ℓ′)wℓ′ (3.26)

and p̃ = 1
2
Θp, gi, i ∈ J1, NK and Ξ are test fun
tions su
h that ‖gi‖ 6 sup06p62 ‖f (p)

i ‖.
e

Note that the os
illation is invariant under pl → −pl for all l ∈ G independently.
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Remind that we restri
t our analysis to orientable graphs. We introdu
e a S
hwartz


lass fun
tion ξ ∈ S(R2) whi
h, 
onveniently s
aled, is going to mimi
 the de
rease

of propagators on a s
ale M−il
. We want to get a de
reasing fun
tion in vl without

integrating over ul. We use

1 =

∫
d2al coth(2Ω̃tl)ξ(al coth

1/2(2Ω̃tl)). (3.27)

The 
oupling between this 1 and the rest of the graph is made by an ad ho
 
hange of

variables. We have two 
onstraints on su
h a 
hange. On one hand we want independant

de
reasing fun
tions. On the other hand, for all line l, the de
resase should be of s
ale

f

M il ≃ coth1/2(2Ω̃tl).

We are going to make masslets line by line. Let us write x1 for the root position. Let
a tree line l. We perform the 
hange of variables

{
ul →ul − ε(l)al,

x1 →x1 + η(1)ε(l)al.
(3.28)

It is not di�
ult to 
he
k that ϕ′
Ω → ϕ′

Ω + al ∧ Vl + al ∧ (Ul +Al +Xl) where Vl is given

by (3.25) and Ul, Al and Xl are respe
tively linear 
ombinations of u's, a's and external

variables x's. Please note that su
h a 
hange of variables let the global root delta fun
tion

un
hanged. Writing only the terms in the amplitude AG depending on al, we get

AG,l =

∫
dal

∫ M−2(il−1)

M−2il

dtl coth(2Ω̃tl)ξ(al coth
1/2(2Ω̃tl)) (3.29)

{
ıΩ̃ coth(2Ω̃tl)(ǫε)(l)(/ul − ε(l)/al) + Ω(ǫε)(l)(/̃ul − ǫ(l)/̃al)−m

}

e−
Ω̃
2
coth(2Ω̃tl)(ul−ε(l)al)

2

f1(x1 + η(1)ε(l)al) e
ıal∧(Vl+Ul+Al+Xl)

=

∫
daldtl coth(2Ω̃tl)ξ(al coth

1/2(2Ω̃tl)) e
− Ω̃

2
coth(2Ω̃tl)(ul−ε(l)al)

2

f1(x1 + η(1)ε(l)al)
{
ıΩ̃ coth(2Ω̃tl)(ǫε)(l)(/ul − ε(l)/al) + Ω(ǫε)(l)(/̃ul − ε(l)/̃al)−m

}
eıal∧(Ul+Al+Xl)

1∏

µ=0




coth1/2(2Ω̃tl) +
∂

∂aµ
l

coth1/2(2Ω̃tl) + ıṼl,µ



2

eıal∧Vl. (3.30)

We now integrate by parts over al. The boundary terms vanish. We give here the order

of magnitude of the result. The details of the 
omputation are given in appendix B.

AG,l ≃
∫
daldtl coth(2Ω̃tl)e

ıal∧Vl

1∏

µ=0

(
1

coth1/2(2Ω̃tl) + ıṼl,µ

)2
Ξ(al coth

1/2(2Ω̃tl))

e−
Ω̃
2
coth(2Ω̃tl)(ul−ε(l)al)

2

eıal∧(Ul+Al+Xl)g1(x1 + η(1)ε(l)al)O
(
coth3/2(2Ω̃t)

)
. (3.31)

f

In some 
ases, a line may have a masslet of a s
ale greater than its own index. These 
ases are

restri
ted to a single 
lass of graphs we will detail in se
tion 3.4.
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Then we get the following bound

|AG,l| 6KM−ile−kM2il(ul−ε(l)al)
2

g1(x1 + η(1)ε(l)al)
∏

µ

1

1 +M−2ilV2
l,µ

. (3.32)

Let us now explain how to get the 
orresponding de
reasing fun
tions for the pl vari-
ables. We begin by performing the 
hange of variables vl → Vl for all tree line l. The

determinant of the 
orresponding Ja
obian matrix is 2−(n−1)
∏

l∈T (1 + ǫ(l)Ω). It is non-

vanishing for all Ω ∈ [0, 1). The total os
illation be
omes

ϕ′
Ω =ϕE + ϕX + ϕW +

∑

T

ε(l)Vl ∧ (ul − ε(l)al) +
∑

T

pl ·(
∑

l′∈L∩b(l)

ul +
∑

e∈X (l)\{el}

η(e)xe)

+
∑

T

(1 + ǫ(l)Ω)−1ε(l)Vl ·pl +WR1P + PR2P

+
1

2

∑

L

(1 + ǫ(ℓ)Ω)ε(ℓ)wℓ ∧ uℓ +
1

2

∑

L⋉L

ε(ℓ)wℓ ∧ uℓ′ + ε(ℓ′)wℓ′ ∧ uℓ +
∑

L⊂L

ε(ℓ′)wℓ′ ∧ uℓ

+
∑

(T ∪L)≺(T ∪L)

ul′ ∧ ul +
1

2

∑

L⋉L

uℓ′ ∧ uℓ + AR3A + AR4U + AR5X (3.33)

where we used the notations of 
orollary 3.3 and Ri, i ∈ J1, 5K are skew-symmetri


matri
es. By using

eı(1+ǫ(l)Ω)−1ε(l)Vl·pl =
M−il + (1 + ǫ(l)Ω)ε(l) ∂

∂Vl,µ

M−il + ıpl,µ
eı(1+ǫ(l)Ω)−1ε(l)Vl·pl

(3.34)

and integrating by parts over Vl, we get a de
reasing fun
tion in pl whi
h behaves like

(1 +M2ilp2l )
−1
. We now turn to the loop lines. We also want to get de
reasing fun
tions

for them. Let a loop line ℓ = (xℓ, x
′
ℓ) ∈ L of G with xℓ ≺ x′ℓ. We make the following


hange of variables

g






uℓ →uℓ − ε(ℓ)aℓ,

wℓ →wℓ + aℓ,

x1 →x1 + η(1)ε(ℓ)aℓ.

(3.35)

The 
hanges 
on
erning uℓ and wℓ 
orrespond to �move� xℓ. It is easy to 
he
k that (3.35)

implies ϕ′
Ω → ϕ′

Ω + aℓ ∧Wℓ + aℓ ∧ (Uℓ + Aℓ +Xℓ + Pℓ) where Wℓ is given by (3.26) and

Uℓ, Aℓ, Xℓ and Pℓ are respe
tively linear 
ombinations of u's, a's, external variables x's
and p's. We 
an perform the same type of integration by parts than we used for the tree

variables vl and obtain bounds similar to (3.32). This proves lemma 3.5.

Independan
e of the de
reasing fun
tions Remind that the above pro
edure had

two main goals. First of all we wanted to get de
reasing fun
tions of s
ale il for all vari-
ables vl (wl). This should be 
lear from the pre
eding se
tion. The se
ond aim was the

g

This 
hange of variables is slightly di�erent from the one we used for the tree lines (3.28). This leads

to an easier proof of the independan
e of the de
reasing fun
tions.
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independan
e of those de
reasing fun
tions. Our pro
edure is designed to make transpar-

ent su
h an independan
e.

In se
tion 2, de�nition 2.2 gave a way to partially order the lines. This ordering was

useful to express the vertex os
illations in terms of the u's, v's and w's. But we 
an also

de�ne a total ordering among the lines of a graph. We say that l < l′ if the �rst end (in

the trigonometri
 sense around the tree) of l is met before the �rst end of l′. Then for all

line l ∈ G, Vl (Wl) depends only on vl′'s and wl′ 's with l
′ < l. Let V (W ) and V ′ (W ′) the

ve
tors 
ontaining respe
tively the variables ε(l)vl (ε(ℓ)wℓ) and ε(l)Vl (ε(ℓ)Wℓ). Let M
−1

the Ja
obian matrix of the 
hange of variables (εv εw) → (εV εW): (V ′ W ′) =M(V W ).
The ordering introdu
ed just above allows to prove that M is triangular. Its determinant

is

detM = 2−(2n−N/2)
∏

l∈G

(1 + ǫ(l)Ω). (3.36)

Clearly ∀Ω ∈ [0, 1) , detM 6= 0 and M is invertible. The de
reasing fun
tions in Vl (Wℓ)
are 
onsequently independant.

Remark. With the non-orientable intera
tions (2.9), we were not able to �nd a pro
edure

making the independan
e of the masslets transparent.

3.3 Non-planarity

In the pre
eeding se
tion, we proved that the vertex and propagators os
illations of the

Gross-Neveu model allow to obtain de
reasing fun
tions similar to the masslets of the

(non-
ommutative) Φ4
theory. Here we improve these de
reases if the graph is non-

planar. For this the lemma 3.5 is not su�
ient. Before taking the module of the graph

amplitude, we would like to further exploit the os
illations.

Let T−1
the Ja
obian matrix of the 
hange of variables εw → εW: W ′ = TW . Let

us de�ne the skew-symmetri
 matrix QW with ϕW = WQWW where ϕW is given by


orollary 3.3. After the 
hange of variables W →W ′ = TW , ϕW = W ′Q′
WW

′
with

Q′
W = tT−1QWT

−1
. T being invertible, the rank of Q′

W equals QW 's. Remark that QW is

the interse
tion matrix of the graph. We have the following result rankQW = 2g [13, 5℄.

Let us 
onsider a non-planar graph. The rank of QW being di�erent from zero, there

exists a loop line ℓ su
h that we have an os
illation Wℓ ∧W ′
ℓ with W ′

ℓ =
∑

ℓ′ Q
′
W,ℓℓ′Wℓ +

U+A+X+P . Thanks to lemma 3.5, we know that Wℓ de
reases on a s
aleM iℓ
with the

fun
tion (1+M−2iℓW2
ℓ )

−1
. By an integration by parts similar to (3.30), we get a de
rease

in W ′
ℓ on a s
ale M−iℓ

. This de
rease will be used to integrate over some Wℓ′ 
ontained

in W ′
ℓ. The result of su
h an integration will be of order M−2iℓ

instead of M2iℓ′
. The gain

is then M−2iℓ−2iℓ′
.

3.4 Broken fa
es

We remind that a broken fa
e is a fa
e to whi
h belongs external points (see appendix

A for examples). When we do not 
onsider va
uum graphs, there is always at least

one broken fa
e. By de�nition, it is 
alled the external fa
e. The broken fa
es produ
e
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os
illations of the type x∧w (see lemma 3.2). In the planar 
ase with B > 2 broken fa
es,

we are going to use su
h os
illations to get better de
reases than the ones of the lemma

3.5. Let QXW the skew-symmetri
 matrix representing the os
illations between the x's
and w's variables. After the 
hange of variables W → W ′

, this matrix be
omes

Q′
XW = QXWT

−1. (3.37)

Then rankQ′
XW = rankQXW . Let I a set of 
onse
utive natural numbers indexing some

external variables xk, k ∈ I. These ones os
illate with the variables wℓ, ℓ ∈ BI where BI

is the set of lines 
ontra
ting above those variables. Let us now 
he
k that the variables

xk, k ∈ I os
illate only with Wℓ, ℓ ∈ BI . To this aim, let us assume that two sets X and

Y of external variables os
illate with two other di�erent sets A and B of loop lines:

QXW =

(
A 0
0 B

)
, T =

(
C 0
0 D

)
(3.38)

Q′
XW = QXWT

−1 =

(
AC−1 0
0 BD−1

)
. (3.39)

In the planar 
ase, Wℓ is only fun
tion of wℓ′ with ℓ
′ ⊃ ℓ. T (and T−1

) are then not only

(lower) triangular but also blo
 diagonal. The os
illations between the external variables

xk and the variables Wℓ are

XIQXWT
−1W ′

BI
=
∑

k∈I

η(k)xk ∧ CL(Wℓ, ℓ ∈ BI) (3.40)

where CL means �linear 
ombination�. After the masslets and non-planar 
ases, it should

be 
lear that this new os
illation allows to get a de
reasing fun
tion of s
ale M−minℓ∈BI
iℓ

in the external variables. If these points are �true� external ones (of s
ale −1, integrated
with test fun
tions), we will use it to improve the power 
ounting. Usually external

points are integrated over test fun
tions (the result is of order 1) so that the gain is here

M−2min iℓ
.

4 Power 
ounting

In this se
tion, we use the previous de
reases by adapting them to the multi-s
ale 
ase.

By lemma 3.5, we know that it is possible to get |L| independant de
reasing fun
tions

equivalent to the masslets of the Φ4
theory plus n− 1 masslets for the tree lines 
oupled

to n− 1 strong de
reases. These last two types of de
reasing fun
tions are equivalent to

the bran
h delta fun
tions. The method we use to get the power 
ounting now depends

on the topology of the 
onsidered graph

h

.

We only 
onsider graphs with at least two external legs. The va
uum graphs are 
on-

sidered in appendix C. We use the Gallavotti-Ni
olò tree. We start from its leaves and go

down towards the root whi
h means from the s
ale of the ultraviolet 
ut-o� to the s
ale 0.
Let Gi

k an orientable 
onne
ted 
omponent. For all lines, we �rst get all the masslets by

h

The main result is lemma 4.1, in parti
ular in regard to the power 
ounting of the 
riti
al fun
tion

N = 4, B = 2 whi
h manages the main te
hni
al point in providing renormalizabiblity.
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the method expounded in se
tion 3.2. If Gi
k is planar regular (g = 0, B = 1), we dire
tly

use lemma 3.5. If Gi
k is non-planar (g > 1), we use the W∧W os
illations. Thanks to the

pro
edure explained in se
tion 3.3, we get an additionnal de
rease in some W ′
ℓ, ℓ ∈ Li

k, at

worst of s
ale M−i
. We do the same in any non-planar �primitive� 
onne
ted 
omponents

(i.e. not 
ontaining sub non-planar 
omponents). The 
orresponding improvements are

independant.

If a node of the Gallavotti-Ni
olò tree is planar but has more than one broken fa
e

(B > 2), we 
onsider its number of external legs

i

. If N(Gi
k) > 6, we dire
tly use lemma

3.5. When N(Gi
k) = 4, the number of broken fa
es is 1 or 2. Let us fo
us on the B = 2


ase. At s
ale i, one or several lines 
ontra
t above two external points x′ and y′. In


ontrast with 
ommutative �eld theory, the power 
ounting of this 
onne
ted 
omponent

depends on the s
ales down to 0. Let P the unique path in the Gallavotti-Ni
olò tree

linking Gi
k to G. If there exists a s
ale i0 < i and a 
onne
ted 
omponent Gi0

k′ on P

su
h that N(Gi0
k′) = 2 then there exists lines of s
ales between i and i0 joining x′ to y′.

Let us 
all I the set of su
h lines and im−1 the s
ale of the �rst node after Gi
k on P. If

card I = 1 then Gi
k is logarithmi
ally divergent. If card I > 2 then Gi

k will be 
onvergent

as M−2(i−im−1)
. Finally if there does not exist su
h a Gi0

k′ then G
i
k will be 
onvergent as

M−2(i−im−1)
.

Let us look at the �gure 3 whi
h is simpler than the general situation but exhibits all

its important features. We de�ne I as the insertion made of the lines e1, e2 and of the

graph GI . Note that I may be empty and GI non-planar. The di�erent s
ales entering

I are i0 < i1, . . . , im−1 (< im = i). The 
orresponding 
onne
ted 
omponent at s
ale i0 is
written Gi0

k′. We also write LI for the set of loop lines in the insertion I.

x yx′ y′

e1 e2

i

i

GI

(a) Typi
al situation

x′ y′

e1 e2
GI

(b) Insertion I

Figure 3: Conne
ted 
omponent (potentially) 
riti
al

We �rst get all the s
aled de
reasing fun
tions for all the tree variables vl and pl ex
ept
the lowest tree line t in I. Then, down to s
ale i, we pro
eed for the loop masslets as we

i

It has been noti
ed in [29℄ that orientable graphs 
an't have N = 2 and B = 2. A simple argument

on the Filk rosette [11, 27℄ proves it equally.
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have done for lemma 3.5. The total os
illation may be written

ϕ′
Ω =ϕE + ϕX +

∑

T \{t}

ε(l)Vl ∧ (ul − ε(l)al) +
1

2
(1 + ǫ(t)Ω)ε(t)vt ∧ ut (4.1)

+
∑

T \{t}

(1 + ǫ(l)Ω)−1ε(l)Vl ·pl +
∑

Li
k

ε(ℓ)Wℓ ∧ (uℓ − ε(ℓ)aℓ) +W ′R1P + PR2P + PR3U

+
1

2

∑

LI

(1 + ǫ(ℓ)Ω)ε(ℓ)wℓ ∧ uℓ +
1

2

∑

LI⋉LI

ε(ℓ)wℓ ∧ uℓ′ + ε(ℓ′)wℓ′ ∧ uℓ

+
∑

(LI∪{t})⊂Li
k

W i
k ∧ ul +

∑

(LI∪{t})⊂LI

ε(ℓ′)wℓ′ ∧ uℓ +
∑

k⊂Li
k

W i
k ∧ η(k)xk +WIQWXX

+WIQWWI +
∑

(T ∪L)≺(T ∪L)

ul′ ∧ ul +
1

2

∑

LI⋉LI

uℓ′ ∧ uℓ + AR4A+ AR5U + AR6X

where we wrote WI (W i
k) for a linear 
ombination of Wℓ, ℓ ∈ LI (Li

k). Let us pi
k one

Wℓ, ℓ ∈ Li
k. We use the os
illationWℓ∧

(∑
(LI∪{t})⊂ℓ ul+

∑
k⊂ℓ η(k)xk

)
to get a de
reasing

fun
tion s implementing

∣∣∑
LI∪{t}

ul +
∑

k⊂ℓ η(k)xk
∣∣ 6M−i

.

If there are external points over�own by the line ℓ, there exists k su
h that xk
def

= z ⊂ ℓ.
Then for all line in LI∪{t}, we perform the 
hange of variables (3.28) and (3.35) but with

z in pla
e of x1. These modi�
ations let the fun
tion s independant the al, l ∈ LI ∪ {t}.
This allows to get for all line l ∈ LI ∪ {t} a masslet of index il.

If there are no external point apart from x and y in Gi0
k′ (see �gure 3), the fun
tion

s only depends on

∑
(LI∪{t})⊂ℓ ul and Gi0

k′ is a two-point graph. Let us write ℓ0 for the

lowest line in I, iℓ0 = i0. Note that it is ne
essarily a loop line. For all line ℓ ∈ LI \ {ℓ0},
we perform





uℓ →uℓ − ε(ℓ)aℓ,

wℓ →wℓ + aℓ,

uℓ0 →uℓ0 + ε(ℓ)aℓ,

wℓ0 →wℓ − ε(ℓ0)ε(ℓ)aℓ.

(4.2)

This let uℓ+uℓ0 (and s) �xed. Then for all line ℓ ∈ LI \{ℓ0}, we get a de
reasing fun
tion
in Wℓ− ε(ℓ)ε(ℓ0)Wℓ0 of index iℓ. All these fun
tions are independant. For ℓ0, we perform





uℓ0 →uℓ0 − ε(ℓ0)aℓ0,

wℓ0 →wℓ0 + aℓ0 ,

ut →ut + ε(ℓ0)aℓ0 .

(4.3)

We get a de
reasing fun
tion allowing to integrate over Wℓ0 at the 
ost of M it > M i0
.

Finally for the tree line t, we use the usual 
hange of variables (3.28). This introdu
es at
in s. The masslet we get for Vt is then of order M i

. Fortunately the 
orresponding strong

de
rease for pt is of order M
−i
. We re
over the fa
t that the long tree line variables do

not 
ost anything.

Let us 
all 
riti
al a four-point 
onne
ted 
omponent with N = 4, g = 0, B = 2 and the

insertion I redu
ed to a single line. We are now ready to prove the following lemma
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Lemma 4.1 (Power 
ounting) Let G an orientable 
onne
ted graph. For all Ω ∈ [0, 1),
there exists K ∈ R su
h that its amputed amplitude Aµ

G integrated over test fun
tions (see

(3.23)) is bounded by

|Aµ
G| 6Kn

∏

i,k

M− 1
2
ω(Gi

k
)

(4.4)

with ω(Gi
k) =





N − 4 if (N = 2 or N > 6) and g = 0,

if N = 4, g = 0 and B = 1,

if Gi
k is 
riti
al,

N if N = 4, g = 0, B = 2 and Gi
k non-
riti
al,

N + 4 if g > 1.

(4.5)

Remark. This bound is not optimal but su�
ient to prove the perturbative renormaliz-

ability of the theory. After the study of the propagator in the matrix basis [10℄, we 
ould

get the true power 
ounting in parti
ular the genus dependan
e. Con
erning the broken

fa
es, the bound (4.4) is almost optimal. For the four-point fun
tion, it is. But for six (or

more)-point fun
tions, we did not try to improve our bound. Nevertheless remark that

for su
h fun
tions, similar situations to the four-point one may happen. The �external�

points in additionnal broken fa
es may be linked by only one lower line. In this situation,

the broken fa
es do not improve the power 
ounting even for six (or more)-point fun
tions.

This is one of the di�eren
es between the Gross-Neveu model and the Φ4
's one.

Proof. Lemma 3.5 allows to bound the amplitude of a 
onne
ted orientable graph G by

|Aµ
G| 6Kn

∫
dx1 g1(x1 + {a})δG

N∏

i=2

dxi gi(xi)
∏

l∈G

dalM
2ilΞ(al) (4.6)

∏

l∈T

duldVldplM
ile−M2il (ul−ε(l)al)

2
1∏

µ=0

1

1 +M−2ilV2
l,µ

1

1 +M2ilp2l,µ

∏

ℓ∈L

duℓdWℓM
iℓM iℓe−M2iℓ (uℓ+{a})2

1∏

µ=0

1

1 +M−2iℓW2
ℓ,µ

where K ∈ R and gi, i ∈ J1, NK and Ξ are S
hwartz-
lass fun
tions. The δG fun
tion


orresponding to the root delta fun
tion is given by (see se
tion 2.2)

δG

( ∑

i∈E(G)

η(i)xi +
∑

l∈T ∪L

ul

)
. (4.7)

We use it to integrate over one of the external positions. The other ones are integrated

with the gi's fun
tions. The bound (4.6) on the absolute value of the amplitude be
omes

|Aµ
G| 6Kn

∫ ∏

l∈G

dalM
2ilΞ(al)

∏

ℓ∈L

duℓdWℓM
iℓM iℓe−M2iℓ(uℓ+{a})2

1∏

µ=0

1

1 +M−2iℓW2
ℓ,µ

(4.8)

∏

l∈T

duldVldplM
ile−M2il (ul−ε(l)al)

2
1∏

µ=0

1

1 +M−2ilV2
l,µ

1

1 +M2ilp2l,µ
.
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The integrations over the aℓ variables 
ost O(1). For all line l in the graph, integration

over ul is of order O(M−2il). The integration over vl (resp. wl) is of order O(M2il). But
for tree lines, this is 
ompensated by the integration over pl whi
h gives O(M−2il). Then
the loops only 
ost O(1) whereas the tree lines earn O(M−2il). We have the following

bound

|Aµ
G| 6Kn

∏

l∈G

M il
∏

l∈T

M−2il

6K ′n
∏

l∈G

M il+1
∏

l∈T

M−2(il+1). (4.9)

We may now distribute the power 
ounting among the 
onne
ted 
omponents [19℄ :

∏

l∈G

M il+1 =
∏

l∈G

il∏

i=0

M =
∏

l∈G

∏

(i,k)∈N2/
l∈Gi

k

M =
∏

(i,k)∈N2

∏

l∈Gi
k

M, (4.10)

∏

l∈T

M−2(il+1) =
∏

l∈T

∏

(i,k)∈N2/
l∈Gi

k

M−2 =
∏

(i,k)∈N2

∏

l∈T i
k

M−2. (4.11)

Then, 
hanging K ′
into K, the amplitude of a 
onne
ted orientable graph is bounded by

|Aµ
G| 6Kn(G)

∏

(i,k)∈N2

M− 1
2
ω(Gi

k
), (4.12)

where ω(Gi
k) =N(Gi

k)− 4 (4.13)

whi
h proves the �rst part of lemma 4.1.

If a 
onne
ted 
omponent Gi
k is non-planar, there exists ℓ, ℓ′ ∈ Gi

k su
h that the

integration over Wℓ gives M−2iℓ′ 6 M−2i
instead of M2iℓ

(see se
tion 3.3). The gain

with respe
t to (4.13) is at least M−4i
. The super�
ial degree of 
onvergen
e be
omes

ω(Gi
k) = N(Gi

k) + 4.

Finally let a 
onne
ted 
omponent Gi
k with four external legs and two broken fa
es.

With the notations previously de�ned, if Gi0
k′ has more than two external points, we use

the fun
tion s to integrate over one of these external positions. This brings M−2i
instead

of O(1). Let us write P for the path in the Gallavotti-Ni
olò tree between Gi
k and G.

The fa
tor M−2i
improves the super�
ial degree of 
onvergen
e of all the nodes in P

with N = 4, B = 2. It be
omes ω(Gi
k) = N(Gi

k). If Gi0
k′ is a two-point graph, we use

s to integrate over the u variable of the lowest line in I. This brings M−2i
instead of

M−2i0
. The gain with respe
t to (4.13) is then M−2(i−i0)

. But the integration over Wℓ0


ostsM2it
instead ofM2iℓ0

. The total gain is then onlyM−2(i−it)
. This additionnal fa
tor

allows to improve the power 
ounting of all the four-point 
omponents with B = 2 in P

between Gi
k and the s
ale it. Their power 
ounting in
rease from N − 4 to N . But note

that between it (the s
ale of the lowest tree line in I) and i0, only loop lines may appear

in the subgraphs. Then the number of external points may only stri
tly de
rease in P

from s
ale it to s
ale i0. G
i0
k′ being a two-point graph, there may be only one divergent
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onne
ted 
omponent in P between it and i0. It is a four-point graph with B = 2 at

s
ale i1 (the lowest s
ale in I above i0). Moreover this happens only if there is only one

loop line of s
ale i0. This 
omponent is 
riti
al (by de�nition) and we 
an't improve its

power 
ounting whi
h remains N − 4. This proves lemma 4.1. �

5 Renormalization

Thanks to the power 
ounting proved in lemma 4.1, we know that the only divergent

subgraphs are the planar two- and four-point ones. More pre
isely the only divergent

two-point graphs have one broken fa
e. The divergent four-point ones have either one

broken fa
e or are 
riti
al whi
h means they have N = 4, g = 0, B = 2 and the two

�external� points belonging to the se
ond broken fa
e are linked by one (and only one)

line of lower s
ale. We are going to prove that the divergent parts of those graphs are of

the form of the initial Lagrangian.

5.1 The four-point fun
tion

5.1.1 B = 1

Let a planar four-point subgraph with one broken fa
e needing renormalization. It is

then a node of the Gallavotti-Ni
olò tree. There exists (i, k) ∈ N2
su
h that N(Gi

k) =
4, g(Gi

k) = 0, B(Gi
k) = 1. The four external points of this amputed graph are written

xj , j ∈ J1, 4K. The amplitude asso
iated to the 
onne
ted 
omponent Gi
k is

Aµ

Gi
k

({xj}) =
∫ 4∏

i=1

dxi ψ̄e(x1)ψe(x2)ψ̄e(x3)ψe(x4)δGi
k
eıϕ

′
Ω

(5.1)

∏

l∈T i
k

duldvldpl C̄
il
l (ul)

∏

ℓ∈Li
k

duℓdwℓ C̄
iℓ
ℓ (uℓ)

where e is the biggest external index of the subgraph Gi
k and ψe, ψ̄e are �elds of indi
es

lower or equal to e < i. We will perform a �rst order Taylor expansion whi
h will allow

to de
ouple the external variables xj from the internal ones u and p and identify the

divergent part of the amplitude. We introdu
e a parameter s in three di�erent pla
es.

First of all, we expand the delta fun
tion δGi
k
as

δGi
k

(
∆+ sU

)∣∣∣
s=1

=δ(∆) +

∫ 1

0

dsU · ∇δ(∆ + sU) (5.2)

where ∆ =x1 − x2 + x3 − x4 and U =
∑

l∈Gi
k

ul.

For orientable graphs, the �elds ψ̄ are asso
iated to odd positions and the ψ's to even

ones. Moreover if the graph is planar regular, 
orollary 3.4 gives the exa
t value of the root

delta fun
tion, in parti
ular the alternating signs. This 
orollary also gives the external

os
illation ϕE . The remaining os
illation ϕ′
Ω is now expanded. It is given by 
orollary 3.4
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and by the bran
h delta fun
tions os
illations. With (hopefully) self-explaining notations,

it may be written

ϕ′
Ω(s = 1) = ϕE +XQXUU +XQXPP + UQUU + PQPP + UQUWW + PQPWW. (5.3)

Remark that QXW = QW = 0 for planar regular graphs. We write

exp ı(XQXUU +XQXPP + UQUU + PQPP ) (5.4)

=1 + ı

∫ 1

0

ds (XQXUU +XQXPP + UQUU + PQPP )e
ıs(XQXUU+XQXPP )+ıUQUU+ıPQPP .

Finally we also expand the internal propagators. For all line l ∈ Gi
k,

C̄l(ul, s = 1) =
Ω

θπ

∫ ∞

0

dtl e
−tlm

2

sinh(2Ω̃tl)
e−

Ω̃
2
coth(2Ω̃tl)u

2
l

(
ıΩ̃ coth(2Ω̃tl)ǫ(l)ε(l)/ul (5.5)

+ sΩǫ(l)ε(l)/̃ul + sm
)(

cosh(2Ω̃tl)12 − sı θ
2
sinh(2Ω̃tl)γΘ

−1γ
)∣∣∣

s=1

=
2ıΩ2

θ2π

∫ ∞

0

dtl e
−tlm

2

tanh(2Ω̃tl)
e−

Ω̃
2
coth(2Ω̃tl)u

2
l coth(2Ω̃tl)ǫ(l)ε(l)/ul

+
Ω

θπ

∫ 1

0

ds

∫ ∞

0

dtl e
−tlm

2

sinh(2Ω̃tl)
e−

Ω̃
2
coth(2Ω̃tl)u

2
l

×
{
(Ωǫ(l)ε(l)/̃ul +m)

(
cosh(2Ω̃tl)12 − sı θ

2
sinh(2Ω̃tl)γΘ

−1γ
)

− ı θ
2
sinh(2Ω̃tl)

(
ıΩ̃ coth(2Ω̃tl)ǫ(l)ε(l)/ul + sΩǫ(l)ε(l)/̃ul + sm

)
γΘ−1γ

}
.

Let τA be the 
ounterterm asso
iated to the 
onne
ted 
omponent Gi
k. It 
orresponds to

the zeroth order terms of the three pre
eding expansions :

τAµ

Gi
k

=

∫ 4∏

i=1

dxi ψ̄e(x1)ψe(x2)ψ̄e(x3)ψe(x4)δ(∆)eıϕE
(5.6)

×
∫ ∏

l∈T i
k

duldvldpl C̄
il
l (ul, s = 0)

∏

ℓ∈Li
k

duℓdwℓ C̄
iℓ
ℓ (uℓ, s = 0)eıϕ

′
Ω(s=0)

where ϕE =
∑4

i<j=1(−1)i+j+1xi ∧ xj . Then the 
ounterterm is of the form

τAµ

Gi
k

=

∫
dx
(
ψ̄e ⋆ ψe ⋆ ψ̄e ⋆ ψe

)
(x) (5.7)

×
∫ ∏

l∈T i
k

duldvldpl C̄
il
l (ul, s = 0)

∏

ℓ∈Li
k

duℓdwℓ C̄
iℓ
ℓ (uℓ, s = 0)eıϕ

′
Ω(s=0).

To prove that τA looks like the initial vertex, it remains to show that its spinorial stru
ture

is one of those of equation (2.8). Apart from the os
illations and the exponential de
reases

of the propagators, the 
ounterterm τA involves

P =
∏

l∈G

/ul =
∏

l∈G

(
γ0u0l + γ1u1l

)
=

2n−N/2∏

i=1

Pi. (5.8)
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Ea
h of the 22n−N/2
terms Pi in P 
onsist in 
hoosing for ea
h line l ∈ G either γ0u0l or

γ1u1l . Ea
h Pi has n
0
i u

0
and n1

i u
1
. Note that, apart from P , the 
ounterterm τA is

invariant under: ∀l ∈ G, u0l → −u0l and w1
l → −w1

l . Then the only non vanishing Pi have

even n0
i . With a similar argument we prove that n1

i is also even. Ea
h term in τA then


onsists in even numbers of γ0 and γ1. For the four-point fun
tion, the Taylor expansion
(5.5) is possible be
ause the number of internal lines is even (it is 2(n − 1)). We now

de�ne the notions of 
hain and 
y
le.

De�nition 5.1 (Chain and 
y
le). We say that two �elds are in the same 
hain

• if they both belong to a same s
alar produ
t at a vertex

j

,

• if they are linked by a propagator.

A 
y
le is a 
losed 
hain.

The external �elds are linked by 
hains. The other (internal) �elds belong to 
y
les. The

γ0 and γ1 matri
es are distributed among 
hains and 
y
les. Ea
h 
y
le 
orresponds, up

to a sign, to a term Tr ((γ0)p(γ1)q). It does not vanish only if p and q are even. Knowing
that the total number of γ0 is even, that the total number of γ1 is even and that ea
h 
y
le


ontains even numbers of γ0 and γ1, the 
hains of the graph share an even number of γ0

and an even number of γ1. There are two 
hains in the four-point fun
tion graphs. There

are then four possibilities to distribute the gamma matri
es among these two 
hains. Ea
h

may 
ontain an even or an odd number of γ0 or γ1.

Depending on the number and the type of the verti
es in these two 
hains, they may

link either a ψ to a ψ̄ or two �elds of the same kind. We are fa
ed to twelve di�erent

spinorial stru
tures:

ψ ⋆
[(
γ0
)2p (

γ1
)2q]

ψ̄ ⋆ ψ ⋆
[(
γ0
)2p′ (

γ1
)2q′]

ψ̄ =± ψ ⋆ 1ψ̄ ⋆ ψ ⋆ 1ψ̄, (5.9a)

ψ ⋆
[(
γ0
)2p+1 (

γ1
)2q]

ψ̄ ⋆ ψ ⋆
[(
γ0
)2p′+1 (

γ1
)2q′]

ψ̄ =± ψ ⋆ γ0ψ̄ ⋆ ψ ⋆ γ0ψ̄, (5.9b)

ψ ⋆
[(
γ0
)2p (

γ1
)2q+1

]
ψ̄ ⋆ ψ ⋆

[(
γ0
)2p′ (

γ1
)2q′+1

]
ψ̄ =± ψ ⋆ γ1ψ̄ ⋆ ψ ⋆ γ1ψ̄, (5.9
)

ψ ⋆
[(
γ0
)2p+1 (

γ1
)2q+1

]
ψ̄ ⋆ ψ ⋆

[(
γ0
)2p′+1 (

γ1
)2q′+1

]
ψ̄ =± ψ ⋆ γ0γ1ψ̄ ⋆ ψ ⋆ γ0γ1ψ̄.

(5.9d)

j

For example, the �rst two �elds in the intera
tion (2.8a) belong to a same s
alar produ
t.
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In the same way, we 
an meet

±ψ̄ ⋆ 1ψ ⋆ ψ̄ ⋆ 1ψ, (5.10a)

±ψ̄ ⋆ γ0ψ ⋆ ψ̄ ⋆ γ0ψ, (5.10b)

±ψ̄ ⋆ γ1ψ ⋆ ψ̄ ⋆ γ1ψ, (5.10
)

±ψ̄ ⋆ γ0γ1ψ ⋆ ψ̄ ⋆ γ0γ1ψ, (5.10d)

±ψ̄a ⋆ ψc ⋆ ψ̄b ⋆ ψd1ab1cd, (5.11a)

±ψ̄a ⋆ ψc ⋆ ψ̄b ⋆ ψdγ
0
abγ

0
cd, (5.11b)

±ψ̄a ⋆ ψc ⋆ ψ̄b ⋆ ψdγ
1
abγ

1
cd, (5.11
)

±ψ̄a ⋆ ψc ⋆ ψ̄b ⋆ ψd

(
γ0γ1

)
ab

(
γ0γ1

)
cd
. (5.11d)

To prove that the divergen
e of the four-point fun
tion is of the form of the original

verti
es (2.8), it is 
onvenient to rewrite them in a di�erent way.

Non-
ommutative Fierz identities A basis for MD(C) is given by a representa-

tion of the Cli�ord algebra {γµ, γν} = −Dδµν of dimension D. In dimension 2, B =
{Γ0 = 1,Γ1 = γ0,Γ2 = γ1,Γ3 = γ0γ1} is a basis for M2(C). Then let M ∈M2(C),

M =− 1

2

3∑

A,B=0

ηAB Tr(MΓA)ΓB, (5.12)

with η =diag(−1, 1, 1, 1).

We now use su
h a de
omposition to rewrite the intera
tions of the model under a di�erent

form. For example, let us 
onsider intera
tion (2.8b). If we de�ne Mab = ψ̄b ⋆ ψa and use

(5.12), we have

ψ̄b ⋆ ψa =− 1

2

∑

A,B

ηABψ̄b′ ⋆ ψa′Γ
A
b′a′Γ

B
ab. (5.13)

This allows to write

∫
ψa ⋆ ψ̄a ⋆ ψb ⋆ ψ̄b =

∫
ψ̄b ⋆ ψa ⋆ ψ̄a ⋆ ψb = −1

2

∑

A,B

ηAB

∫
ψ̄ ⋆ ΓAψ ⋆ ψ̄ ⋆ ΓBψ. (5.14)

In the same way, for intera
tion (2.8
), we use the de
omposition

Mba =ψ̄a ⋆ ψb = −1

2

∑

A,B

ηABψ̄a′ ⋆ ψb′Γ
A
a′b′Γ

B
ba (5.15)
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and write

∑

a,b

∫
ψ̄a ⋆ ψb ⋆ ψ̄a ⋆ ψb =− 1

2

∑

A,B

ηAB

∫
ψ̄ ⋆ ΓAψ ⋆ ψ̄ ⋆ tΓBψ

=− 1

2

∑

A,B

∫
g3ABψ̄ ⋆ Γ

Aψ ⋆ ψ̄ ⋆ ΓBψ (5.16)

with g3AB = diag(−1, 1, 1,−1). We do the same for the three other intera
tions. The

six possible intera
tions are given in table

k

5.1.1. As a 
on
lusion, the three orientable

intera
tions (2.8) may be written as linear 
ombinations of

∫
ψ̄ ⋆ 1ψ ⋆ ψ̄ ⋆ 1ψ, (5.17a)

∫
ψ̄ ⋆ γµψ ⋆ ψ̄ ⋆ γµψ and (5.17b)

∫
ψ̄ ⋆ γ0γ1ψ ⋆ ψ̄ ⋆ γ0γ1ψ (5.17
)

whereas the non-orientable ones (2.9) may be written in fun
tion of

∫
ψ ⋆ 1ψ̄ ⋆ ψ̄ ⋆ 1ψ, (5.18a)

∫
ψ ⋆ γµψ̄ ⋆ ψ̄ ⋆ γµψ and (5.18b)

∫
ψ ⋆ γ0γ1ψ̄ ⋆ ψ̄ ⋆ γ0γ1ψ. (5.18
)

In equations (5.17b) and (5.18b), the sum over µ is impli
it.

k

Remind that we restri
t our proof to the orientable 
ase.
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Intera
tions of the non-
ommutative Gross-Neveu model

Orientable Non-orientable

•
∑

a,b

∫
dx
(
ψ̄a ⋆ ψa ⋆ ψ̄b ⋆ ψb

)
(x) •

∑

a,b

∫
dx
(
ψ̄a ⋆ ψ̄b ⋆ ψb ⋆ ψa

)
(x)

= −1

2

∑

A,B

∫
g1ABψ̄ ⋆ Γ

Aψ ⋆ ψ̄ ⋆ ΓBψ = −1

2

∑

A,B

∫
g1ABψ ⋆ Γ

Aψ̄ ⋆ ψ̄ ⋆ ΓBψ

•
∑

a,b

∫
dx
(
ψa ⋆ ψ̄a ⋆ ψb ⋆ ψ̄b

)
(x) •

∑

a,b

∫
dx
(
ψ̄a ⋆ ψ̄a ⋆ ψb ⋆ ψb

)
(x)

= −1

2

∑

A,B

∫
g2ABψ̄ ⋆ Γ

Aψ ⋆ ψ̄ ⋆ ΓBψ = −1

2

∑

A,B

∫
g2ABψ ⋆ Γ

Aψ̄ ⋆ ψ̄ ⋆ ΓBψ

•
∑

a,b

∫
dx
(
ψ̄a ⋆ ψb ⋆ ψ̄a ⋆ ψb

)
(x) •

∑

a,b

∫
dx
(
ψ̄a ⋆ ψ̄b ⋆ ψa ⋆ ψb

)
(x)

= −1

2

∑

A,B

∫
g3ABψ̄ ⋆ Γ

Aψ ⋆ ψ̄ ⋆ ΓBψ = −1

2

∑

A,B

∫
g3ABψ ⋆ Γ

Aψ̄ ⋆ ψ̄ ⋆ ΓBψ

g1 = diag(−2, 0, 0, 0), g2 = η = diag(−1, 1, 1, 1), g3 = diag(−1, 1, 1,−1)

∀A ∈ J1, 4K, ΓA ∈ B =
{
Γ0 = 1,Γ1 = γ0,Γ2 = γ1,Γ3 = γ0γ1

}

Table 1: The intera
tions and their di�erent formulations

3
1



We now show that for all ΓC ∈ B, ψ ⋆ ΓCψ̄ ⋆ ψ ⋆ ΓCψ̄, ψ̄ ⋆ ΓCψ ⋆ ψ̄ ⋆ ΓCψ and ψ̄a ⋆ ψc ⋆
ψ̄b ⋆ ψdΓ

C
abΓ

C
cd may be expressed in fun
tion of the orientable intera
tions of table 5.1.1

with the help of a symmetry of the model.

∫
ψ ⋆ ΓCψ̄ ⋆ ψ ⋆ ΓCψ̄ =

∫
ψ̄d ⋆ ψa ⋆ ψ̄b ⋆ ψcΓ

C
abΓ

C
cd (5.19)

=− 1

2

∑

A,B

ηABψ̄ ⋆ Γ
Aψ ⋆ ψ̄ ⋆ tΓCΓB tΓCψ

tΓCΓB tΓC =





ΓB
if ΓC = 1

gBB′ΓB′

with g = diag(−1, 1, 1− 1) if ΓC = γ0γ1

gBB′ΓB′

with g = diag(−1,−1, 1, 1) if ΓC = γ0

gBB′ΓB′

with g = diag(−1, 1,−1, 1) if ΓC = γ1

(5.20)

Then we have

∫
ψ ⋆ ΓCψ̄ ⋆ ψ ⋆ ΓCψ̄ =− 1

2

∑

A,B

gABψ̄ ⋆ Γ
Aψ ⋆ ψ̄ ⋆ ΓBψ (5.21)

with g =






diag(−1, 1, 1, 1) if ΓC = 1

diag(1, 1, 1− 1) if ΓC = γ0γ1

diag(1,−1, 1, 1) if ΓC = γ0

diag(1, 1,−1, 1) if ΓC = γ1.

(5.22)

If ΓC = 1 or γ0γ1, the intera
tion (5.21) may be written in fun
tion of the intera
tions

(5.17). On the 
ontrary, if ΓC = γ0 or γ1 independently, it is impossible. Fortunately

there exists a symmetry implying that the 
ounterterms asso
iated to intera
tion (5.21)

for ΓC = γ0 and γ1 are equal. Ea
h term Pi in the polynomial P (5.8) 
onsists indeed to


hoose, for ea
h line in the graph, either γ0 or γ1. To ea
h of these terms is 
anoni
ally

asso
iated an other term P̄i = Pj, j 6= i for whi
h we have done exa
tly the inverse 
hoi
e.

Then to get P̄i, we 
onsider Pi and 
hange γ0 into γ1, u0l into u1l and vi
e-versa. Ea
h


ounterterm, asso
iated to a Pi, is made of a produ
t of gamma matri
es and of integrals

over the variables ul, pl, vl and wl. The rotation

∀l ∈ G, u0l →u1l (5.23)

u1l →− u0l
w0

l (v
0
l ) →w1

l (v
1
l )

w1
l (v

1
l ) →− w0

l (−v0l )

shows that the integrals in P̄i equals the ones in Pi (the total number of u1l is even). Let us
have a look at the produ
ts of gamma matri
es. Let N ∈ N and ∀j ∈ J0, 2N +1K, nj ∈ N.

Pγ =
N∏

i=0

(
γ0
)n2i

(
γ1
)n2i+1

=

N∏

i=0

(−1)[
n2i
2 ]+[

n2i+1
2 ] (γ0

) 1−(−1)n2i

2
(
γ1
) 1−(−1)

n2i+1

2 . (5.24)
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Ea
h produ
t of γ0 (resp. γ1) has been redu
ed thanks to (γ0)
2
= (γ1)

2
= −1. The

produ
t Pγ equals, up to a sign, an alternating produ
t P a

γ of γ0 and γ1. In the same way,

P̄γ =

N∏

i=0

(
γ1
)n2i

(
γ0
)n2i+1

=
N∏

i=0

(−1)[
n2i
2 ]+[

n2i+1
2 ] (γ1

) 1−(−1)n2i

2
(
γ0
) 1−(−1)

n2i+1

2 . (5.25)

Let us remark that the signs in front of P a

γ and P̄ a

γ are the same. Let na

0 and n
a

1 the total

number of γ0 (resp. γ1) in P a

γ . This produ
t P
a

γ may be

1. γ0γ1 · · · γ0γ1, na

0 = na

1.

P a

γ =

{
(−1)p1 if na

0 = na

1 = 2p

(−1)pγ0γ1 if na

0 = na

1 = 2p+ 1
(5.26)

2. γ1γ0 · · · γ1γ0, na

0 = na

1.

P a

γ =

{
(−1)p1 if na

0 = na

1 = 2p

(−1)pγ1γ0 if na

0 = na

1 = 2p+ 1
(5.27)

3. γ0γ1 · · · γ0γ1γ0, na

0 = na

1 + 1.

P a

γ =

{
(−1)pγ0 if na

1 = 2p

(−1)pγ1 if na

1 = 2p+ 1
(5.28)

4. γ1γ0 · · · γ1γ0γ1, na

1 = na

0 + 1.

P a

γ =

{
(−1)pγ1 if na

0 = 2p

(−1)pγ0 if na

0 = 2p+ 1
(5.29)

Let us apply those results to the 
hains and 
y
les of a graph. First of all, remark that

the numbers of γ0 and γ1 in the alternating produ
thave the same parity as the total

numbers in Pγ. Ea
h 
y
le 
ontains an even number of γ0 and γ1 and then 
orresponds to

situations of the type (5.26) or (5.27). These are exa
tly symmetri
 under the ex
hange

γ0 ↔ γ1. When the two 
hains of a four-point graph 
ontain an odd number of γ0 and an

even number of γ1, we are fa
ed to situations 3 or 4. They are symmetri
 under the ex-


hange γ0 ↔ γ1. The relative sign between the produ
ts P a

γ and P̄ a

γ is + and (espe
ially)

only depends on the parities of the total numbers of γ0 and γ1. This sign doesn't depend

on the 
on�guration of the produ
ts of matri
es i.e. it doesn't depend on the nj in (5.24).

Then the 
ounterterm ψΓCψ̄ψΓCψ̄ may only be of the form ψ1ψ̄ψ1ψ̄, ψγ0γ1ψ̄ψγ0γ1ψ̄
or ψγµψ̄ψγµψ̄. The result is the same for the two others ψ̄ΓCψψ̄ΓCψ and ψ̄aψcψ̄bψdΓ

C
abΓ

C
cd.

The sum of the last two intera
tions in (5.22) is a linear 
ombination of the initial inter-

a
tions. We would 
he
k it in the same way for ψ̄aψcψ̄bψdΓ
C
abΓ

C
cd. This proves that τA is
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of the form of the initial verti
es.

As expe
ted for the four-point fun
tion, τA is logarithmi
ally divergent. To 
he
k it,

it is su�
ient to redo the pro
edure used in se
tion 3.2 with the 
hange of variables (3.28)

and (3.35) but without x1 (the external variables are de
oupled form the internal ones

in the 
ounerterm). The remainder (1 − τ)A is 
omposed of four di�erent terms. Ea
h

improves the power 
ounting and makes (1− τ)A 
onvergent as i− e→ ∞ :

• U · ∇δ(∆ + sU). Integrating by parts over an external variable, the ∇ a
ts on an

external �eld and gives at most Me
. U gives at least M−i

.

• XQXUU , XQXPP . X brings Me
and U (resp. P ) M−i

.

• UQUU , PQPP give at least M−2i
,

• the expansion (5.5) of the propagators gives M−i
.

As a 
on
lusion, these termes improves the power 
ounting by M−(i−e)
whi
h makes

(1− τ)A 
onvergent and irrelevant for renormalization.

5.1.2 B = 2, 
riti
al

The power 
ounting proved in (4.4) let us think that the 
riti
al 
onne
ted 
omponents

are logarithmi
ally divergent. Exa
t 
omputations on simple graphs and the behaviour

of the theory in the matrix basis 
on�rm this fa
t. But the divergent part of these

graphs are not of the form of the initial Lagrangian and parti
ularly not of a Moyal type.

Despite su
h a divergen
e, we won't renormalize those graphs. In fa
t, we will prove in

se
tion 5.2.2 that the renormalization of the 
orresponding two-point fun
tion is su�
ient

to make the 
omplete graph 
onvergent, in
luding the 
riti
al sub-divergen
e. Let i the
s
ale of the 
riti
al 
omponent and j < i the s
ale of the 
orresponding two-point fun
tion.
The remainder terms in the renormalization of this two-point fun
tion will give M−(i−e)

(< M−(j−e)).

5.2 The two-point fun
tion

5.2.1 The regular 
ase

Let a two-point planar subgraph needing renormalization. There exists (i, k) ∈ N2
su
h

that N(Gi
k) = 2, g(Gi

k) = 0. The two external points of the amputed graph are written

x, y. The amplitude asso
iated to the 
onne
ted 
omponent Gi
k is

Aµ

Gi
k

(x, y) =

∫
dxdy ψ̄e(x)ψe(y)δGi

k
eıϕ

′
Ω

∏

l∈T i
k

duldvldpl C̄
il
l (ul)

∏

ℓ∈Li
k

duℓdwℓ C̄
iℓ
ℓ (uℓ)

Let us pro
eed to a se
ond order Taylor expansion. First of all, we expand δGi
k
as

δGi
k

(
x− y + sU

)∣∣∣
s=1

=δ(x− y) + U · ∇δ(x− y) +

∫ 1

0

ds (1− s)(U · ∇)2δ(∆ + sU)

(5.30)
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where we used the same notations as in the pre
eding se
tion. The os
illation between

x and y is exp ıx ∧ y. Thanks to the delta fun
tion, we absorb this os
illation into a

rede�ned matrix QXU . Then we expand the os
illation:

exp ı(XQXUU +XQXPP + UQUU + PQPP ) = 1 + ı(XQXUU +XQXPP ) (5.31)

−
∫ 1

0

ds
(
(1− s)(XQXUU +XQXPP )

2 − ı(UQUU + PQPP )
)

× eıs(XQXUU+XQXPP+UQUU+PQPP ).

We also expand the internal propagators. For all line l ∈ Gi
k,

C̄l(ul, s = 1) =
Ω

θπ

∫ ∞

0

dtl e
−tlm

2

sinh(2Ω̃tl)
e−

Ω̃
2
coth(2Ω̃tl)u

2
l

(
ıΩ̃ coth(2Ω̃tl)ǫ(l)ε(l)/ul (5.32)

+ sΩǫ(l)ε(l)/̃ul +m
)(

cosh(2Ω̃tl)12 − s θ
2
ı sinh(2Ω̃tl)γΘ

−1γ
)∣∣∣

s=1

=
Ω

θπ

∫ ∞

0

dtl e
−tlm

2

tanh(2Ω̃tl)
e−

Ω̃
2
coth(2Ω̃tl)u

2
l

(
ıΩ̃ coth(2Ω̃tl)ǫ(l)ε(l)/ul +m

)

+
Ω

θπ

∫ 1

0

ds

∫ ∞

0

dtl e
−tlm

2

sinh(2Ω̃tl)
e−

Ω̃
2
coth(2Ω̃tl)u

2
l

×
{
Ωǫ(l)ε(l)/̃ul

(
cosh(2Ω̃tl)12 − sı θ

2
sinh(2Ω̃tl)γΘ

−1γ
)

− ı θ
2
sinh(2Ω̃tl)

(
ıΩ̃ coth(2Ω̃tl)ǫ(l)ε(l)/ul + sΩǫ(l)ε(l)/̃ul +m

)
γΘ−1γ

}
.

The 
ons
ientious reader would have noti
ed that the expansion (5.32) is di�erent from

the one we used for the four-point fun
tion (5.5). Here we allow the mass term to be part

of the zeroth order term. The reason is that the number of internal lines in a two-point

fun
tion is odd (it is 2n − 1). For the mass 
ounterterm, if all the propagators would

have 
ontributed by a u term, the 
ounterterm woud have vanished. In fa
t, the power


ounting is rea
hed when one propagator uses its mass term and all the others the term

/u. This implies that the mass divergen
e is only logarithmi
. For the wave fun
tion and

Ω/̃x 
ounterterm, ea
h propagator 
ontributes with its dominant term /u. The 
ounterterm
τA asso
iated to the 
onne
ted 
omponent Gi

k 
orresponds to the zeroth and �rst order

terms of the three pre
eding expansions:

τAµ

Gi
k

= τAm + τA/p + τA/̃x, (5.33)

τAm =

∫
dxdy ψ̄e(x)ψe(y)δ(x− y)

∫ ∏

l∈T i
k

duldvldpl C̄
il
l (ul, s = 0) (5.34)

∏

ℓ∈Li
k

duℓdwℓ C̄
iℓ
ℓ (uℓ, s = 0)eıϕ

′
Ω(s=0),

τA/p =

∫
dxdy ψ̄e(x)ψe(y)U · ∇δ(x− y)

∏

l∈T i
k

duldvldpl C̄
il
l (ul, s = 0) (5.35)

∏

ℓ∈Li
k

duℓdwℓ C̄
iℓ
ℓ (uℓ, s = 0)eıϕ

′
Ω(s=0),
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τA/̃x = ı

∫
dxdy ψ̄e(x)ψe(y)δ(x− y)(XQXUU +XQXPP ) (5.36)

∏

l∈T i
k

duldvldpl C̄
il
l (ul, s = 0)

∏

ℓ∈Li
k

duℓdwℓ C̄
iℓ
ℓ (uℓ, s = 0)eıϕ

′
Ω(s=0).

The 
ounterterm τAm 
ontributes to the mass renormalization. Its divergen
e is logar-

ithmi
 for the parity reasons given above. τA/p is the wave fun
tion 
ounterterm.

τA/p = −
∫
dx ψ̄e(x)∇µψe(x)U

µ
∏

l∈T i
k

duldvldpl C̄
il
l (ul, s = 0) (5.37)

∏

ℓ∈Li
k

duℓdwℓ C̄
iℓ
ℓ (uℓ, s = 0)eıϕ

′
Ω(s=0)

As for the four-point fun
tion, this term 
ontains the polynomial (5.8) here of odd degree.

The gamma matri
es in ea
h monomial are distributed among 
y
les and a 
hain (see

de�nition 5.1). The numbers of u0γ0 and u1γ1 in ea
h 
y
le are even so that the number

of gamma matri
es in the 
hain linking the external points is odd. The term ψ̄eU
0∂0ψe is

di�erent from zero if the number of u0γ0 in the 
hain is odd. Then the number of γ1 is

even. The 
orresponding 
ounterterm is of the form ψ̄eγ
0∂0ψe. We asso
iate it the term

ψ̄eU
1∂1ψe where we 
hose the inverse monomial in P (∀l ∈ G, γ0u0l ↔ γ1u1l ). Thanks to

a rotation of the 
oordinates, we show that the 
omplete 
ounterterm looks like ψ̄e /∇ψe.

It is logarithmi
ally divergent.

The 
ounterterm τA/̃x, also logarithmi
ally divergent, 
ontributes to the renormal-

ization of the �magneti
 �eld� Ω/̃x. The terms entering su
h a 
ontribution look like∫
ψ̄eψe(x

0u1 − x1u0) · · · . On
e more we 
an asso
iate two opposite monomials and per-

form a rotation to prove that the 
ounterterm is of the form ψ̄e /̃xψe. Remark that the

terms

∫
ψ̄eψe(x

0p0 + x1p1) · · · vanish by parity over p (beware that here pµ is the �mo-

mentum� asso
iated to a tree line and not a derivative). It is easy to 
he
k from (5.35)

and (5.36) that the 
ounterterms τA/p and τA/̃x are skew-Hermitian. They are of the form

ψ̄/pψ and ψ̄/̃xψ.

The remainder terms, gathered in (1− τ)A, are 
onvergent:

• (U · ∇)2δ gives M−2i
thanks to U

2
and M2e

by integration by parts over an external

point,

• (XQXUU +XQXPP )
2
brings M−2(i−e)

,

• UQUU + PQPP give at least M−2i
,

• The propagators expansion gives at least M−i
.

Note that until now the ψ̄γ0γ1ψ 
ounterterm was not useful. Moreover if we set m = 0
(the bare mass) it remains so under radiative 
orre
tion (τAm ≡ 0) for parity reasons over
the u's.
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5.2.2 Criti
al 
omponents

Let us 
onsider an orientable two-point graph at s
ale j with a 
riti
al subgraph at s
ale

i > j (see de�nition in se
tion 4). This two-point 
omponent is then made of a four-point

subgraph at a s
ale i with g = 0, B = 2 and of a single (loop) line of s
ale j. We renor-

malize the two-point amplitude as was done in the previous paragraph. We now want to

show that the remainder terms are of order M−2(i−e)
(and not M−2(j−e)

) whi
h implies

the 
onvergen
e of the 
omplete remainder amplitude even its four-point sub-divergen
e.

We pro
eed as is explained in se
tion 4. Down to s
ale i, we get all the ne
essary

masslets for the v's and w's and the 
orresponding fun
tions for the p's. Then we have

an os
illation Wℓ ∧ uj where iℓ = i and uj is the u variable of the unique loop line of

s
ale j. We use it to get a de
reasing fun
tion s implementing |uj| 6 M−i
. It remains

to obtain the masslet for the variable wj
. Its asso
iated uj variable being now of order

M−i
there is no mean to get a masslet of s
ale M j

. We 
an only a
hieve M i
. The gain

we had with the uj variable is lost by its 
orresponding masslet and we note on
e again

that the 
riti
al 
omponents are divergent. But now all the u variables in the graph

are bounded by M−i
whi
h implies that the remainder terms, ex
ept the propagator

expansions, bring M−2(i−e) = M−2(i−j)M−2(j−e)
. All the propagator expansions ex
ept

the one 
on
erning the lowest propagator (of s
ale j) give at least M−i
. There is one

term in the expansion of the lowest propagator (ımθ
2
sinh(2Ω̃tℓ)γΘ

−1γ) whi
h only brings

M−2j
. This is not su�
ient to renormalize the four-point sub-divergen
e. The solution


onsists in putting that term in the 
ounterterm. Only for this lowest propagator, we use

a di�erent propagator expansion:

C̄l(ul, s = 1) =
Ω

θπ

∫ ∞

0

dtl e
−tlm

2

sinh(2Ω̃tl)
e−

Ω̃
2
coth(2Ω̃tl)u

2
l

(
ıΩ̃ coth(2Ω̃tl)ǫ(l)ε(l)/ul (5.38)

+ sΩǫ(l)ε(l)/̃ul +m
)(

cosh(2Ω̃tl)12 − θ
2
ı sinh(2Ω̃tl)γΘ

−1γ
)∣∣∣

s=1

=
Ω

θπ

∫ ∞

0

dtl e
−tlm

2

tanh(2Ω̃tl)
e−

Ω̃
2
coth(2Ω̃tl)u

2
l

(
ıΩ̃ coth(2Ω̃tl)ǫ(l)ε(l)/ul +m

)

×
(
cosh(2Ω̃tl)12 − θ

2
ı sinh(2Ω̃tl)γΘ

−1γ
)

+
Ω

θπ

∫ 1

0

ds

∫ ∞

0

dtl e
−tlm

2

sinh(2Ω̃tl)
e−

Ω̃
2
coth(2Ω̃tl)u

2
l

× Ωǫ(l)ε(l)/̃ul
(
cosh(2Ω̃tl)12 − ı θ

2
sinh(2Ω̃tl)γΘ

−1γ
)
.

This makes 
onvergent the four-point subgraph and the two-point one. The pri
e to pay

is a 
ounterterm of the form ıδm θγΘ−1γ. The proof of this last statement is given in

appendix D. Remark �nally that if we set m = 0, τAm ≡ 0 and no ψ̄γ0γ1ψ appear.

6 Con
lusion

We proved that the non-
ommutative Gross-Neveu model, de�ned by the a
tion (2.3)

with only orientable intera
tions, is renormalizable to all orders. We have �rst 
omputed

a bound on the amputed amplitude of any graph, integrated over test fun
tions (see
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lemma 4.1). This power 
ounting is the one of a renormalizable theory. This bound 
an

be obtained at Ω = 0. Then we showed that all the ne
essary 
ounterterms are of the

form of the initial Lagrangian. This means that the non-
ommutative Gross-Neveu model

with orientable intera
tions is renormalizable even without the vul
anization pro
edure.

But without general argument in favour of orientable intera
tions, we have to 
onsider

also non-orientable ones and then to vul
anize the Lagrangian.

The orientable Gross-Neveu model is free of (non-renormalizable) UV/IR mixing [4, 5℄.

Nevertheless it exhibits some remaining one. It 
on
erns some graphs of the four-point

fun
tion. These ones have g = 0 and B = 2 (see lemma 4.1). This mixing is fortunately

renormalizable in the following sense: the divergent part of the 
riti
al four-point graphs

is not �lo
al� but the renormalization of the 
orresponding two-point fun
tion makes those

four-point subgraphs �nite. Of 
ourse this was not the 
ase for the usual UV/IR mixing

whi
h prevented renormalization of non-
ommutative �eld theory before [6℄. Finally note

that the bounds in lemma 4.1 may have equally been proved for the full model (with

V = V
o

+ V
no

) but restri
ted to orientable graphs

l

. This suggests that the full theory


ould be renormalizable if restri
ted to orientable graphs. Of 
ourse the �lo
ality� of the


ounterterms should be 
he
ked.

A Topology of Feynman graphs

Let a graph G with n verti
es and I internal lines. Intera
tions of quantum �eld theories

on moyal spa
es are only 
y
li
ally invariant (see (2.6)). A good way to keep tra
k of su
h

a redu
ed invarian
e is to draw Feynman graphs as ribbon graphs. Moreover there exists

a basis for the S
hwartz 
lass fun
tions where the Moyal produ
t be
omes an ordinary

matrix produ
t [9, 8℄. This further justi�es the ribbon representation.

Let us 
onsider the example of �gure 4. Propagators in a ribbon graph are made of

−

+

−

+

+

−

+

−

−+

+−

(a) x-spa
e repres-

entation

(b) Ribbon representa-

tion

Figure 4: A graph with two broken fa
es

double lines. Let us 
all L the number of loops (made of single lines) of a ribbon graph.

The graph of �gure 4b has n = 3, I = 3, L = 2. Ea
h ribbon graph 
an be drawn on a

l

Orientable intera
tions only lead to orientable graphs but orientable graphs are not only made of

orientable intera
tions. A
tually non-orientable intera
tions produ
e not only all the non-orientable

graphs but also orientable ones.
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manifold of genus g. The genus is 
omputed from the Euler 
hara
teristi
 χ = L− I + n.
For example, the graph of �gure 4b may be drawn on a manifold of genus 0. Note that

some of the L loops of a graph may be �broken� by external legs. In our example, both

loops are broken.

B Integration by parts

We reprodu
e here the details of the 
omputation showing that the pro
edure formed by

the 
hange of variables (3.28) and the integration by parts (3.30) allows to get a de
reasing

fun
tion of the desired s
ale.

AG,l =

∫
daldtl coth(2Ω̃tl)ξ(al coth

1/2(2Ω̃tl)) e
− Ω̃

2
coth(2Ω̃tl)(ul−ε(l)al)

2

f1(x1 + η(1)ε(l)al)
{
ıΩ̃ coth(2Ω̃tl)(ǫε)(l)(/ul − ε(l)/al) + Ω(ǫε)(l)(/̃ul − ε(l)/̃al)−m

}
eıal∧(Ul+Al+Xl)

1∏

µ=0




coth1/2(2Ω̃tl) +
∂

∂aµ
l

coth1/2(2Ω̃tl) + ıṼl,µ



2

eıal∧Vl
(3.30)

Let us write cl = coth(2Ω̃tl).

AG,l =

∫
dal cl e

ıal∧Vl

1∏

µ=0

(
1

√
cl + ıṼl,µ

)2(√
cl −

∂

∂aµl

)2

ξ(al
√
cl)f1(x1 + η(1)ε(l)al)

{
ıΩ̃cl(ǫε)(l)(/ul − ε(l)/al) + Ω(ǫε)(l)(/̃ul − ε(l)/̃al)−m

}
e−

Ω̃
2
cl(ul−ε(l)al)

2+ıal∧(Ul+Al+Xl).

We de�ne the following notations:

{l} =ıΩ̃cl(ǫε)(l)(/ul − ε(l)/al) + Ω(ǫε)(l)(/̃ul − ε(l)/̃al)−m, (B.1)

{l}′=− ǫ(l)
(
ıΩ̃clγ

µ + Ω̃(−1)µ+1γµ+1
)
. (B.2)

Let us 
ompute the �rst derivative:

∂

∂aµl
e−

Ω̃
2
cl(ul−ε(l)al)

2+ıal∧(Ul+Al+Xl)ξ(al
√
cl)f1(x1 + η(1)ε(l)al) {l} (B.3)

=e−
Ω̃
2
cl(ul−ε(l)al)

2+ıal∧(Ul+Al+Xl)
{
{l}
[
Ω̃clε(l)(ul − ε(l)al)

µξf1 + ı(Ũl + Ãl + X̃l)µξf1

+
√
clξ

′f1 + η(1)ε(l)ξf ′
1

]
+ {l′} ξf1

}
.
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Then the se
ond one:

∂2

∂(aµl )
2
e−

Ω̃
2
cl(ul−ε(l)al)

2+ıal∧(Ul+Al+Xl)ξ(al
√
cl)f1(x1 + η(1)ε(l)al) {l} (B.4)

=e−
Ω̃
2
cl(ul−ε(l)al)

2+ıal∧(Ul+Al+Xl)
{
{l}
[(
Ω̃clε(l)(ul − ε(l)al)

µξf1 + ı(Ũl + Ãl + X̃l)µξf1

+
√
clξ

′f1 + η(1)ε(l)ξf ′
1

)
×
(
Ω̃clε(l)(ul − ε(l)al)

µξf1 + ı(Ũl + Ãl + X̃l)µξf1
)

− Ω̃clε(l)ξf1 + Ω̃c
3/2
l (ul − ε(l)al)

µξ′f1 + Ω̃η(1)ε(l)cl(ul − ε(l)al)
µξf ′

1

+ ı
√
cl(Ũl + Ãl + X̃l)µξ

′f1 + ıη(1)ε(l)(Ũl + Ãl + X̃l)µξf
′
1

+ clξ
′′f1 + 2

√
(cl)η(1)ε(l)ξ

′f ′
1 + ξf ′′

1

]

+ 2{l′}
[
Ω̃clε(l)(ul − ε(l)al)

µξf1 + ı(Ũl + Ãl + X̃l)µξf1 +
√
(cl)ξ

′f1 + η(1)ε(l)ξf ′
1

]}
.

The terms we get are of order O(c
3/2
l ). This gives (3.31).

C The va
uum graphs

In this appendix, we 
ompute the power 
ounting of the va
uum graphs of the orientable

Gross-Neveu model. Let us �rst remind that the translation invarian
e of the usual 
om-

mutative �eld theories makes them in�nite even with both ultraviolet and infrared 
ut-o�s

(we mean in a given sli
e). On the 
ontrary, the va
uum graphs of the (non-
ommutative)

Φ4
theory are �nite in a sli
e but the sum over their s
ale attribution diverges as M8i

.

The quarti
 Moyal-type intera
tion is translation invariant. It 
an indeed be written

as

δ(x1 − x2 + x3 − x4) exp ı

4∑

i<j=1

(−1)i+j+1xi ∧ xj (C.1)

=δ(x1 − x2 + x3 − x4) exp ı (x1 ∧ (x2 − x3) + x2 ∧ x3)
=δ(x1 − x2 + x3 − x4) exp ı(x1 − x2) ∧ (x2 − x3)

Su
h a regularisation is then solely due to the breakdown of translation invarian
e by

the harmoni
 potential term x̃2 in the Φ4
propagator. The Gross-Neveu propagator,

whereas breaking tranlation invarian
e, allows to get translation invariant amplitudes for

the va
uum graphs. We verify su
h an invarian
e by performing the 
hange of variables

∀i, xi → xi + a and by 
he
king that the result is independant a.

AG =λn
∫ ∏

l∈G

duldvl Cl(ul, vl) e
ıϕ

(C.2)

=λn
∫ ∏

l∈G

duldvl Cl(ul, vl + 2a) eıϕ

In equation (C.2), we wrote vl for all lines to simplify notations. We have already noti
ed

that the vertex os
illations are translation invariant. That's why under the 
hange of

variables, ϕ remains un
hanged. Let us 
onsider a ψ̄ψψ̄ψ type intera
tion. In that
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ase, the popagator os
illations are always exp− ıΩ
2
ul ∧ vl. Then the 
hange of variables

vl → vl + 2al implies the following a dependan
e for any amplitude

exp ıΩa ∧
∑

l∈G

ul = 1 (C.3)

wi
h is 1 be
ause the sum of all the u variables vanishes for the va
uum graphs thanks

to the root delta fun
tion (2.27) (remind that we only 
onsider orientable intera
tions).

This proves that the va
uum graphs of the orientable Gross-Neveu model are in�nite.

For non-orientable intera
tion, this is not the 
ase as the reader may verify on the

−

+

−

+

Figure 5: Example of non-orientable va
uum graph

example of �gure 5.

D (Un)Modi�ed 
ounterterms of the two-point

fun
tion

Let us 
onsider a two-point 
onne
ted 
omponent Gj
k′ with a 
riti
al sub-divergent 
om-

ponent Gi
k. We prove that, if we put the γΘ−1γ term of the lowest propagator ℓ0 in Gj

k′

into the 
ounterterm, the divergent part of this two-point fun
tion remains of the form of

the initial Lagrangian.

For simpli
ity we use a lightened notation than until now: exp−2ıΩtℓ0γΘ
−1γ =

cosh(2Ω̃tℓ0)12 − ı sinh(2Ω̃tℓ0)γ
0γ1. As explained in se
tion 5.1, the propagators in a two-

point fun
tion are distributed among 
y
les and a 
hain. For any given graph G, let us
write C for the set of all 
y
les and Ch for the set of all 
hains. We also write T µ

for

the number of uµ's 
oming from the Taylor expansions

m

. Ea
h 
y
le or 
hain 
onsists in

a produ
t of propagators. Let c ∈ C (Ch),

Pc =

{∏
l∈c(ıΩ̃ coth(2Ω̃tl)/ul +m) if ℓ0 /∈ c

(ıΩ̃ coth(2Ω̃tℓ0)/uℓ0 +m)e−2ıΩ̃tℓ0γ
0γ1∏

l∈c\{ℓ0}
(ıΩ̃ coth(2Ω̃tl)/ul +m) if ℓ0 ∈ c.

(D.1)

Pc is a sum of di�erent terms: Pc =
∑n

i=1 P
i
c where n = 2|c| if c ∈ C and n = 2|c|+1

if

c ∈ Ch (|c| = card c). Let us write |γµ|ic for the total number of γµ in a given term i of
c ∈ C (Ch). In the same way, we de�ne |uµ|ic. Let ic ∈ J1, nK for all c ∈ C ∪ Ch. The

m

For example, for the mass term, the Taylor expansion brings no u's then T 0 = T 1 = 0. The wave

fun
tion 
ounterterm brings u0∂0+u
1∂1. The �rst term has T 0 = 1 and T 1 = 0, the se
ond the 
ontrary.
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tra
elessness of the gamma matri
es and the parity properties of the integrales over the

u's implies two 
onstraints:

∀c ∈ C, ∀i ∈ J1, 2|c|K, ∀µ ∈ {0, 1}, |γµ|ic is even, (D.2)

∀µ ∈ {0, 1},
∑

c∈C∪Ch

|uµ|icc + T µ
is even. (D.3)

From now on, we �x a N-valued sequen
e (ic)c∈C∪Ch. Remind that in a two-point fun
tion,

|Ch| = 1 and that the total number of internal lines is odd:

∑
c∈C∪Ch |c| is odd. For ℓ0, we

will always 
hoose its γ0γ1 term otherwise the analysis is the same as in se
tion 5.2. In the

following we 
all �mass 
ounterterm� the expression (5.34) with the expansion (5.38), �/p

(or

/̃x) 
ounterterm� the equation (5.35) (or (5.36)) on
e more with the expansion (5.38).

1. Let c1 ∈ Ch. If |c1| (the number of lines in the 
hain) is even

(1.a) and ℓ0 ∈ c1,
∑

c∈C |c| is odd. Equation (D.2) implies ∀µ, ∑c∈C |uµ|icc even. The

total number of lines in the 
y
les being odd, we 
hose the mass for at least

one line in C.

• For the mass 
ounterterm, T 0 = T 1 = 0. Equation (D.3) implies |uµ|ic1c1

even. This gives |γµ|ic1c1 both odd. The 
ounterterm may only be propor-

tionnal to γ0γ1.

• For the /p or

/̃x 
ounterterm, let µ ∈ Z2, T
µ = 1 and T µ+1 = 0. |γµ|ic1c1 is

even and |γµ+1|ic1c1 is odd. The number of lines in c1 being even, at least

one line in c1 �
hose� the mass. Then this term is of order M−i
. Su
h

terms give
/̃p or /x.

(1.b) Let ℓ0 /∈ c1. Equation (D.2) implies ∀µ, ∑c∈C |uµ|icc odd. We 
hose the mass

term at least on
e.

• Mass 
ounterterm: |uµ|ic1c1 is odd. This 
ounterterm is proportionnal to

γ0γ1.

• /p (

/̃x) 
ounterterm: |γµ|ic1c1 is odd and |γµ+1|ic1c1 is even. This term gives /p

or

/̃x but is 
onvergent as M−i
sin
e |c1| is even and at least one line in c1

bears a mass term.

2. If |c1| is odd

(2.a) Let ℓ0 ∈ c1.
∑

c∈C |uµ|icc is even.

• Mass 
ounterterm: |γµ|ic1c1 's are both odd. This gives ψ̄γ0γ1ψ.

• /p (

/̃x) 
ounterterm: |γµ|ic1c1 is even and |γµ+1|ic1c1 is odd. This term gives
/̃p

or /x but is 
onvergent as M−(i−j)
. The number of lines in c1 being odd,

either all the lines in c1 
hose the u term or at least two of them 
hose the

mass term.

(2.b) Let ℓ0 /∈ c1.
∑

c∈C |γµ|icc 's are both odd. Either all the lines in C 
hose the u
term (the total number of lines in C is even) or at least two of them 
hose the

mass term. The 
orresponding terms are of order M−(i−j)
.

• Mass 
ounterterm: |γµ|ic1c1 's are both odd. We get ψ̄γ0γ1ψ.
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• /p (

/̃x) 
ounterterm: |γµ|ic1c1 is even and |γµ+1|ic1c1 is odd. This term gives
/̃p

or /x.

As a 
on
lusion, the mass term only brings ψ̄γ0γ1ψ. The /p and /̃x 
ounterterms may give

ψ̄/̃pψ and ψ̄/xψ, not present in the initial Lagrangian, but these terms are 
onvergent and

may be let in the remainder term. A way to de�ne the new 
ounterterms is

τ
′Am =

1

2
Tr(τAm), (D.4)

τ
′Aδm =− 1

2
γ0γ1 Tr(γ0γ1τAm), (D.5)

τ
′A/p =− /p

2p2
Tr(/pτA/p), (D.6)

τ
′A/̃x =−

/̃x

2x̃2
Tr(/̃xτA/̃x). (D.7)

Remark that if m = 0, τAm ≡ 0. This means that if the bare mass is zero, it remains

zero after radiative 
orre
tions and no ψ̄γ0γ1ψ appear.
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