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Complexity of excited state dynamics in DNA  
 
Arising from: Base stacking controls excited state dynamics in A-T DNA Nature 436, 
1141-1144 (2005) 

 

Absorption of UV light by DNA is known to lead to carcinogenic mutations but the processes 

intervening between photon absorption and the photochemical reactions are poorly 

understood. Crespo-Hernández et al. studied the excited stated dynamics of model DNA 

helices using femtosecond transient absorption spectroscopy1 and by observing that the 

picosecond component of the transient signals recorded for (dA)18.(dT)18 is close to that 

determined for (dA)18 but quite different from the one found for (dAdT)9.(dAdT)9, they 

conclude that excimer formation limits excitation energy to one strand at a time. Here, we 

show that, when excited state dynamics is probed by time-resolved fluorescence spectroscopy 

the picture changes dramatically, revealing the great complexity of these systems; we also 

comment on the pertinence of separating base stacking and base pairing when talking about 

excited states dynamics in double helices and we argue that the assignment of the long-lived 

signal component found for (dA)18.(dT)18 to adenine excimers is debatable. An 

oversimplification in the interpretation of the experimental data may be completely 

misleading for the understanding of the studied processes. 

 Figure 1A presents the fluorescence decays of (dA)20 at three different wavelengths. 

Combining the present results with our previous measurements obtained for (dA)20 by 

femtosecond fluorescence upconversion2, at least five exponentials are needed to fit the 

decays on the 100 fs – 20 ns time range. A crucial point is that all time constants vary strongly 

with the emission wavelength. The same effect is encountered for (dAdT)10.(dAdT)10 and has 

been reported previously for poly(dA).poly(dT)3
. We interpret this complex behaviour by a 

model stipulating the formation of a large number of excited states delocalized over several 

bases, which may be located both on the same strand and on opposite strands, and the 

subsequent energy transfer3. This model, based on calculations performed in the frame of the 

exciton theory and combining quantum chemistry data and molecular dynamics simulations4-7 

accounts, not only for the decays but also the steady-state absorption and fluorescence spectra. 

Delocalization of the excitation energy is governed by the electronic coupling which depends 

on the oligomer conformation. Conformational changes occurring on the pico- and nano-

second timescales are controlled by an ensemble of interactions involving not only the bases 
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but also the back-bone, counter-ions and water molecules5, 8. In this sense, both base stacking 

and base pairing determine excited state dynamics.  

 For the abovementioned reasons the time constants provide a simply 

phenomenological description of the decays and do not correspond to specific excited states. 

However, it is possible to make a rough comparison of the overall excited state dynamics by 

considering the decays recorded at the maxima of the fluorescence spectra of the three 

oligomers (Figure 1B). In the case of (dAdT)10.(dAdT)10 and (dA)20, the fluorescence maxima 

have been assigned to excimer emission9, 10. We observe that, in contrast to the transient 

absorption signals, the fluorescence decay obtained for (dA)20.(dT)20 on the sub-nanosecond 

time-scale is much shorter than that observed for (dA)20. The same observation is valid when 

comparing the decays of these single and double strands at identical wavelengths.  

 Neither in fluorescence nor in transient absorption experiments is the amplitude of the 

detected signals proportional to the excited state population. The transient absorption signals 

depend on the difference between the molar extinction coefficients of the S0 → S1 and S1 → 

Sn transitions at the probed wavelengths. Since the steady-state absorption spectra of these 

oligomers correspond to a large number of transitions6 and nothing is known about the S1 → 

Sn spectra of their various excited states, the percentage of the “excimer” population reported 

by Crespo-Hernández et al. is not necessarily correct. 

 The important difference between the transient absorption and fluorescence decays of 

(dA)n.(dT)n indicates the formation of dark transient species. If these dark species are adenine 

“excimers”, they must have different electronic structure from the fluorescent “excimers” of 

(dA)n and, therefore, different lifetimes. Consequently, the similar time constants observed by 

transient absorption for (dA)18.(dT)18 and (dA)18 may be fortuitous. The species observed by 

transient absorption in (dA)18.(dT)18 could as well be interstrand A-T charge transfer states, as 

suggested by recent theoretical calculations11. The behaviour of such states in D2O, examined 

by Crespo-Hernández et al., is not easily predictable since water molecules form a variety of 

interstrand and intrastrand bridges between bases12.  
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Figure Caption 

Fluorescence decays recorded by time-correlated single photon counting. (A) (dA)20 at 330 

nm (pink), 360 nm (red) and 420 nm (yellow). Black lines correspond to fits with multi-

exponential functions yielding the following sets of time constants (3.2, 37.5, 186 and 748 

ps), (11.6, 101, 253 and 1830 ps) and (39, 198, 551 and 5050 ps), respectively. The TMP 

decay (grey) corresponds to the instrumental response function. (B) (dA)20 at 360 nm (red), 

(dA)20.(dT)20 at 330 nm (blue), (dAdT)10.(dAdT)10 at 420 nm (green).  

Methods 

DNA oligomers (Eurogentec), dissolved in phosphate buffer (pH = 6.8) were excited by 

femtosecond pulses (100 fs, 267 nm). All decays were reconstructed from the parallel (Ipar) 

and perpendicular (Iperp) components according to: F(t) = Ipar(t) + 2GIper(t). For further 

experimental details cf. reference 3. 

 
 


