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Abstract 

The ionization of the DNA single and double helices (dA)20, (dT)20, (dAdT)10.(dAdT)10 and 

(dA)20.(dT)20, induced by nanosecond pulses at 266 nm, is studied by time-resolved absorption 

spectroscopy. The variation of the hydrated electron concentration with the absorbed laser intensity 

shows that, in addition to two photon ionization, one photon ionization takes place for 

(dAdT)10(dAdT)10, (dA)20(dT)20 and (dA)20 but not for (dT)20. The spectra of all adenine containing 

oligomers at the microsecond time-scale correspond to the adenine deprotonated radical formed in 

concentrations comparable to that of the hydrated electron. The quantum yield for one photon 

ionization of the oligomers (ca. 10-3) is higher by at least one order of magnitude than that of dAMP 

showing clearly that organization of the bases in single and double helices leads to an important 

lowering of the ionization potential. The propensity of (dAdT)10(dAdT)10, containing alternating 

adenine – thymine sequences, to undergo one photon ionization is lower than that of (dA)20(dT)20  and 

(dA)20, containing adenine runs. Pairing of the (dA)20 with the complementary strand leads to a 

decrease of quantum yield for one photon ionization by about a factor two.  
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The ionization potential (IP) of DNA bases is a key factor in the oxidative damage of the double 

helix induced by various types of radiation and oxidizing agents.1 During the past decade, several 

theoretical studies have shown that the presence of sugar, phosphate groups, counter ions, water 

molecules as well as base stacking and base pairing lead to a decrease of the IP of the bases with 

respect to the gas phase values.2-6 Experimental evidence was brought by various methods, such as the 

study of gas phase clusters7 or the analysis of oxidation products formed upon weak UV irradiation at 

different wavelengths.8 In double helices all the factors mentioned above are expected to act 

simultaneously and be tuned by base sequence effects. Direct information about the ionization process 

can be obtained by transient absorption spectroscopy which allows the quantification of the generated 

hydrated electrons (eaq
-) and the identification of the resulting cations and/or derived radicals of 

nucleobases.9-16 The sparse experiments of this type performed for DNA oligomers and polymers in 

neutral pH did not detect one photon ionization for excitation wavelengths greater than 210 nm.11,15-17  

Here we report a time-resolved study dealing with the ionization of (dA)20, (dT)20, (dAdT)10.(dAdT)10 

and (dA)20.(dT)20. The choice of these base sequences was guided by previous photophysical and 

photochemical studies carried out in our group which allowed us to overcome experimental and 

conceptual difficulties related to the fragility and complexity of these systems.18-21 We show that upon 

excitation at 266 nm one photon ionization is observed only for the adenine containing oligomers 

leading, in all cases, to the formation of deprotonated adenine radicals. The quantum yield for one 

photon ionization of these oligomers (ca. 10-3) is at least ten times higher than that of the 

mononucleotide 2’-deoxoadenosine monophosphate (dAMP). 

Our experiments were performed using the fourth harmonic (266 nm) of a Nd/YAG laser delivering 8 

ns pulses at a repetition rate of 2 Hz. The absorbed laser intensity (I) varied from 0.13 to 1.3x106 

W/cm2; in this range I exhibited a linear dependence as a function of the exciting intensity. The laser 

energy was measured by an energy ratiometer (cf. supporting information). A crucial element of the 

experimental protocol was the use of a flow-through quartz cell (10 mm x 1 mm) allowing the 
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circulation of 60 ml of solution. If this condition was not fulfilled successive decays recorded during 

signal averaging were clearly different due to the excitation of reaction products. The compounds were 

dissolved in phosphate buffer (0.15 M) and the absorbance at 266 nm was adjusted to 0.24 (1 mm) 

corresponding to a helix concentration of about 10-5 M. The solutions were continuously purged by 

nitrogen during the measurements which were carried out at 20 ± 1°C 

The transient absorption spectra of all the oligomers at the nanosecond time-scale are dominated by 

the broad absorption band of eaq
-, peaking at 700 nm, which disappears with a time constant of 0.38 ± 

0.02 µs. The latter value is shorter than the lifetime of eaq
- in pure water because of a reaction with the 

dihydrogen phosphate ions of the buffer.22 The efficiency of this reaction prevents the attack of nucleic 

acids by hydrated electrons, as proved by the fact that the lifetime of eaq
- in oligomer solutions is also 

0.38 µs.  

The spectra recorded for (dAdT)10.(dAdT)10 and (dA)20.(dT)20 at 2 µs for an intensity of 0.4x106 

W/cm2 are presented in Figure 1. They are characterized by a peak at 330 nm and a low intensity broad 

band around 600 nm. These spectral features, do not depend on I and are also present in the spectra 

recorded for (dA)20. They resemble to the spectrum of the adenosine deprotonated radical A(-H). 

known to be formed following excitation at 193 nm.10 Similarly, the typical absorption band of the 

deprotonated thymidine radical10 T(-H)
.
 is present in the spectra of (dT)20 at the microsecond time-

scale. It is worth-noticing that the absorption band of the thymidine triplet,19,23,24 peaking at 360 nm, is 

not observed in the spectra of (dA)20.(dT)20 and (dAdT)10.(dAdT)10 recorded at the microsecond time 

scale. The absence of triplet absorption is corroborated by the fact that the signals, which decay at the 

millisecond time-scale, do not undergo any change when oxygen is bubbled into the solutions. It is also 

supported by the results of a recent theoretical study suggesting that the lowest triplet sate in these 

types of double helices is a charge transfer state and corresponds to an electron transfer from the 

adenine to the thymine.25  
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The concentration of hydrated electron initially formed by ionization of the double helices [eaq
-]0 was 

calculated from the zero time differential absorbance ∆A at 700 nm using a molar extinction coefficient 

of 17 800 M-1cm-1.22 The [eaq
-]0 generated upon ionization of (dAdT)10.(dAdT)10 and (dA)20.(dT)20, at I 

= 0.4x106 W/cm2, corresponding to the spectra in Figure 1, is (3.8 ± 0.4)x10-7 M and (2.5 ± 0.1)x10-7 

M, respectively. Taking into account the ground state concentration of the double helices (ca. 10-5 M), 

we find that less than 5 % of the double helix population is ionized. The concentration of A(-H)
.
 at 2µs, 

[A(-H)
.
], determined using the molar extinction coefficients reported in reference 10, is (3.6 ± 1.0)x10-

7 for (dAdT)10.(dAdT)10 and (1.8 ± 1.0)x10-7 for (dA)20.(dT)20. These values match those found for  

[eaq
-]0. Such an agreement shows that there is a correlation between hydrated electrons and adenosine 

radical cations which are the precursors of [A(-H)
.
].9 

In order to check whether the hydrated electrons are produced via one or two photon ionization we 

have plotted in Figure 2 the quantity [eaq
-]0/I as a function of I. For comparison, the values obtained for 

dAMP and the buffer alone are also shown. We observe that the [eaq
-]0 generated from the 

mononucleotide cannot be distinguished from that generated from the solvent and is negligible with 

respect to the [eaq
-]0 obtained from the oligomers. Taking into account the precision of our 

measurements, we conclude that the quantum yield for one photon ionization (φ1hν) of dAMP does not 

exceed 10-4. This upper limit is 30 times lower than the value found for monophotonic ionization of 

dAMP in ultrapure water from experiments performed with higher laser intensities without using a 

flow-through cell.26 

The plot corresponding to each oligomer in Figure 2 are fitted correctly by the function aI + b. In all 

cases it is found that two photon ionization takes place (a  ≠  0). This is not surprising since the decays 

of the singlet excited states of such single and double strands are longer than the decays of dAMP20,27  

allowing the absorption of successive photons. Moreover, exciton-exciton20 interaction could also be 
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responsible for two photon ionization in these multichromophoric systems. A non-zero intercept (b ≠ 

0), corresponding to one photon ionization is observed for (dAdT)10.(dAdT)10, (dA)20.(dT)20 and (dA)20 

but not for (dT)20.  This difference in the behavior of (dT)20 compared to the adenine containing 

oligomers is not surprising since the gas phase IP of hydrated thymine is higher than that of the 

hydrated adenine.7 It has also been reported that, in contrast to 2’deoxyadenosine, only two photon 

ionization was observed upon irradiation of thymidine aqueous solutions by 193 nm laser pulses.9 

Finally, (dA)n strands are known to stack better28 than (dT)n strands29,30 and base stacking is expected 

to promote the decrease of IP. 

The quantum yield for one photon ionization φ1hν found from the plots in Figure 2  is (1.1 ± 0.1)x10-

3,  (1.4 ± 0.1)x10-3 and (2.2 ± 0.2)x10-3 for (dAdT)10.(dAdT)10, (dA)20.(dT)20 and (dA)20, respectively. 

These values are comparable to the quantum yield found for the formation of (6-4) thymine dimers in 

(dT)20.19 The φ1hν of all three oligomers is higher by at least one order of magnitude compared to that 

of dAMP, demonstrating that organization of the bases in single and double helices leads to a lowering 

of the ionization potential. This is a combined effect resulting not simply from base stacking or base 

pairing but also from differences in the ionic atmosphere and specific salvation of the bases. The 

geometrical arrangement determined by the base sequence and the base pairing has a smaller but still 

detectable effect. Thus, the propensity of (dAdT)10.(dAdT)10, containing alternating adenine – thymine 

sequences, to undergo one photon ionization is lower than that of (dA)20.(dT)20 and (dA)20, containing 

adenine runs. Finally, pairing of the (dA)20 with the complementary strand leads to a decrease of φ1hν 

by about a factor of two.  

So far the experimental studies concerning the lowering of ionization potential of bases in DNA have 

been focused on guanines which constitute traps for hole migration.31 Our findings suggest that the 

primary event of radical cation formation could also take place under relatively mild conditions (in 

terms of photon energy or redox potential) in adenine rich regions.  
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Figure Captions 

 

Figure 1. Transient absorption spectra recorded for nitrogen purged buffer solutions (pH = 6.6) of 

(dAdT)10.(dAdT)10 (blue circles) and (dA)20.(dT)20 (red triangles) at 2 µs. Double strand concentration: 10-5 M. 

Excitation conditions: 266 nm, 8 ns pulses, I = 0.4x106 W/cm2.  

Figure 2. Hydrated electron concentration at zero time [eaq
-]0 divided by the absorbed laser intensity (I) as a 

function of I recorded for nitrogen purged buffer solutions (pH = 6.6) of (dA)20 (brown squares), 

(dAdT)10.(dAdT)10 (blue circles), (dA)20.(dT)20 (red diamonds) , (dT)20 (green hexagons); for comparison, the 

signals obtained for dAMP in buffer (pink triangles) and the buffer alone (black triangles) are also shown. The 

experimental points are represented by circles. Straight lines correspond to fits with the function aI + b; the 

fitting parameters are given in S. I. 
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Figure 1 
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Figure 2 
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