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Prelude

It is a great pleasure for us to contribute to this book dedicated to Masayoshi
Tomizuka on the occasion of his sixtieth birthday. The important contribu-
tions of Masayoshi Tomizuka to advanced control of mechanical systems have
been largely recognized by the control community. In particular he has ded-
icated a lot of research efforts to ”adaptive control” and ”repetitive control”
(for rejection of periodic disturbances). This paper also discusses an adaptive
approach to disturbance rejection but for a different class of disturbances.
Both Tomizuka’s approach to disturbance rejection and ours share some com-
mon grounds. We do expect to explore jointly in the future the connections
between the two approaches.

1 Introduction

One of the basic problems in control is the attenuation (rejection) of un-
known disturbances without measuring them. The common framework is the
assumption that the disturbance is the result of a white noise or a Dirac im-
pulse passed through the ”model of the disturbance”. While in general one
can assume a certain structure for such ”model of disturbance”, its parameters
are unknown and may be time varying. This will require to use an adaptive
approach. To be more specific, the disturbances considered can be defined as
”finite band disturbances”. This includes single or multiple narrow band dis-
turbances or sinusoidal disturbances. Furthermore for robustness reasons the
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disturbances should be located in the frequency domain within the regions
where the plant has enough gain (see explanation in section 3).

Solutions for this problem, provided that an ”image” of the disturbance
can be obtained by using an additional transducer, have been proposed by
the signal processing community and a number of applications are reported
([12, 13, 6, 16]). However, these solutions (inspired by Widrow’s technique for
adaptive noise cancellation ([32])) ignore the possibilities offered by feedback
control systems and require an additional transducer. The principle of this
signal processing solution for adaptive rejection of unknown disturbances is
illustrated in figure 1, where E{y2} represents the variance of the output y.
The basic idea is that a ”well located” transducer can provide a measurement,
highly correlated with the unknown disturbance. This information is applied
to the control input of the plant through an adaptive filter (in general a Finite
Impulse Response - FIR) whose parameters are adapted such that the effect
of the disturbance upon the output is minimized. The disadvantages of this
approach are:

• It requires the use of an additional transducer.
• Difficult choice for the location of this transducer (it is probably the main

disadvantage).
• It requires the adaptation of many parameters.

Fig. 1. ”Signal processing” approach to rejection of unknown disturbances

To achieve the rejection of the disturbance (at least asymptotically) with-
out measuring it, a feedback solution can be considered. As mentioned earlier,
the common framework is the assumption that the disturbance is the result
of a white noise or a Dirac impulse passed through the ”model of the dis-
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turbance” 3. Several problems have been considered within this framework
leading to adaptive feedback control solutions:

1. Unknown plant and disturbance models ([14]).
2. Unknown plant model and known disturbance ([28, 33]).
3. Known plant and unknown disturbance model ([8, 2, 3, 31, 27, 11, 17, 18,

21]).

The present paper will focus on the last case, since this is the situation en-
countered in many applications. Among the various approaches considered for
solving this problem, the following ones may be mentioned:

1. Use of the internal model principle ([15, 19, 5, 30, 31, 2, 3, 17, 18, 21]).
2. Use of an observer for the disturbance ([27, 11]).
3. Use of the ”phase-locked” loop structure considered in communication

systems ([8, 7]).

Of course, since the parameters of the disturbance model are unknown, all
these approaches lead to an adaptive implementation which can be of direct
or indirect type.

From the user point of view and taking into account the type of operation
of existing adaptive disturbance compensation systems one has to consider
two modes of operation of the adaptive schemes:

• Self-tuning operation (the adaptation procedure starts either on demand or
when the performance is unsatisfactory and the current controller is frozen
during the estimation/computation of the new controller parameters).

• Adaptive operation (the adaptation is performed continuously and the
controller is updated at each sampling).

This paper explores the use of the internal model principle for the re-
jection of unknown time-varying finite band disturbances. The other related
approaches will be briefly reviewed in Section 6.

Using the internal model principle, the controller should incorporate the
model of the disturbance ([15, 19, 5, 30]). Therefore the rejection of unknown
disturbances raises the problem of adapting the internal model of the con-
troller and its re-design in real-time.

One way for solving this problem is to try to estimate in real time the
model of the disturbance and re-compute the controller, which will incorpo-
rate the estimated model of the disturbance (as a pre-specified element of
the controller). While the disturbance is unknown and its model needs to
be estimated, one assumes that the model of the plant is known (obtained
for example by identification). The estimation of the disturbance model can
be done by using standard parameter estimation algorithms (see for example

3 Throughout the paper it is assumed that the order of the disturbance model is
known but the parameters of the model are unknown (the order can be estimated
from data if necessary).
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[24, 26]). This will lead to an indirect adaptive control scheme. The principle
of such a scheme is illustrated in figure 2. The time consuming part of this
approach is the redesign of the controller at each sampling time. The reason
is that in many applications the plant model can be of very high dimension
and despite that this model is constant, one has to re-compute the controller
because a new internal model should be considered. This approach has been
investigated in [8, 17, 18].

Fig. 2. Indirect adaptive control scheme for rejection of unknown disturbances
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Fig. 3. Direct adaptive control scheme for rejection of unknown disturbances
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However, by considering the Youla-Kucera parametrization of the con-
troller (known also as the Q-parametrization), it is possible to insert and
adjust the internal model in the controller by adjusting the parameters of the
Q polynomial (see figure 3). It comes out that in the presence of unknown
disturbances it is possible to build a direct adaptive control scheme where the
parameters of the Q polynomial are directly adapted in order to have the de-
sired internal model without recomputing the controller (polynomials R0 and
S0 in figure 3 remain unchanged). The number of the controller parameters to
be directly adapted is roughly equal to the number of parameters of the de-
nominator of the disturbance model. In other words, the size of the adaptation
algorithm will depend upon the complexity of the disturbance model.

This paper focuses on the direct feedback adaptive control for the case of
unknown and time-varying frequency narrow band disturbances. The direct
adaptive control scheme to be presented([21]) takes advantage of the Youla-
Kucera parametrization for the computation of the controller. This algorithm
takes its roots from an idea of Tsypkin ([29])4. A similar approach has been
considered in [31] for an application to a chemical reactor but a theoretical
analysis of the scheme is not provided. A related paper is [2, 3] where the
application field is the active noise control in an acoustic duct5. For evaluation
purposes (complexity and performance) an indirect adaptive control scheme
based on the Internal Model Principle will be also presented.

The paper is organized as follows. Section 2 is dedicated to a brief review
of the plant, disturbance and controller representation as well as of the Inter-
nal Model Principle. Some robustness issues are addressed in section 3. The
direct and the indirect adaptive control schemes for disturbance rejection are
presented in sections 4 and 5, respectively. Other approaches proposed in the
literature are discussed in section 6. The active suspension on which the pro-
posed algorithms have been tested, as well as the real-time results obtained
are presented in section 7. Some concluding remarks are given in section 8.

2 Plant representation and controller structure

The structure of a linear time invariant discrete time model of the plant (used
for controller design) is:

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−d−1B∗(z−1)

A(z−1)
, (1)

with:

4 Note that the adaptive rejection of unknown disturbances using the Youla-Kucera
parametrization is not considered in the survey [4].

5 A brief review of the approaches presented in [31] and [2, 3] can be found in
section 6.
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d = the plant pure time delay in number of sampling periods ;

A = 1 + a1z
−1 + . . . + anA

z−nA ;

B = b1z
−1 + . . . + bnB

z−nB = q−1B∗ ;

B∗ = b1 + . . . + bnB
z−nB+1 ,

where A(z−1), B(z−1), B∗(z−1) are polynomials in the complex variable z−1

and nA, nB and nB − 1 represent their orders6. The model of the plant may
be obtained by system identification. Details on system identification of the
models considered in this paper can be found in [25, 9, 22, 20, 1, 10].

Since in this paper we are focused on regulation, the controller to be de-
signed is a RS-type polynomial controller ([23, 25]) - see also figure 8.

The output of the plant y(t) and the input u(t) may be written as:

y(t) =
q−dB(q−1)

A(q−1)
· u(t) + p1(t) ; (2)

S(q−1) · u(t) = −R(q−1) · y(t) , (3)

where q−1 is the delay (shift) operator (x(t) = q−1x(t + 1)) and p1(t) is the
resulting additive disturbance on the output of the system. R(z−1) and S(z−1)
are polynomials in z−1 having the orders nR and nS , respectively, with the
following expressions:

R(z−1) = r0 + r1z
−1 + . . . + rnR

z−nR = R′(z−1) · HR(z−1) ; (4)

S(z−1) = 1 + s1z
−1 + . . . + snS

z−nS = S′(z−1) · HS(z−1) , (5)

where HR and HS are pre-specified parts of the controller (used for exam-
ple to incorporate the internal model of a disturbance or to open the loop at
certain frequencies).

We define the following sensitivity functions:

• Output sensitivity function (the transfer function between the disturbance
p1(t) and the output of the system y(t)):

Syp(z
−1) =

A(z−1)S(z−1)

P (z−1)
; (6)

• Input sensitivity function (the transfer function between the disturbance
p1(t) and the input of the system u(t)):

Sup(z
−1) = −

A(z−1)R(z−1)

P (z−1)
, (7)

6 The complex variable z−1 will be used for characterizing the system’s behavior
in the frequency domain and the delay operator q−1 will be used for describing
the system’s behavior in the time domain.
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where

P (z−1) = A(z−1)S(z−1) + z−dB(z−1)R(z−1)

= A(z−1)S′(z−1) · HS(z−1) + z−dB(z−1)R′(z−1) · HR(z−1) (8)

defines the poles of the closed loop. In pole placement design, P (z−1) is the
polynomial specifying the desired closed loop poles and the controller poly-
nomials R(z−1) and S(z−1) are minimal degree solutions of (8) where the
degrees of P , R and S are given by: nP ≤ nA + nB + d − 1, nS = nB + d − 1
and nR = nA − 1. Using the equations (2) and (3), one can write the output
of the system as:

y(t) =
A(q−1)S(q−1)

P (q−1)
· p1(t) = Syp(q

−1) · p1(t) . (9)

For more details on RS-type controllers and sensitivity functions see [25].
Suppose that p1(t) is a deterministic disturbance, so it can be written as

p1(t) =
Np(q

−1)

Dp(q−1)
· δ(t) , (10)

where δ(t) is a Dirac impulse and Np(z
−1), Dp(z

−1) are coprime polynomi-
als in z−1, of degrees nNp

and nDp
, respectively. In the case of stationary

disturbances the roots of Dp(z
−1) are on the unit circle. The energy of the

disturbance is essentially represented by Dp. The contribution of the terms of
Np is weak compared to the effect of Dp, so one can neglect the effect of Np.

Internal Model Principle: The effect of the disturbance given in (10)
upon the output:

y(t) =
A(q−1)S(q−1)

P (q−1)
·
Np(q

−1)

Dp(q−1)
· δ(t) , (11)

where Dp(z
−1) is a polynomial with roots on the unit circle and P (z−1) is an

asymptotically stable polynomial, converges asymptotically towards zero if and
only if the polynomial S(z−1) in the RS controller has the form:

S(z−1) = Dp(z
−1)S′(z−1) . (12)

In other terms, the pre-specified part of S(z−1) should be chosen as HS(z−1) =
Dp(z

−1) and the controller is computed using (8), where P , Dp, A, B, HR

and d are given7.
Using the Youla-Kucera parametrization (Q-parametrization) of all stable

controllers ([4, 30]), the controller polynomials R(z−1) and S(z−1) get the
form:

7 Of course it is assumed that Dp and B do not have common factors.
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R(z−1) = R0(z
−1) + A(z−1)Q(z−1) ; (13)

S(z−1) = S0(z
−1) − z−dB(z−1)Q(z−1) . (14)

The (central) controller (R0, S0) can be computed by poles placement (but
any other design technique can be used). Given the plant model (A,B, d) and
the desired closed-loop poles P one has to solve:

P (z−1) = A(z−1)S0(z
−1) + z−dB(z−1)R0(z

−1) . (15)

Equations (13) and (14) characterize the set of all stabilizable controllers
assigning the closed loop poles as defined by P (z−1) (it can be verified by
simple calculations that the poles of the closed loop remain unchanged). For
the purpose of this paper Q(z−1) is considered to be a polynomial of the form:

Q(z−1) = q0 + q1z
−1 + . . . + qnQ

z−nQ . (16)

To compute Q(z−1) in order that the controller incorporates the internal
model of the disturbance one has to solve the diophantine equation:

S′(z−1)Dp(z
−1) + z−dB(z−1)Q(z−1) = S0(z

−1) , (17)

where Dp(z
−1), d, B(z−1) and S0(z

−1) are known and S′(z−1) and Q(z−1)
are unknown. Equation (17) has a unique solution for S ′(z−1) et Q(z−1) with:
nS0

≤ nDp
+ nB + d− 1, nS′ = nB + d− 1, nQ = nDp

− 1 . One sees that the
order nQ of the polynomial Q depends upon the structure of the disturbance
model.

3 Robustness considerations

As it is well known, the introduction of the internal model for the perfect
rejection of the disturbance (asymptotically) will have as effect to raise the
maximum value of the modulus of the output sensitivity function Syp. This
may lead to unacceptable values for the modulus and the delay margins if
the controller design is not appropriately done (see [25]). As a consequence,
a robust control design should be considered assuming that the model of the
disturbance is known, in order to be sure that for all situations an acceptable
modulus margin and delay margin are obtained.

On the other hand at the frequencies where perfect rejection of the dis-
turbance is achieved one has Syp(e

−jω) = 0 and

∣

∣Sup(e
−jω)

∣

∣ =

∣

∣

∣

∣

A(e−jω)

B(e−jω)

∣

∣

∣

∣

. (18)

Equation (18) corresponds to the inverse of the gain of the system to be
controlled. The implication of equation (18) is that cancellation (or in general
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an important attenuation) of disturbances on the output should be done only
in frequency regions where the system gain is large enough. If the gain of the
controlled system is too low, |Sup| will be large at these frequencies. Therefore,
the robustness vs additive plant model uncertainties will be reduced and the
stress on the actuator will become important. Equation (18) also implies that
serious problems will occur if B(z−1) has complex zeros close to the unit circle
(stable or unstable zeros) at frequencies where an important attenuation of
disturbances is required. It is mandatory to avoid attenuation of disturbances
at these frequencies.

Since on one hand we would not like to react to very high frequency dis-
turbances and on the other hand we would like to have a good robustness
it is often wise to open the loop at 0.5fs (fs is the sampling frequency) by
introducing a fixed part in the controller HR(q−1) = 1 + q−1 (for details see
[25] and section 2).

4 Direct adaptive control for disturbance attenuation

The objective is to find an estimation algorithm which will directly estimate
the parameters of the internal model in the controller in the presence of an
unknown disturbance (but of known structure) without modifying the closed
loop poles. Clearly, the Q-parametrization is a potential option since modifi-
cations of the Q polynomial will not affect the closed loop poles. In order to
build an estimation algorithm it is necessary to define an error equation which
will reflect the difference between the optimal Q polynomial and its current
value.

In [30], such an error equation is provided and it can be used for developing
a direct adaptive control scheme. This idea has been used in [31, 2, 3, 21].
Using the Q-parametrization, the output of the system in the presence of a
disturbance can be expressed as:

y(t) =
A(q−1)[S0(q

−1) − q−dB(q−1)Q(q−1)]

P (q−1)
·
Np(q

−1)

Dp(q−1)
· δ(t)

=
S0(q

−1) − q−dB(q−1)Q(q−1)

P (q−1)
· w(t) , (19)

where w(t) is given by (see also figure 3):

w(t) =
A(q−1)Np(q

−1)

Dp(q−1)
· δ(t) = A(q−1) · y(t) − q−d · B(q−1) · u(t) . (20)

In the time domain, the internal model principle can be interpreted as find-
ing Q such that asymptotically y(t) becomes zero. Assume that one has an
estimation of Q(q−1) at instant t, denoted Q̂(t, q−1). Define ε0(t + 1) as the
value of y(t + 1) obtained with Q̂(t, q−1). Using (19) one gets:
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ε0(t + 1) =
S0(q

−1)

P (q−1)
· w(t + 1) −

q−dB∗(q−1)

P (q−1)
Q̂(t, q−1) · w(t) . (21)

One can define now the a posteriori error (using Q̂(t + 1, q−1)) as:

ε(t + 1) =
S0(q

−1)

P (q−1)
· w(t + 1) −

q−dB∗(q−1)

P (q−1)
Q̂(t + 1, q−1) · w(t) . (22)

Replacing S0(q
−1) from the last equation by (17) one obtains

ε(t + 1) = [Q(q−1) − Q̂(t + 1, q−1)] ·
q−dB∗(q−1)

P (q−1)
· w(t) + v(t + 1) , (23)

where

v(t) =
S′(q−1)Dp(q

−1)

P (q−1)
· w(t) =

S′(q−1)A(q−1)Np(q
−1)

P (q−1)
· δ(t)

is a signal which tends asymptotically towards zero.
Define the estimated polynomial Q̂(t, q−1) as: Q̂(t, q−1) = q̂0(t)+q̂1(t)q

−1+

. . . + q̂nQ
(t)q−nQ and the associated estimated parameter vector : θ̂(t) =

[q̂0(t) q̂1(t) . . . q̂nQ
(t)]T . Define the fixed parameter vector corresponding to

the optimal value of the polynomial Q as: θ = [q0 q1 . . . qnQ
]T . Denote:

w2(t) =
q−dB∗(q−1)

P (q−1)
· w(t) (24)

and define the following observation vector:

φT (t) = [w2(t) w2(t − 1) . . . w2(t − nQ)] . (25)

Equation (23) becomes

ε(t + 1) = [θT − θ̂T (t + 1)] · φ(t) + v(t + 1) . (26)

One can remark that ε(t) corresponds to an adaptation error ([23]).
From equation (21) one obtains the a priori adaptation error:

ε0(t + 1) = w1(t + 1) − θ̂T (t)φ(t) ,

with

w1(t + 1) =
S0(q

−1)

P (q−1)
· w(t + 1) ; (27)

w2(t) =
q−dB∗(q−1)

P (q−1)
· w(t) ; (28)

w(t + 1) = A(q−1) · y(t + 1) − q−dB∗(q−1) · u(t) , (29)
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where B(q−1)u(t + 1) = B∗(q−1)u(t).
The a posteriori adaptation error is obtained from (22):

ε(t + 1) = w1(t + 1) − θ̂T (t + 1)φ(t) .

For the estimation of the parameters of Q̂(t, q−1) the following parameter
adaptation algorithm is used ([23]):

θ̂(t + 1) = θ̂(t) + F (t)φ(t)ε(t + 1) ; (30)

ε(t + 1) =
ε0(t + 1)

1 + φT (t)F (t)φ(t)
; (31)

ε0(t + 1) = w1(t + 1) − θ̂T (t)φ(t) ; (32)

F (t + 1) =
1

λ1(t)



F (t) −
F (t)φ(t)φT (t)F (t)

λ1(t)
C) + φT (t)F (t)φ(t)



 . (33)

1 ≥ λ1(t) > 0; 0 ≤ λ2(t) < 2 (34)

where λ1(t), λ2(t) allow to obtain various profiles for the evolution of the
adaption gain F (t) (for details see [23, 25] and section 7).

In order to implement this methodology for disturbance rejection (see fig-

ure 3), it is supposed that the plant model
z−dB(z−1)

A(z−1)
is known (identified)

and that it exists a controller [R0(z
−1), S0(z

−1)] which verifies the desired
specifications in the absence of the disturbance. One also supposes that the
degree nQ of the polynomial Q(z−1) is fixed, nQ = nDp

− 1, i.e. the structure
of the disturbance is known.

The following procedure is applied at each sampling time for adaptive
operation:

1. Get the measured output y(t+1) and the applied control u(t) to compute
w(t + 1) using (29).

2. Compute w1(t + 1) and w2(t) using (27) and (28) with P given by (15).
3. Estimate the Q-polynomial using the parametric adaptation algorithm

(30) - (33).
4. Compute and apply the control (see figure 3):

S0(q
−1) · u(t + 1) = −R0(q

−1) · y(t + 1) − Q̂(t, q−1) · w(t + 1) . (35)

For the self tuning operation of the adaptive scheme, the estimation of the
Q- polynomial starts once the level of the output is over a defined threshold.
A parameter adaptation algorithm (30)-(33) with decreasing adaption gain is
used and the estimation is stopped when the adaption gain is below a pre-
specified level8. During estimation of the new parameters, the controller is kept
constant. The controller is updated once the estimation phase is finished. For
a stability analysis of this scheme see [21].

8 The magnitude of the adaptation gain gives an indication upon the variance of
the parameter estimation error - see for example [23].
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5 Indirect adaptive control for disturbance attenuation

The methodology proposed in this section concerns the indirect adaptive con-
trol for the attenuation of unknown disturbances and consists in two steps: (1)
Identification of the disturbance model; (2) Computation of a digital controller
using the identified disturbance model.

The disturbance is considered as a stationary signal having a rational
spectrum. As such it may be considered as the output of a filter with the
transfer function Np(z

−1)/Dp(z
−1) and a white noise as input:

Dp(q
−1) · y(t) = Np(q

−1) · e(t) or y(t) =
Np(q

−1)

Dp(q−1)
· e(t) , (36)

where e(t) represents a gaussian white noise, and

Np(z
−1) = 1 + np1

z−1 + . . . + npnNp
z−nNp = 1 + z−1N∗

p (z−1) ;

Dp(z
−1) = 1 + dp1

z−1 + . . . + dpnDp
z−nDp = 1 + z−1D∗

p(z−1) .

Therefore the disturbance model can be represented by an ARMA model.
As we deal with narrow band disturbances, the filtering effect of the primary
path in cascade with the output sensitivity function (when operating in closed
loop) around the central frequency of the disturbance can be approximated

by a gain and a phase lag which will be captured by the
Np(z

−1)

Dp(z−1)
model.

From equation (36) one obtains:

y(t + 1) = −

nDp
∑

i=1

dpi
y(t − i + 1) +

nNp
∑

i=1

npi
e(t − i + 1) + e(t + 1) . (37)

The problem is, in fact, an on-line adaptive estimation of parameters in pres-
ence of noise ([23, 24]). Equation (37) is a particular case of identification of
an ARMAX model. One can use for example the Recursive Extended Least
Squares method ([23, 25]), which is dedicated to the identification of this type
of model. The parameter adaptation algorithm given in (30) - (33) is used.
The controller parameters are frozen while the disturbance model is identi-
fied. Once the disturbance model is identified, the controller containing the
disturbance dynamics is computed by solving the diophantine equation (8)
and using (5) with HS(z−1) = D̂p(z

−1) (the identified model of the distur-
bance). In order to apply this methodology we suppose that the plant model
is known (can be obtained by identification). We also suppose that the degrees
nNp

and nDp
of Np(z

−1) respectively Dp(z
−1) are fixed.

For the self tuning operation a parameter adaptation algorithm with de-
creasing adaptation gain is used and estimation is stopped when the adapta-
tion gain becomes smaller than a pre-specified level. In adaptive operation, a
parameter adaption algorithm with constant trace or forgetting factor is used.



Adaptive rejection of finite band disturbances - Theory and applications 13

The parameters of the controller have to be re-computed at each sampling in-
stant based on the current estimation of the disturbance model (non vanishing
adaptation gain). Unfortunately, when the estimated frequency approaches
the true one, the output sensitivity function will have a pair of complex zeros
on the unit circle leading to a very strong attenuation of the measured ef-
fect of the disturbance. This will make the estimation of the exact frequency
almost impossible. As a consequence, in adaptive operation there will be a
”bias” on the estimated frequency caused by the need to have a certain level
of the measured output to carry on the estimation. This phenomenon has
been clearly observed both in simulation and on the real system.9 For more
details see([8, 17, 21]).

To compute the controller one uses equation 8. If a Youla-Kucera parametriza-
tion of the controller is used one will have to solve equation 17. The advantage
with respect to the first approach is a reduction of the size of the equation to
be solved in real time.

6 Review of other approaches

Several approaches based on adaptive feedback control have been considered
in the literature for the rejection of unknown disturbances when the plant
model is known, . Some of them are based on the internal model principle
(as the approach presented in this paper). See for example, [2, 3, 31]. Other
approaches are based on the use of adaptive observers for the disturbances,
such as the ones presented in [27, 11]. Another approach uses the phase-
locked loop structures, like in [8, 7]. In what follows we will briefly review
these results.

Use of the Internal Model Principle

Feedback solutions for the rejection (attenuation) of unknown disturbances,
based on the internal model principle, have been also presented in [2, 3, 31]
(the model of the plant is considered known). The adaptive approach pre-
sented in these papers is similar to the one presented in this paper.

Approach I. In [3] an adaptive controller design approach based on parametriz-
ing the set of stabilizing controllers using the Youla - Kucera parametrization
and the internal model principle is implemented to solve a noise cancellation
problem in an acoustic duct. The design approach is presented in [2],

The plant considered is presented in figure 4. It consists of a duct, a pair
of speakers, a pair of microphones and their amplifiers, and an anti-aliasing
filter. The first speaker is used to generate the noise signal, the second one is
used to generate the control signal to cancel the noise at a particular location

9 One can use other signals for disturbance estimation in order to avoid this prob-

lem. One possibility is to replace the signal y(t) by ȳ(t) = y(t) −
q−dB

A
u(t).
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in the duct (disturbance and control speakers). The two microphones are used
as measurement and performance evaluation.

Spectrum

Analyzer

Anti

Aliasing

Filter

Adaptive

Controller

Measurement

Microphone

Performance

Microphone
Control

Speaker

Disturbance

Speaker

Fig. 4. Block diagram of the noise cancellation system

The model of the plant has been obtained by system identification. The
identification experiment was performed by first exciting the disturbance
speaker with white noise and collecting data from the output of the anti-
aliasing filter. The same identification procedure was repeated for the control
speaker. A spectrum analyzer provided the frequency response of the plant
based on the collected data.

The experiment considered consists of exciting the disturbance speaker
with a single tone sinusoidal signal and running the adaptive controller in
order to cancel the noise at the performance microphone. The Youla - Kucera
filter to be adjusted online is a first order FIR filter.

The experimental results show a mixed performance for the adaptive sys-
tems with good performance only in certain disturbance frequency ranges. At
some ranges of the disturbance frequency, the adaptive systems achieved 20
to 50 dB reduction in the performance signal PSD (Power Spectral Density)
at the disturbance frequency and also good overall reduction in the PSD of
the signal. At some other disturbance frequency ranges, the performance was
not as good. It has been concluded that the unmodeled plant nonlinearities
are most likely to be responsible for the observed deterioration of the adaptive
system performance in experiments as compared to simulations.

Approach II. An algorithm very similar to the one presented in this paper and
based on the adaptive feedback control for disturbance rejection is presented
in [31].

The application considered to illustrate the performances of the proposed
algorithm is the Saccharomyces cerevisiae fed-batch fermentation. It is an
example of a system subject to an unstable disturbance (but over a finite
time).
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The objective of the application was to maximize the biomass productivity
in the reactor. Hence, the substrate concentration in the reactor needs to be
kept at the critical value in order to maintain a constant ethanol concentration.
However, the substrate concentration is unknown a priori and may change
from experiment to experiment.

So the problem of maximizing the production of biomass is converted into
that of regulating the concentration of ethanol. The plant is considered as
an integrator that constantly produces ethanol. The substrate consumption
by the cells is modeled as an exponential disturbance which the controller
has to reject. The methodology has been successfully implemented in an ex-
perimental setup in the laboratory. So the control objective is to keep the
concentration of this fermentation product constant.

The control strategy is presented in figure 5. The controller C generates the
substrate feed rate F that is capable of maintaining exponential cell growth
and the desired production of ethanol. The controller will be able to reject
the exponential substrate consumption disturbance w, if the rate at which
the substrate is supplied is sufficient. Since the cells grow exponentially, it is
expected that the substrate feed rate also be exponential. An adaptive dis-
turbance rejection methodology is used to control the fed-batch fermentation
near its optimal operating point. The biomass and ethanol productions rates
have been decoupled, as it can be seen in figure 5, where Gw relates the rate
of substrate oxidation reaction to the rate at which the substrate is fed (the
discrete transfer function of the disturbance) and Gp relates the substrate
feed rate to the ethanol production rate. S and P are the concentrations of
the substrate and ethanol, respectively, and Psp is the ethanol concentration
setpoint.

Gw

F
C Gp

Psp P

w

Bioreactor

-

8

-

d

Fig. 5. Control strategy of the fed-batch fermenter

The derived linear models have been used successfully to implement the
adaptive disturbance rejection methodology. The ethanol concentration in the
bioreactor is the only measurement required. The only parameter that is esti-
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mated on-line is the exponential cell growth rate. Changes in the disturbance
structure are automatically compensated.

Use of Adaptive Observers

The design of an output feedback adaptive observer-based compensator for
the rejection of additive noisy sinusoidal disturbances with unknown bias,
magnitude, phase and frequency is presented in [27]. In this approach the sys-
tem is considered asymptotically stable, linear and observable, its parameters
being supposed known. For a system of order n, the order of the compensator
generating asymptotically convergent estimates of the biased sinusoidal dis-
turbance is 2n + 6. The estimated parameters of the sinusoidal disturbance
are its magnitude, frequency (with known lower bound), phase and bias. It is
shown that the closed-loop error system based on adaptive observer is globally
asymptotically stable. The adaptive observer-based compensation technique
presented in [27] is illustrated on an example taken from [8]. In order to test
the robustness of the control strategy, a more general disturbance has been
considered, compared to the disturbance considered in [8]. Hence, bias and ad-
ditional unmodeled noise have been taken into account, neither of them being
considered in [8]. The performance in simulation are interesting. While this
scheme does not directly make reference to the ”internal model principle”, one
can however remark that through the observer the model of the disturbance
is incorporated in the controller.

An extension of the above approach with explicit reference to the internal
model principle for the case of nonlinear plants is discussed in [11].

Use of the Phase-Locked Loop Structure

A direct approach for the rejection of sinusoidal disturbances with unknown
frequencies, based on the integration of a phase-locked loop for adaptive feed-
back control with known plant model is presented in [8]. The disturbance
frequency estimation and the disturbance cancellation are performed simul-
taneously using a single error signal. The elimination of the high-frequency
components within the system is done by using a low-pass compensator, no
additional filtering being necessary. The knowledge of the frequency response
of the plant in the frequency range of interest is required. Because of the lock-
in range of the phase-locked loops, there exist an upper limit on the initial
errors of the disturbance frequencies. The system presented in [8] is able to
compensate sinusoidal disturbances in a range ±30%. Experimental results
are mentionned in [7]. An applicable scheme of this type would need to com-
bine the direct algorithm with an initialization scheme for providing rough
initial estimates of the disturbance frequency.
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7 An application - Adaptive rejection of narrow band

disturbances on an active suspension

7.1 The active suspension

The structure of the system (the active suspension) used in this paper is
presented in figure 6. Two photos of the system are presented in figure 7
(Courtesy of Hutchinson Research Center and Laboratoire d’Automatique
de Grenoble). It consists of the active suspension, a load, a shaker and the
components of the control scheme. The mechanical construction of the load
is such that the vibrations produced by the shaker, fixed to the ground, are
transmitted to the upper side of the active suspension. The active suspension
is based on a hydraulic system allowing to reduce the over-pressure at the
frequencies of the vibration modes of the suspension. Its components are: an
elastomer cone (1) which marks the main chamber filled up with silicon oil, a
secondary chamber (2) marked by a flexible membrane, a piston (3) attached
to a motor, an orifice (4) allowing the oil to pass between the two chambers
and a force sensor located between the support and the active suspension.

The controller will act upon the piston (through a power amplifier) in order
to reduce the residual force. The sampling frequency is 800Hz. The equivalent
control scheme is shown in figure 8. The system input, u(t) is the position of
the piston (see figures 6, 8), the output y(t) is the residual force measured by

a force sensor. The transfer function (q−d1
C

D
), between the disturbance force,

up, and the residual force y(t) is called primary path. In our case (for testing
purposes), the primary force is generated by a shaker controlled by a signal

given by the computer. The plant transfer function (q−d B

A
) between the input

of the system, u(t), and the residual force is called secondary path. The input
of the system being a position and the output a force, the secondary path
transfer function has a double differentiator behavior.

The control objective is to reject the effect of unknown narrow band dis-
turbances on the output of the system (residual force), i.e. to attenuate the
vibrations transmitted from the machine to the support via the active sus-
pension. The physical parameters of the active suspension system are not
provided by the manufacturer. The system has to be considered as a ”black
box”.

7.2 Results obtained on the active suspension

The narrow band disturbance rejection procedure using the direct adaptive
control scheme proposed in section 4 is illustrated in real time for the case
of the control of the active suspension (presented in section 7.1). In our case
the disturbance will be a time-varying frequency sinusoid, so we shall consider
nDp

= 2 and nQ = nDp
− 1 = 1. Furthermore a comparison with the results
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Fig. 6. Active suspension system (scheme)

Fig. 7. Active suspension system (photo)
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Fig. 8. Block diagram of the active suspension system

obtained in real time with the indirect adaptive control scheme proposed in
section 5 will be provided.

The identification procedure in open and closed-loop operation for the
active suspension is discussed in detail in [9, 22, 20, 1, 10]. The frequency
characteristic of the identified primary path model (open-loop identification),
between the signal up sent to the shaker in order to generate the disturbance
and the residual force y(t), is presented in figure 9. The first vibration mode
of the primary path model is near 32Hz. The frequency characteristic of the
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Fig. 9. Frequency characteristics of the primary and secondary paths

identified secondary path model (closed-loop identification), is presented also
in figure 9. This model has the following complexity: nB = 14, nA = 16,
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d = 0. The identification has been done using as excitation of the piston a
PRBS (Pseudo Random Binary Sequence) with frequency divider p = 4 (for
details on the PRBS signals see [25]). There exist several very low damped
vibration modes on the secondary path, the first one being at 31.8Hz with
a damping factor 0.07. The identified model of the secondary path has been
used for the design and implementation of the controller.

The central controller (without the internal model of the disturbance)
has been designed using the pole placement method and the secondary path
identified model. A pair of dominant poles has been fixed at the frequency
of the first vibration mode (31.8Hz), with a damping ξ = 0.8, and the other
poles of the model have been considered as auxiliary desired closed loop poles.
In addition a pre-specified part HR = 1 + q−1(R = HRR′) which assures the
opening of the loop at 0.5fs has been introduced and 10 auxiliary poles at
0.7 have been added to the desired closed-loop poles. The resulting nominal
controller has the following complexity: nR = 14, nS = 16 and it satisfies
the imposed robustness constraints on the sensitivity functions(for the design
methodology see[25])10.

In order to evaluate the performances of direct and indirect methods in real
time, time-varying frequency sinusoidal disturbances between 25 and 47Hz
have been used (the first vibration mode of the primary path is near 32Hz).

For both direct and indirect adaptive control methods, two protocols have
been defined: one for a self-tuning operation, the other for an adaptive oper-
ation.

• Protocol 1 : Self-tuning operation
The system operates in closed loop with a frozen controller. As soon as a
change of the disturbance is detected (by measuring the variance of the
residual output), the estimation algorithm is started with the last frozen
controller in operation. When the algorithm converges (a criterion has to
be defined - see below), a new controller is computed and applied to the
system. The adaptation algorithm is stopped and one waits for a change
of frequency.

• Protocol 2 : Adaptive operation
The estimation algorithm works permanently (once the loop is closed) and
the controller is recomputed at each sampling. The adaptation gain in this
case does not tend asymptotically to zero.

• Start up: For comparison purpose the system is started in open-loop for
both protocols. After 5 seconds (4000 samples) a sinusoidal disturbance of
32Hz is applied on the shaker. The model of the disturbance is estimated
and an initial controller is computed (same initial controller for both direct
and indirect adaptive control). In the case of the self-tuning operation the
adaptation algorithm is stopped while in the case of the adaptive operation
the adaptation algorithm continues to be active.

10 Any design method allowing to satisfy these constraints can be used.
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After the start up ends, every 15 seconds (8000 samples) sinusoidal distur-
bances of different frequency are applied (32Hz, 25Hz,32Hz,47Hz,32Hz).

Protocol 1 : Self-tuning operation. Real time experimental results

The measured residual force obtained in self-tuning operation with the direct
adaptation method is presented in figure 10 and with the indirect adaptation
method in figure 11 . We note in general a faster convergence speed of the
direct adaptive control scheme compared to the indirect one (except for 47Hz).
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Fig. 10. Time domain results with the direct adaptation method in self-tuning
operation

For the self-tuning protocol, the spectral densities of the residual force
obtained in open and in closed loop, respectively, using the direct adaptation
scheme (after the algorithm converges) are presented in figure 12. The results
are given for the three frequencies used: 25, 32 and 47 Hz. We remark that
the attenuations are larger than 49 dB for all the frequencies. Similar results
are obtained with the indirect adaptation algorithm. For details see [9].

We note the appearance of two harmonics of the first vibration mode of
the primary path on the spectral density in open loop when the frequency of
the disturbance corresponds with the first resonance mode of the system (32
Hz). They appear in open loop because of the non-linearities of the system
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Fig. 11. Time domain results with the indirect adaptation method in self-tuning
operation

0 50 100 150 200 250 300 350 400
−70

−60

−50

−40

−30

−20

−10

0

10

20

Frequency [Hz]

Spectral densities of the residual force. Direct method in self−tuning operation

dB
 [V

rm
s]

Open loop (25 Hz)  
Open loop (32 Hz)  
Open loop (47 Hz)  
Closed loop (25 Hz)
Closed loop (32 Hz)
Closed loop (47 Hz)

Fig. 12. Spectral densities of the residual force in open and in closed loop, with the
direct adaptation method in self-tuning operation



Adaptive rejection of finite band disturbances - Theory and applications 23

at large signals (there is an important amplification of the disturbance at
the resonance frequency of the system in open loop). The harmonics do not
appear in closed loop operation.

In self-tuning operation, one uses an adaptation gain F (t) with variable
forgetting factor, with λ0 = 0.97 and the initial forgetting factor λ1(0) = 0.97
(the forgetting factor is given by λ1(t) = λ0λ1(t−1)+1−λ0, with 0 < λ0 < 1).
For the variable forgetting factor the adaptation gain tends asymptotically
towards zero. The convergence criterion has been fixed as a threshold on the
trace value of the adaptation gain matrix. For details see [9].

The detection of a change of frequency is done using the variance of the
measured residual force computed on a sliding window of 50 samples.

Protocol 2 : Adaptive operation. Real time experimental results

The measured residual force obtained in adaptive operation is presented in
figure 13 for the direct adaptation method and in figure 14 for the indirect
adaptation method. An adaptation gain with variable forgetting factor com-
bined with a constant trace ([23, 25]) has been used in order to be able to
track automatically the changes of disturbance characteristics. The low level
threshold of the trace has been fixed at 3 · 10−9 for the direct algorithm and
at 5 · 10−7 for the indirect one (note that in the indirect adaptive scheme
there are more parameters to estimate than in the direct adaptive scheme).
The attenuation obtained with the indirect adaptive scheme in adaptive op-
eration is less good than in the self tuning operation and less good than the
one obtained with the direct adaptive scheme. This is certainly caused by the
phenomenon discussed in section 5. We note that the direct adaptive control
scheme in adaptive operation gives better results than in self tuning operation
(compare figures 10 and 13).

The spectral densities of the residual force for the direct adaptive scheme
(after the algorithm converges) are similar with those obtained in self-tuning
operation (see [9]).

According to the real time results presented above, one can conclude that
the direct adaptive control scheme gives better results than the indirect adap-
tive control scheme, from the point of view of the convergence speed and
performance. In addition the direct adaptation scheme is much simpler than
the indirect one in terms of number of operations.

Direct adaptive control scheme under the effect of sinusoidal disturbances
with continuously time varying frequency

Consider now that the frequency of the sinusoidal disturbance varies continu-
ously and let’s use a chirp disturbance signal (linear swept-frequency signal)
between 25 and 47Hz. The tests have been done as follows: Start up in closed
loop at t = 0 with the central controller. Once the loop is closed, the adap-
tation algorithm works permanently and the controller is updated (direct
approach) at each sampling instant. After 5 seconds a sinusoidal disturbance
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Fig. 13. Time domain results with the direct adaptation method in the adaptive
case (trace = 3 · 10−9)

of 25 Hz (constant frequency) is applied on the shaker. From 10 to 15 seconds
a chirp between 25 and 47 Hz is applied. After 15 seconds a 47 Hz (constant
frequency) sinusoidal disturbance is applied and the tests are stopped after
18 seconds. The time-domain results obtained in open and in closed-loop (di-
rect adaptive control) are presented in figure 15. We can remark that the
performances obtained are very good.

Adaptation transients for direct adaptive control

Figure 16 illustrates the adaptation transients on the input and output when
a step change of the frequency of the disturbance occurs from 20Hz to 32 Hz
respectively. One notes that the convergence of the output requires less than
0.25s This corresponds roughly to 6 periods for 32Hz. Same duration of the
adaptation transient are obtained for the other frequencies step changes. These
results have to be compared with the transients results given in [8, 27, 2, 3].

8 Conclusions

It was shown in this paper that the use of the internal model principle com-
bined with the adaptation of the internal model implemented in a Youla -
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Fig. 14. Time domain results with the indirect adaptation method in the adaptive
case (trace = 5 · 10−7)

Kucera parametrized controller allows a very good rejection of the unknown
time varying narrow band disturbances without requiring the use of an addi-
tional transducer. Two adaptive approaches (direct and indirect adaptation)
have been presented and tested comparatively on an active suspension.

The results obtained in real time lead us to conclude that the direct adap-
tive control scheme provides better performance than the indirect adaptive
control scheme. Furthermore, from the performances point of view, the adap-
tive operation is more interesting than the self-tuning one for the direct adap-
tive control scheme. Moreover, the direct algorithm is much simpler than the
indirect one.

A similar approach has been used successfully on a chemical reactor and
for noise cancellation in ducts. One can conclude that an efficient technique
for rejection of unknown finite band disturbances is available.

For future research it will be interesting to evaluate comparatively this
approach with the other approaches indicated in section 6. Establishing con-
nections with ”repetitive control” may be also very rewarding.
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