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Experimental evidence for the breakdown of a Hartree-Fock approach in a weakly

interacting Bose gas
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We study the formation of a quasi-condensate in a nearly one dimensional, weakly interacting
trapped atomic Bose gas. We show that a Hartree Fock (mean-field) approach fails to explain the
presence of the quasi-condensate in the center of the cloud: the quasi-condensate appears through
an interaction-driven cross-over and not a saturation of the excited states. Numerical calculations
based on Bogoliubov theory give an estimate of the cross-over density in agreement with experimental
results.

PACS numbers: 03.75.Hh, 05.30.Jp

Since the first observation of the Bose-Einstein con-
densation in dilute atomic gases, self consistent mean-
field approaches (see e.g. [1, 2]) have successfully de-
scribed most experimental results. For example, the pre-
dicted BEC transition temperature Tc agrees well with
experiments [3, 4, 5]. In mean-field theory, a Bose gas
above Tc is described by a Hartree-Fock (HF) approach
in which atoms are considered as independent bosons and
one takes into account their interaction by a mean-field
potential. As in the ideal gas case, condensation appears
when the excited state population saturates. The suc-
cess of this approach relies on the weakness of the inter-
actions in dilute atomic gases (ρa3 ≪ 1 where ρ is the
atomic density and a the scattering length), and also on
the absence of very large fluctuations [6]. In a three di-
mensional gas, it is well known that this latter condition
is not fulfilled for temperatures very close to the criti-
cal temperature [4] and deviations from mean-field theo-
ries are expected. In particular, for a given atomic den-
sity, the critical temperature is slightly shifted towards a
larger value as compared to its value predicted by mean-
field theories [7, 8, 9]. This discrepancy has not been ob-
served experimentally in a trapped 3D Bose gas, mainly
because this temperature shift is very small [3, 10].

In this paper, we report on an experimental situation
where, although the gas is far from the strong interac-
tion regime, a mean-field Hartree-Fock theory fails to ac-
count for our results. More precisely, we present mea-
surements of density profiles of a degenerate Bose gas in
an elongated trap with temperatures close to the trans-
verse ground state energy. For sufficiently low temper-
atures and high densities, we observe the formation of
a quasi-condensate at the center of the cloud. We show
that, according to the HF theory, a gas with the exper-
imental chemical potential and temperature is not Bose
condensed, and the HF theory does not reproduce the
observed profiles. Thus, the quasi-condensate regime in
our experiment is not reached via the usual saturation
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of the excited states. We emphasize that this failure of
mean-field theory happens in a situation where the gas
is far from the strong interaction regime, which in one-
dimension (1D), corresponds to the Tonks-Girardeau gas
limit [11, 12, 13], and where mean field theory also fails.
To our knowledge, this is the first demonstration of the
breakdown of a mean-field Hartree-Fock approach in the
weakly interacting limit.

We attribute this failure of the mean-field theory to the
nearly 1D character of the gas. It is well known that a
1D homogeneous ideal Bose gas does not experience Bose
Einstein condensation in the thermodynamic limit. On
the other hand, in the presence of repulsive interactions
in the weakly interacting regime, one expects a smooth
cross-over towards a quasi-condensate when the linear
atomic density becomes much larger than the cross-over

density n
(1D)
c.o. = (kBT )2/3(m/h̄2g)1/3 [11, 14, 15], where

g is the coupling constant and m the atomic mass. This
cross-over corresponds to a decrease of relative density
fluctuations, the two particle correlation at zero distance
g(2)(0) smoothly goes from 2 for the ideal gas to 1 in the
quasi-condensate regime. The HF approach fails to de-
scribe this cross-over: as for an ideal gas, the thermal gas
does not saturate as n increases and one expects for any
density a constant correlation value g(2)(0) = 2. All the
previous results hold for a 1D gas trapped in a harmonic
potential at the thermodynamic limit: no saturation of
excited states occurs for an ideal gas [16] and the gas
smoothly enters the quasi-condensate regime when the
peak density goes above nc.o. [13, 17].

In the experiment we present here, the gas is neither
purely 1D nor at the thermodynamic limit: a few trans-
verse modes of the trap are populated and a condensation
phenomenon due to finite size effects might be expected
[18]. However, we will argue the validity of a scenario sim-
ilar to that discussed above, in which the gas undergoes
a smooth cross-over to the quasi-condensate regime with-
out saturation of the excited states. For our experimental
parameters, we also estimate the cross-over density nc.o.

with a three-dimensional Bogoliubov calculation and we
find a result in agreement with experimental data.

The experimental setup is the same as [19]. Us-
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FIG. 1: In situ longitudinal distributions for different temperatures (circles). The pixel size is 6.0 µm. Long dashed lines
correspond to the ideal Bose gas distribution obtained from a fit to the wings. These fits give the temperature and chemical
potential indicated in the insets. The solid lines are the profiles obtained in the Hartree-Fock approximation for the same
temperature and chemical potential. The short dashed lines are the Thomas-Fermi profiles with the same peak density as the
experimental data. The deviations of the data from the smooth profiles are due to the potential roughness and are seen to
be small. Horizontal solid lines give the cross-over density above which the gas enters the quasi-condensate regime, estimated
using a Bogoliubov calculation (see text).

ing a Z-shaped wire on an atom chip [20], we pro-
duce an anisotropic trap, with a transverse frequency
of ω⊥/(2π) = 2.75 kHz and a longitudinal frequency of
ωz/(2π) = 15.7 Hz. By evaporative cooling, we obtain a
few thousand 87Rb atoms in the |F = 2, mF = −2〉 state
at a temperature of a few times h̄ω⊥/kB. Current-flow
deformations inside the micro-wire, located 150 µm be-
low the atoms, produce a roughness on the longitudinal
potential [21]. This roughness is small and we neglect it
in the following (see Fig. 1).

The longitudinal profile of the trapped gases are
recorded using in situ absorption imaging with the same
setup as in [19]. The probe beam intensity is about 20%
of the saturation intensity and the number of atoms con-
tained in a pixel of a CCD camera is deduced from the
formula Nat = (∆2/σ)ln(I2/I1), where ∆ = 6.0 µm is
the pixel size, σ the effective cross section, and I1 and I2

the probe beam intensity respectively with and without
atoms. The longitudinal profiles are obtained by sum-
ming the contribution of the pixels in the transverse di-
rection. However, when the optical density is large and
the density varies on a scale smaller than the pixel size
the above formula underestimates the real atomic den-
sity [19]. In our case, the peak optical density at res-
onance is about 1.5, and this effect cannot be ignored.
To circumvent this problem, we decrease the absorption
cross section by detuning the probe laser beam from the
F = 2 → F ′ = 3 transition by δ = 9 MHz. We have
checked that for detunings larger than δ, the profile re-
mains identical to within 5% up to a normalisation factor.
For the detuning δ, the lens effect due to the real part
of the atomic refractive index is calculated to be small
enough so that all the refracted light is collected by our
optical system and the profile is preserved.

To get an absolute measurement of the linear density,
we need the effective absorption cross section σ. We
find σ by comparing the total absorption of in situ im-
ages taken with a detuning δ with the total number of
atoms measured on images taken at resonance after a
time of flight long enough (5 ms) that the optical density

is much smaller than 1. In these latter images, the probe
beam is σ+ polarized and the magnetic field is pointing
along the probe beam propagation direction. In these
conditions, the absorption cross section takes its maxi-
mum value 3λ2/2π. We obtain for the in situ images
taken at a detuning δ, an effective absorption cross sec-
tion (0.24 ± 0.04) × 3λ2/2π. For samples as cold as that
in Fig. 1 (a), the longitudinal profile is expected to be
unaffected by the time of flight and we checked that the
profile is in agreement with that obtained from in situ

detuned images within 5%.

Averaging over 30 measured profiles, we obtain a rela-
tive accuracy of about 5% for the linear density. A sys-
tematic error of about 20% is possible due to the uncer-
tainty in the absorption cross section.

In Fig. 1, we plot the longitudinal density profiles of
clouds at thermal equilibrium for different final evapo-
rating knives obtained from in situ images. We have
compared the density profiles with the expected quasi-
condensate density profile with the same peak density.
This is obtained using the equation of state of the lon-
gitudinally homogeneous case µ = h̄ω⊥

√
1 + 4na [22],

and the local chemical potential µ(z) = µ0 − 1/2mω2
zz

2,
where n is the linear atomic density, and µ0 the chemical
potential at the center of the cloud. For the two colder
clouds (graphs (a) and (b)) in Fig. 1, we observe a good
agreement between the central part of the experimen-
tal curves (circles) and the Thomas-Fermi profile (short
dashed lines) which indicates that the gas has entered the
quasi-condensate regime. In [19], we observed the inhibi-
tion of density fluctuations expected in this regime.

We extract the temperature and chemical potential of
the data from a fit to an ideal Bose gas distribution.
For the hottest cloud (graph (d)), such a profile repro-
duces the data well over its whole extent. For colder
clouds however, the ideal Bose gas model should fail in
the central part of the cloud where interactions are not
negligible. We therefore fit only the wings of the pro-
file. We do this by excluding a number of pixels Nex

on either side of the center of the profile. For a given
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FIG. 2: Chemical potential µ, obtained by fitting the wings
a profile (b) to an ideal Bose gas distribution, as a function of
the number of excluded pixels Nex on either side of the dis-
tribution. The four curves correspond to four different trial
temperatures. The sample temperature, found by canceling
dµ0/dNex for Nex > 10, is T = 2.75h̄ω⊥/kB . The correspond-
ing chemical potential is µb

0 = 1.65h̄ω⊥. The arrow indicates
µq.c. = h̄ω⊥

√
1 + 4n0a, which is the chemical potential found

from the measured peak linear density n0. The pixel size is
6.0 µm.

temperature, we fit the longitudinal atomic distribution
with only the chemical potential as a free parameter. In
Fig. 2, we plot the fitted µ0 as a function of the ex-
cluded zone Nex for four different trial temperatures in
the case of profile (b). For large Nex, µ0 is about linear
in Nex. The cloud’s temperature is the one for which µ0

is independent of Nex (dµ0/dNex = 0). The deviation
from a straight line in Fig. 2 for Nex > 10 is mainly due
to the roughness of the potential. This deviation con-
tributes about 5% to the uncertainty of T and µ0. The
determination of µ0 however, is primarily limited by the
uncertainty in the total atom number. For profile (b), we
find Tb = (2.75±0.05)h̄ω⊥/kB and µb

0 = (1.65±0.5)h̄ω⊥.
For the profile (a), the chemical potential and the tem-
perature are not very accurate because the wings are too
small and this profile is not analyzed in the following.

Another method to deduce the chemical potential is
to use the peak atomic density and the formula µ =
h̄ω⊥

√
1 + 4na, assuming the gas is well inside the quasi-

condensate regime at the center of the cloud. For graph
(b), we obtain µb

q.c. = (1.8 ± 0.2) h̄ω⊥, which is consis-
tent with the value obtained from fits of the wings of the
distribution.

We now compute the expected Hartree-Fock profiles
of a gas with the same temperature and chemical po-
tential as the experimental data. In this calculation, we
assume the relative population of the ground state is neg-
ligible (no Bose-Einstein condensation) and the quanti-
zation of the longitudinal eigenstates is irrelevant. In
such an approach, one can use the local density ap-
proximation, and the longitudinal density profile n(z)
is found from the equation of state nh(µ, T ) of a lon-
gitudinally homogeneous system using a local chemical
potential µ(z) = µ0 − mω2

zz2/2.

We have to compute nh(µ, T ), the linear density of
a thermal Bose gas trapped in the radial direction and

homogeneous in the longitudinal direction. The self-
consistent three-dimensional atomic density ρ is the ther-
modynamic distribution of independent bosons that ex-
perience the Hartree-Fock Hamiltonian

HHF =
p2

z

2m
+ Hkin + Hharm + 2gρ(r),

where r is the radial coordinate, Hkin is the transverse
kinetic energy term, Hharm the transverse harmonic po-
tential. The simplest approach to obtain ρ(r) is to
use an iterative method. For each iteration, we nu-
merically diagonalize the transverse part of the Hartree-
Fock Hamiltonian HHF to deduce the new atomic den-
sity distribution. However, when the interactions be-
come too strong this algorithm does not converge. For
the temperature of profile (b), this phenomenon ap-
pears for nh ≥ 320 atoms per pixel. In this case, we
have to use a more time consuming method based on
a minimization algorithm. We use the trial function

ρtrial(r) =
∑

c2pH2p(r)e
−r2/2r2

0where H2p(r) are Her-
mite polynomials, and p goes from 0 to 3. We find r0

and the four c2p coefficients by minimizing the error func-

tion ξ =
∫ ∞

0 r(ρ
′

trial(r) − ρtrial(r))
2dr/

∫ ∞

0 rρ2
trial(r)dr,

where ρ
′

trial(r) is the thermodynamic equilibrium atomic
density for HHF [ρtrial(r)]. Varying r0 allows us to ob-
tain good results with only four terms in the expansion.
We find ξ less than 10−4 meaning that our 5 parameter
model describes the transverse Hartree Fock profile well.
The linear density nh =

∫
2πrρtrial(r)dr is identical to

n′

h =
∫

2πrρ′trial(r)dr within 0.5%. In the domain where
both methods are valid, we also check that they give the
same result. In the presence of longitudinal confinement,
the profile is n(z) = nh(µ(z), T ).

Figure 1 compares the longitudinal profiles obtained
with the Hartree-Fock calculation with the experimental
data and the ideal gas profile for the graphs (b), (c) and
(d). The Hartree-Fock profile for the hotter cloud (graph
(d)) is in agreement with data and identical within one
percent to the ideal Bose gas prediction. For the slightly
colder cloud of graph (c), the Hartree-Fock calculation
avoids the divergence in the ideal gas model, but it under-
estimates the peak density by approximately 20%. For
the even colder cloud of graph (b), the discrepancy be-
tween the Hartree-Fock profile and the experimental data
is even larger (35% at the center).

To validate our Hartree Fock calculations we check a

posteriori the local density approximation (LDA). The
LDA is valid if the population difference between adja-
cent energy states is negligible. This criterion is met
if the absolute value of the effective chemical potential
µeff = µ0 − ε0(µ) is much larger than ∆E, where ε0(µ)
is the ground state energy and ∆E the energy gap be-
tween the ground state and the first excited longitudinal
state. In Fig. 3, we plot the ratio µeff/∆E as a function of
the global chemical potential for the temperature of the
graph (b). As long as µ0 < 2.0h̄ω⊥, |µeff/∆E| is larger
than 15 and for the chemical potential µb

0 = 1.65h̄ω⊥ de-
duced from the data |µeff/∆E| ≃ 25. For such a large
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∆E, the energy splitting between the ground state and the
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the temperature of profile (b). The dashed lines correspond to
the measured chemical potential. The criterion |µeff |/∆E ≫ 1
ensures both that the local density approximation is valid for
the determination of the density profile and that the relative
ground state population is small.

value of |µeff/∆E|, the LDA is expected to be valid.
For this ratio µeff/∆E, we can quantify the error made

in the density profile due to the LDA. From the HF calcu-
lation, we obtain the energies En(µ, T ) of the transverse
eigenstates. Assuming the transverse motion adiabat-
ically follows the longitudinal one, we obtain an effec-
tive longitudinal Hamiltonian with a potential Vn(z) =
En(µ0−mω2

zz
2/2, T ) for each transverse mode. The lon-

gitudinal density profile is obtained by diagonalization of
each effective longitudinal Hamiltonian and summing the
resulting thermal profiles. This procedure gives the same
longitudinal density profiles as the local density approx-
imation within 5%. We also apply this procedure for HF
calculations corresponding to the graphs (c) and (d), and
also confirm the validity of the LDA.

In the case of profile (b), where the gas enters the
quasi-condensate regime at the center, the Hartree-Fock
calculation predicts a population of the ground state
N0 ≈ kBT/(ε0 − µ0) which is smaller than Ntot/100.
Therefore, the Hartree-Fock approach does not predict
a saturation of the excited states and fails to explain
the presence of the quasi-condensate at the center of the
cloud. Note that the local density approximation crite-
rion |µeff | = |µ0 − ε0(µ)| >> ∆E also implies a small
relative ground state population.

The failure of the Hartree-Fock approach for our ex-

perimental parameters is due to the large density fluc-
tuations this theory predicts in a dense, nearly 1D gas.
When density fluctuations become too large, pair inter-
actions induce correlations in position between particles
which are not taken into account in the Hartree-Fock the-
ory. These correlations reduce the interacting energy by
decreasing density fluctuations: the gas enters the quasi-
condensate regime.

We now estimate the cross-over density nc.o. at which
the gas enters the quasi-condensate regime. For this
purpose, we assume the gas is in the quasi-condensate
regime and use the Bogoliubov theory to compute den-
sity fluctuations. We find a posteriori the validity do-
main of the quasi-condensate regime, which requires
that density fluctuations δρ be small compared to the
mean density ρ. More precisely, we define nc.o. as
the density for which the Bogoliubov calculation yields∫∫

(δρ(r))2/(ρ(r)nc.o.) d2r = 1. We indicate this cross-
over density in Fig.1. We find that nc.o. is close to the
density above which the experimental profiles agree with
the Thomas-Fermi profile.

In conclusion, we have been able to reach a situa-
tion where a quasi-condensate is experimentally observed
but a HF approach fails to explain its presence. As
for purely one dimensional systems, the passage towards
quasi-condensate in our experiment is a smooth cross-
over driven by interactions. The profiles that we observe
require a more involved theory able to interpolate be-
tween the classical and the quasi-condensate regime. A
Quantum Monte Carlo calculation that gives the exact
solution of the many body problem [5, 9] should repro-
duce the experimental data. In fact, since temperatures
are larger than interaction energy, quantum fluctuations
of long wavelength excitations should be negligible and
a simpler classical field calculation should be sufficient
[23, 24].
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