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AMS/IP Studies in Advanced Mathematics

Transverse Properties of Dynamical Systems

Jean Renault

Abstract. Roughly speaking, two dynamical systems are transversally equiv-
alent if they have the same space of orbits; a property is transverse if it is pre-

served under transverse equivalence. Various notions of transverse equivalence
have been defined: among them, similarity of measured groupoids, Morita
equivalence of locally compact groupoids, stable orbit equivalence of measure

equivalence relations. After reviewing some of these notions, we pass to dis-
cussing the Morita equivalence of groupoids and give examples and applica-

tions, in particular in connection with operator algebras.

1. Introduction

The dynamical systems of the present paper are pairs (X,G) consisting of a
space X and a family G, usually a group or a semi-group, of transformations of
X. They also include foliations (X,F). The orbits of a dynamical system (or the
leaves of a foliation) form a partition of the spaceX. Roughly speaking, a transverse
property of the dynamical system is a property of its orbit space X/G (or its leaf
space X/F in the case of a foliation). The kind of question we may ask is, for
example, “Are there transverse properties which distinguish two irrational rotations
of the circle?” The answer is not obvious because their orbit spaces are singular and
not amenable to classical analysis. Therefore, we need a precise definition saying
when two orbit spaces are the same (one also says that the dynamical systems are
“orbit equivalent”). Of course, it will depend on the way we view the orbit space,
for example as a measured space or as a topological space.

Groupoids provide a convenient framework for giving such a definition. There
are groupoids (usually one) naturally attached to the dynamical systems we consider
here. After introducing a suitable notion of equivalence of groupoids, a transverse
property of a dynamical system can be defined as a property of the equivalence
class of its groupoid. This idea appears in the work of G. Mackey (cf. [Ma])
in the framework of ergodic theory (for a different purpose, namely the study of
unitary group representations). In this context, he considers measured groupoids
and the notion of equivalence he uses is similarity of measured groupoids; he defines
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a virtual group as a similarity class of measured groupoids. This notion has been
studied extensively by A. Ramsay (e.g. in [Ra]).

Specialized to countable standard measured equivalence relations, as defined
by Feldman and Moore in [FM], similarity agrees with Kakutani equivalence. Here
X is a standard Borel space, R is an equivalence relation on X which has countable
classes and a Borel graph (also denoted by R), and [µ] is the class of a σ-finite
measure on X quasi-invariant under R. The action of a countable group of Borel
automorphisms of X preserving the measure class [µ] provides such an equivalence
relation (in fact, they can all be obtained that way). First, two countable standard
measured equivalence relations (Xi, Ri, [µi]), i = 1, 2 are said to be isomorphic if
the measured groupoids (Ri, [µi]) are isomorphic; this amounts to saying that there
exists a Borel isomorphism ϕ : X ′

1 → X ′
2, where X ′

i is a conull set in Xi, sending µ1

onto a measure equivalent to µ2 and such that for all x ∈ X ′
1, ϕ(R1(x)) = R2(ϕ(x)).

Two countable standard measured equivalence relations (Xi, Ri, [µi]), i = 1, 2 are
said to be similar if there exists a countable standard measured equivalence rela-
tions (Y, S, [µ]) and Borel subsets Yi, i = 1, 2 of Y having positive measure and
meeting almost every orbit of S such that (Xi, Ri, [µi]) are respectively isomorphic
to (Yi, S|Yi

, [µ|Yi]). The most studied case is when there is a probability measure
µ on X invariant under the equivalence relation R (when the relation arises from
the action of a countable group, this agrees with the usual definition of an invari-
ant measure). One says then that (X,R, µ) is a probability measure preserving
(p.m.p.) equivalence relation. An isomorphism of two ergodic p.m.p. equivalence
relations (Xi, Ri, µi), i = 1, 2 automatically preserves the invariant probability mea-
sures. In the non-ergodic case, one may want to add this condition. This notion of
isomorphism of p.m.p. equivalence relations is crucial in the classification of p.m.p.
actions of countable groups (in this context, one often says that the actions are orbit

equivalent when their orbit equivalence relations are isomorphic), starting with the
earlier work by Murray and von Neumann [MN] and followed by H. Dye [D1, D2],
A. Vershik, R. Belinskaya and others. The recent survey [G] by D. Gaboriau gives
a clear account of the present theory of orbit equivalence of group actions.

Let us consider now topological dynamical systems. We have in mind for ex-
ample a locally compact group acting continuously on a locally compact space.
Then there is a topological groupoid, called its semi-direct product, attached to
such a dynamical system. There is a convenient notion of equivalence of topologi-
cal groupoids, introduced in [Re2], which replaces Mackey’s similarity of measured
groupoids. Since it is prompted by the notion of Morita equivalence of C∗-algebras
introduced by M. Rieffel in [Ri] and gives an equivalence of categories, it is often
called Morita equivalence of groupoids. It is the object of this communication.

The theory of foliations and the study of orbifolds teach us that, due to the
possible presence of holonomy, it is more natural to introduce a groupoid rather
than an equivalence relation. I should point out that, even when applied to a free
action of a group, where the semi-direct product groupoid is an equivalence relation,
the notions of isomorphism or equivalence of groupoids discussed in this talk are
not the notions of topological orbit equivalence and Kakutani equivalence used by
Giordano, Putnam and Skau in [GPS]. Indeed, let (Xi, Ri), i = 1, 2 be equivalence
relations on topological spaces. Orbit equivalence in the sense of [GPS] is given by
a homeomorphism ϕ : X1 → X2 such that for all x ∈ X1, ϕ(R1(x)) = R2(ϕ(x)). In
the context discussed here, the equivalence relations Ri are topological groupoids
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and isomorphism requires that the induced bijection ϕ× ϕ : R1 → R2 respects the
topology, which is a stronger requirement. It should also be said that a conjugation
of two dynamical systems gives an isomorphism of the corresponding groupoids but
not conversely. On the other hand, the notion of equivalence of groupoids used here
and its derived notion of transverse property agree with that used in the theory of
foliations (see [H2] and [Ml, Section 2.7]).

The next section recalls the definition of Morita equivalence of C∗-algebras and
topological groupoids. One of the most basic transverse invariants is K-theory,
which is briefly discussed in Section 3. Topological amenability, which is a trans-
verse property, and its applications are reviewed in Section 4. The final Section
5 briefly discusses cohomology of topological groupoids and gives a construction
of the Dixmier-Douady class of an elementary equivariant C∗-bundle. This is in-
teresting for our purpose since it makes good use of both Morita equivalence of
C∗-algebras and equivalence of groupoids. The definitions and results of Sections
2-4 are well known. Section 5 relies on [T2, TXL] and[KMRW]. Although I have
no explicit reference for it, the construction of the Dixmier-Douady class presented
here will look familiar to the specialists. It is based on a talk which I gave at a
conference on groupoids and stacks held in Luminy, June 28-July 2nd 2004. I thank
the participants of both conferences for stimulating discussions, and in particular
J.-L. Tu and X. Tang.

2. Morita equivalence of C∗-algebras and groupoids

2.1. C∗-algebras. Let us recall the now classical notion of Morita equivalence
of C∗-algebras, introduced by M. Rieffel in [Ri]. It is relevant here for several
reasons: it will appear a few times and it has prompted the definition of equivalence
of groupoids given below.

Definition 2.1 ([Ri, Definition 2.1]). Let B be a C∗-algebra. A right B-C∗-

module is a complex linear space E endowed with

(i) a structure of right-B-module

(x, b) ∈ E × B 7→ xb ∈ E

(ii) a B-valued “inner product”

(x, y) ∈ E × E 7→ < x, y >∈ B

satisfying
(a) it is B-linear in the second variable y,
(b) < y, x >∗=< x, y >
(c) < x, x > is a positive element of B
(d) ‖x‖ = ‖ < x, x > ‖1/2 is a complete norm on E

We say that a B-C∗-module E is full if the linear span of the range of the inner
product is dense in B.

One recognizes the definition of a Hilbert space when B = C. The notions of
bounded and compact linear operators can be defined in this new setting. Given
two C∗-modules E and F , one defines LB(E,F ) as the space of bounded B-linear
operators T : E → F which admit an adjoint, and KB(E,F ) as the norm-closure of
the linear span of the rank-one operators θx,y, where x ∈ E, y ∈ E and for z ∈ E,

θx,y(z) = x < y, z > .
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For F = E, one gets the C∗-algebra LB(E) and its closed ideal KB(E).

Definition 2.2 ([Ri, Definition 4.19]). Let A and B be C∗-algebras. An
(A,B)-C*-correspondence (or a correspondence from A to B) is a right B-C∗-
module E together with a ∗-homomorphism π : A → LB(E).

We shall usually view an (A,B)-C*-correspondence as an (A,B)-bimodule.
A ∗-homomorphism π : A → B defines an (A,B)-C*-correspondence, by con-
sidering E = B as a right B-C∗-module (then LB(E) = B). It is useful to
view C*-correspondences as generalized ∗-homomorphisms. There is a composi-
tion of correspondences extending composition of ∗-homomorphisms: given a C*-
correspondence E from A to B and a C*-correspondence F from B to C, one can
construct the C*-correspondence E ⊗B F from A to C. It is the C-C∗-module
obtained by separation and completion of the ordinary tensor product E ⊗ F with
respect to the inner product

< x ⊗ y, x′ ⊗ y′ >=<< x, x′ >B , y′ >C , x, x′ ∈ E, y, y′ ∈ F ;

the left A action is given by a(x⊗ y) = ax⊗ y for a ∈ A. Associativity holds up to
isomorphism. More precisely, given C∗-algebras A,B,C,D and C*-correspondences
E from A to B, F from B to C and G from C to D, there is a canonical isomorphism
(E ⊗B F ) ⊗C G → E ⊗B (F ⊗C G).

We say that an (A,A)-correspondence E is an identity if it is isomorphic to the
correspondence A (defined by the identity map) and that an (A,B)-correspondence
E is invertible if there exists a (B,A)-correspondence F such that E ⊗B F and
F ⊗A F are identity correspondences. One has the following easy characterization
of invertible correspondences.

Proposition 2.3 ([Ri, Section 6]). Let A and B be C∗-algebras and let E be

a linear space. Then the following conditions are equivalent:

(i) E is invertible (A,B)-C*-correspondence,

(ii) E is a full right B-C∗-module and there is a ∗-isomorphism π : A →
KB(E),

(iii) E is a full right B-C∗-module and a full left A-C∗-module such that for

a in A, x, y, z in E and b in B,

(a) (ax)b = a(xb)
(b) A < x, y > z = x < y, z >B

(c) < ax, ax >B≤ ‖a‖2 < x, x >B

(d) A < xb, xb >≤ ‖b‖2
A < x, x >

Definition 2.4 ([Ri, Definition 6.10]). An (A,B)-bimodule as in the above
proposition is called an (A,B)-Morita equivalence. Two C∗-algebras A and B are
said to be Morita equivalent if there exists an (A,B)-Morita equivalence.

We leave to the reader to check that An is a (Mn(A), A)-Morita equivalence
(where Mn(A) is the C∗-algebra of n × n matrices over A). Another related basic
example is the following: let C be a C∗-algebra and let e, f be two projections in
C such that CeC = CfC. Then eCf is a (eCe, fCf)-Morita equivalence. One
should note the analogy with the definition of Kakutani equivalence recalled in
the introduction. Let E be an (A,B)-Morita equivalence. We define an inverse

(B,A)-Morita equivalence Ẽ by a bijection x ∈ E 7→ x̃ ∈ Ẽ and the following
operations:
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(i) x̃ + ỹ = ˜(x + y) (̃λx) = λx̃ for x, y ∈ X and λ ∈ C,

(ii) b∗x̃a∗ = ãxb for (a, x, b) ∈ A × E × B,
(iii) < x̃, ỹ >A=A< x, y > and B < x̃, ỹ >=< x, y >B .

Then E ⊗B Ẽ [resp. Ẽ ⊗A E] is isomorphic to the identity correspondence A [resp.
B] via the inner product.

2.2. Groupoids. Let us review some of the definitions. More information for
this section can be found in [Re1, Re2, MRW]. The most concise way to define
a groupoid is to say that it is a small category with inverses. More concretely, we
have a set of units G(0), with elements denoted by x, y, . . ., a set of arrows G, with
elements denoted by γ, γ′, . . ., the range and the source maps r, s : G → G(0), the
product map from G(2) = {(γ, γ′) ∈ G×G : s(γ) = r(γ′)} to G and the inverse map
γ ∈ G 7→ γ−1 ∈ G. We view G(0) as a subset of G so that we have r(γ) = γγ−1 and
s(γ) = γ−1γ. Let us give a few examples, arising mostly from dynamical systems.

Groups. This is the case when G(0) has a single element.

Equivalence relations. Suppose that R is an equivalence relation on the set
X. Then, G(0) = X, G = {(x, y) ∈ X × X : xRy} is the graph of the equiva-
lence relation (from now on, we shall simply write G = R); the range and source
maps are respectively the first and the second projections, the product is given by
(x, y)(y, z) = (x, z) and the inverse by (x, y)−1 = (y, x). The identification of G(0)

as a subset of G is given by the diagonal map x 7→ (x, x).

Group actions. This is the classical case of a dynamical system. A group Γ acts
on a space X (for convenience here on the right). We denote by (x, t) ∈ X × Γ 7→
xt ∈ X the action map. Then we define G(0) = X and the groupoid of the action,
also called the semi-direct product,

G = X ×Γ = {(x, t, y) ∈ X × Γ × X : xt = y}.

The range and source maps are respectively given by r(x, t, y) = x and s(x, t, y) =
y. The product map is given by (x, t, y)(y, t′, z) = (x, tt′, z) and the inverse by
(x, t, y)−1 = (y, t−1, x). Note that G is a subgroupoid of the product groupoid
Γ × (X × X) where X × X is the graph of the trivial equivalence relation. The
image of the projection of G into X × X is the graph of the orbit equivalence
relation. The action is free if and only if this map is one-to-one.

Endomorphisms. Suppose that we have a map T of X into itself, not necessarily
invertible. We define G(0) = X and the groupoid of the endomorphism

G = {(x,m − n, y) ∈ X × Z × X : m,n ∈ N, Tmx = Tny}.

The maps and operations are the same as above. When T is invertible, G is the
groupoid of the action of Z given by T . The following subgroupoid of G is also
relevant:

R = {(x, y) ∈ X × Z × X : ∃m ∈ N, Tmx = Tmy}.

These groupoids have been studied in particular by A. Vershik, who also intro-
duced a generalization of them, with the notion of polymorphisms ([V2], see also
[ArR]).

Foliations. We introduce briefly this important example, which goes back to
C. Ehresmann. Let F be a foliation, i.e., a partition into leaves, of the space X.
A path γ with endpoints s(γ) and r(γ) traced on a leaf defines a holonomy; we
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identify two paths defining the same holonomy and denote by [γ] the holonomy
classes [γ]. Then we define G(0) = X and the holonomy groupoid

G = {(x, [γ], y) : x, y ∈ X, r(γ) = x, s(γ) = y}.

The maps and operations are the same as above, with [γ][γ′] = [γγ′], where γγ′ is
the concatenated path. One also considers transverse holonomy groupoids: they
are reductions G|T to a full (i.e., meeting every leaf) transversal T ⊂ X.

Groupoid actions can be defined as functors. More concretely, a left G-
space, where G is a groupoid, consists of a space Z, a projection map r : Z → G(0)

(assumed to be surjective) and an action map from G ∗Z to Z, where G ∗Z is the
set of composable pairs (γ, z) with s(γ) = r(z), satisfying the usual associativity
rules; the image of (γ, z) is denoted by γz. A right G-space is defined similarly.
One says that the action is free if the equality γz = z implies that γ is the unit
r(z).

Two basic examples of actions of a groupoid G are, on one hand, its action on
its unit space G(0) given by γy = x where x = r(γ) and y = s(γ) and, on the other
hand, its action on itself by left multiplication. This latter action is always free.

The definitions of a topological groupoid and of a continuous action are straight-
forward: with above notations, G, G(0) and Z are topological spaces and all the
maps we have introduced are continuous. There is a slight difficulty here because
one may have to consider non-Hausdorff groupoids, for example the holonomy
groupoid of the Reeb foliation. For the sake of simplicity, we assume that these
topological spaces are Hausdorff. There is a further assumption that we make:
the range, source and projection maps are assumed to be open. We then say the
topological G-space Z is proper if the map from G ∗Z (endowed with the topology
induced by the product topology of G × Z) to Z × Z which sends (γ, z) to (γz, z)
is proper. For example the left action of G on itself is always proper.

The examples given above provide topological groupoids. For example, the
groupoid of a continuous group action, endowed with the topology induced by the
product topology of X ×Γ×X, is a topological groupoid. The holonomy groupoid
of a smooth foliation F of dimension p on a manifold of dimension p + q has a
natural structure of manifold of dimension 2p + q, which turns it into a topological
groupoid. The groupoid of an endomorphism which is a local homeomorphism has
also a natural topology (see for example [ArR]).

Equivalence of topological groupoids can be presented in a fashion anal-
ogous to Morita equivalence of C∗-algebras.

Definition 2.5. Let G and H be topological groupoids. A (G,H)-correspon-

dence (also called a correspondence from G to H) is a right free and proper H-space
Z endowed with a left action of G such that its projection map r : Z → G(0) gives
a homeomorphism of Z/H onto G(0).

A groupoid homomorphism φ : G → H defines a (G,H)-correspondence

Z = G(0) ∗ H = {(x, η) ∈ G(0) × H : φ(0)(x) = r(γ)},

where H acts on the right by(x, η)η′ = (x, ηη′), and G acts on the left by γ(s(γ), η) =
(r(γ), φ(γ)η). Correspondences appear under various names in the literature; they
are called morphisms of quotient spaces in [HS], generalized morphisms in [L1] and
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Hilsum–Skandalis maps in [Mr]. There is a composition of correspondences extend-
ing the composition of groupoid homomorphisms: given a (G,H)-correspondence
X and a (H,K)-correspondence Y , one can construct the (G,K)-correspondence
X ◦ Y = X ∗ Y/H, where X ∗ Y is the subspace of X × Y consisting of pairs (x, y)
such that s(x) = r(y) and H acts by (x, y)η = (xη, η−1y). We say that a (G,G)-
correspondence Z is an identity if it is isomorphic to the correspondence G (defined
by the identity map) and that a (G,H)-correspondence X is invertible if there exists
a (H,G)-correspondence Y such that X ◦Y and Y ◦X are identity correspondences.
One has the following easy characterization of invertible correspondences.

Proposition 2.6. Let G and H be topological groupoids and let Z be a topolog-

ical space endowed with commuting left G- and right H-actions. Then the following

conditions are equivalent:

(i) Z is an invertible (G,H)-correspondence.

(ii) The actions are free and proper; the projection map r : Z → G(0) gives

a homeomorphism of Z/H onto G(0) and projection map s : Z → H(0)

gives a homeomorphism of G\Z onto H(0).

Definition 2.7 ([Re2, Section 3],[MRW, Definition 2.1]). A (G,H)-space as
in the above proposition is called a (G,H)-equivalence. Two topological groupoids
G and H are said to be equivalent if there exists a (G,H)-equivalence.

Let Z be a free and proper right H-space. The graph Z ∗Z of the equivalence
relation defined by the projection map s : Z → H(0) is a topological groupoid and
so is its quotient Z∗Z/H by the diagonal action of H. This groupoid has an obvious
left action on Z which turns Z into a (Z ∗ Z/H,H)-equivalence. Conversely, if Z
is a (G,H)-equivalence, then G is isomorphic to Z ∗ Z/H.

Example 2.8. Let p : Z → X be a surjective continuous and open map,
where Z,X are topological spaces. Then, Z ∗Z (fibred product above X), with the
topological groupoid structure inherited from Z × Z is equivalent to X via Z. In
particular, if U = {Ui}i∈I is an open cover of X, if Z = XU is the disjoint union of
the U ′

is and if p : Z → X is the obvious map, we get the groupoid associated with
the open cover:

GU = {(i, x, j) : x ∈ Uij}

which is equivalent to X.

Example 2.9. Let H be a closed subgroup of a topological group G. Then,
the right action of H on G by right multiplication is free and proper. Moreover,
the semi-direct groupoid G×(G/H) acts on G on the left (the projection map r :
G → G/H is the quotient map). This makes G into a (G×(G/H),H)-equivalence.
This equivalence between H and G×(G/H) is at the heart of the theory of induced
representations.

Example 2.10. More generally, let P and Γ be two closed subgroups of a topo-
logical groupG. Then, the semi-direct product groupoids Γ×(G/P ) and (Γ\G)×P
are equivalent via the equivalence G.

Example 2.11. Let T and T ′ be transversals of a foliation (X,F) which meet
each leaf. Then the holonomy groupoid G = G(X,F) and its reductions to the
transversals G|T and G|T, are all equivalent. For example GT

T ′ = r−1(T ) ∩ s−1(T ′)
is a (G|T , G|T ′) equivalence. Let us give as an elementary example the Kronecker
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foliation of irrational slope α on the 2-torus T2. The reduction of its holonomy
groupoid to a closed transversal given by a line of rational slope is the groupoid of
an irrational rotation of angle 2πβ, where β is in the orbit of α under the action of
PSL(2,Z); moreover, any β in this orbit can be obtained. Therefore, two irrational
rotations of respective angles 2πβ and 2πβ′, where β and β′ are in the same orbit
under PSL(2,Z), have equivalent groupoids.

The classifying space of a topological groupoid G, defined as the quotient BG =
EG/G of a universal G-space EG (say within the category of free and proper G-
spaces) provides some of the most basic transverse invariants (see [H2, Section 3]).
In the example of the irrational rotation, this classifying space is, up to homotopy
equivalence, the 2-torus itself. In general, it is not so accessible.

3. C∗-algebras and analytic K-theory

As pointed out earlier, our point of view owes very much to the theory of opera-
tor algebras. The analogy of the presentation of Morita equivalence for C∗-algebras
and for topological groupoids can be given a mathematical form via a suitable form
[Re1] of the Murray-von Neumann“group-measure construction” [MN]. We have
to impose additional assumptions on our topological groupoids: we require that
they are second countable and locally compact and that they have a Haar system.

Let us explain this notion. Suppose that G is a locally compact groupoid and
that Z is a locally compact left G-space, with the projection map r : Z → G(0). A
r-system is a family (αx), x ∈ G(0), where αx is a Radon measure on Zx = r−1(x).
It is said to be continuous if for all f in the space Cc(Z) of continuous complex-
valued functions on Z with compact support, the function x 7→ αx(f) is continuous.
It is said to be invariant if for all γ ∈ G, the image of αs(γ) by γ : Zs(γ) → Zr(γ)

is αr(γ). A Haar system for the locally compact groupoid G is a continuous and
invariant r-system (λx), x ∈ G(0) for the left G-space G. We implicitly assume that
all λx are non-zero.

Contrarily to the case of locally compact groups, neither existence nor unique-
ness hold in general. Existence of a Haar system is a topological assumption on G.
For example, if the range map r : G → G(0) has countable fibers, G has a Haar
system if and only if r is a local homeomorphism. Then, the counting measures
form a Haar system and one says that G is an étale groupoid. This is a large
and interesting class of groupoids including groupoids of discrete group actions,
groupoids of endomorphisms provided they are themselves local homeomorphisms
and transverse holonomy groupoids. The groupoid X ×Γ of the continuous action
of a locally compact groupoid Γ on a locally compact space has a Haar system of
the form λx = δx×λ, where λ is a (left) Haar measure for Γ and δx is the point mass
at x. The holonomy groupoid of a foliation also has Haar systems, with measures
in the Lebesgue class.

Suppose that G is a locally compact groupoid with Haar system λ. Then Cc(G)
can be made into a ∗-algebra via the formulas:

f ∗ g(γ) =

∫
f(γγ′)g(γ′−1

)dλs(γ)(γ′),

f∗(γ) = f(γ−1).
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Then one defines the full C∗-algebra C∗(G,λ) as its universal C∗-completion. One
also defines the reduced C∗-algebra C∗

red(G,λ) by introducing the regular repre-
sentation (it acts no longer on a Hilbert space, as in the case of a group, but on
the C0(G

(0))-C∗-module L2(G,λ)). When G = X ×Γ comes from a group action,
C∗(G,λ) and C∗

red(G,λ) are respectively the classical crossed-products C∗(X,Γ)
and C∗

red(X,Γ).

Theorem 3.1 ([MRW, Theorem 2.8]). Let (G,λ) and (H,λ′) be second count-

able locally compact groupoids with Haar systems. Then, for any (G,H)-equivalence

Z, Cc(Z) can naturally be completed into a (C∗(G,λ), C∗(H,λ′))-Morita equiva-

lence.

The same result (with the same proof) holds with the reduced C∗-algebras.
More generally, if Z is a free and proper right H-space which has a s-system α
(here, s : Z → H(0) denotes the projection map), one can complete Cc(Z) into a
right C∗(H,λ′)-C∗-module C∗(Z,α). If moreover, Z is a (G,H)-correspondence,
C∗(Z,α) is also a right C∗(G,λ)-module and this makes it into a correspondence
from C∗(G,λ) to C∗(H,λ′). With suitable choices of systems of measures, this con-
struction is functorial, in the sense that it respects composition up to isomorphism.

Corollary 3.2. Let G be a second countable locally compact groupoid with

Haar system λ. Then for i = 0, 1 the analytic K-theory groups Ki(C
∗(G,λ)) and

Ki(C
∗
red(G,λ)) are transverse invariants.

This results from the theorem and the fact that an (A,B)-Morita equivalence
of C∗-algebras gives an isomorphism of their K-theory groups. These groups are
called the analytic K-theory groups of the groupoid G. An early landmark was the
computation by M. Pimsner and D. Voiculescu of these groups for the irrational
rotation. As abelian groups (K0 = Z2,K1 = Z2), they do not distinguish two
irrational rotations. However, K0 has a natural order and this ordered group is
also invariant under Morita equivalence, hence it is also a transverse invariant. For
the irrational rotation of angle 2πα, this ordered group is Z + αZ, with the order
inherited from R. Our earlier remark shows that this ordered group is a complete
transverse invariant. At this point, let us briefly mention the Baum-Connes or
assembly map. These authors have constructed a natural group homomorphism

µ : K∗
top(G) → K∗(C

∗
red(G,λ))

where the left-hand side group is the so-called geometrical K-theory group; it in-
volves the universal proper G-space (see [C] or [T1] for a precise definition). This
map is compatible with groupoid equivalence. It has been shown to be an isomor-
phism in many cases.

4. Amenability

This notion, which plays an important rôle in the harmonic analysis of lo-
cally compact groups, can also be defined for dynamical systems. Here we shall
only consider a definition of amenability for locally compact groupoids (topological
amenability) and refer the reader to [AnR] for further information and references.
Amenability of group actions also appears in V. Kaimanovich’s talk.

The nicest kind of amenability is the following:

Definition 4.1. We say that a locally compact groupoid G is properly amenable

if it admits a Haar system (mx), x ∈ G(0) consisting of probability measures mx.
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When G already admits a Haar system, this condition is equivalent to the
properness of G, in the sense that G(0) is a proper G-space. In the case of a group,
this amounts to saying that the group is compact and, in the case of a group action,
that the action is proper. We look for a weakening of this condition.

Definition 4.2. We say that a locally compact groupoid G is topologically

amenable if it admits a continuous approximate invariant mean, i.e., a net (mi =
{mx

i }x∈G(0)) of continuous systems of probability measures mx
i on Gx which is

approximately invariant in the sense that the function γ 7→ ‖γm
s(γ)
i − m

r(γ)
i ‖1

tends to zero uniformly on the compact subsets ofG.

In the case of the semi-direct product groupoid G = X ×Γ of a continuous
action of a locally compact group Γ on a locally compact space X, we identify Gx

with Γ and view mx
i as a probability measure on Γ; the approximate invariance

condition becomes: (x, t) 7→ ‖tmxt
i −mx

i ‖1 tends to zero uniformly on the compact
subsets of X × Γ. Amenability of the action of Γ on X is a synonym for amenabil-
ity of the groupoid G = X ×Γ. Any action of an amenable group is amenable.
Non-amenable groups admit interesting amenable actions. For example, boundary
actions of hyperbolic groups are amenable. Note that these actions can not preserve
any probability measure. An important property of topological amenability is its
invariance under topological equivalence of groupoids.

Theorem 4.3 ([AnR, 2.2.17]). Topological amenability of locally compact

groupoids is a transverse property.

When G is an amenable locally compact groupoid with Haar system, its full
and its reduced C∗-algebras coincide [AnR, 6.1.8] and this C∗-algebra is nuclear
[AnR, 6.2.14]. Moreover, the Baum-Connes map is an isomorphism ([T1]). As an
application of this notion, one deduces that groups which admit an amenable action
on a compact space (e.g. boundary actions) satisfy the Novikov conjecture [HR].
Amenability for measured groupoids had been introduced earlier by R. Zimmer [Z1,

Z2]; among other equivalent definitions, there is one analogous to Definition 4.2
[Re1, II.3.4]. It is invariant under similarity.

As well known, there are striking results concerning amenable measured equiv-
alence relations. One of them is that, for countable ergodic standard measured
equivalence relations, amenability is equivalent to hyperfiniteness [CFW]. An-
other, mentioned in the introduction, is the classification, up to isomorphism, of
amenable countable ergodic standard measured equivalence relations. The status of
amenable locally compact groupoids, even when restricted to minimal equivalence
relations is very different. Th. Giordano, I. Putnam and C. Skau have initiated
a program of classification of minimal actions of Zd (and more general amenable
groups) on the Cantor space, completed for d = 1 [GPS] and with partial results
for d = 2 (C. Skau) which uses, as said before, a weaker notion of orbit equivalence.

In some sense, AF equivalence relations [Re4] can be viewed as a topological
version of hyperfinite equivalence relations. These are the relations which can
be obtained as tail equivalence relations of a Bratteli diagram. W. Krieger has
shown in [Kr] that they are classified up to isomorphism by their dimension range,
therefore, up to equivalence, by their dimension group, which is the ordered group
K0 which appeared in the previous section. Thus, its dimension group is a complete
transverse invariant for an AF equivalence relations. The analogous statement for
AF algebras had been known earlier. Another class of nuclear C∗-algebras has a
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good classification theory, namely the simple purely infinite ones are classified by
their KK-theory (Kirchberg-Phillips). The C∗-algebras associated with boundary
actions of discrete groups enter into this class [A1] and are classified up to Morita
equivalence by their K-theory. However, up to my knowledge, the classification of
boundary actions up to groupoid equivalence has not been completed. A step into
that direction is the computation by C. Anantharaman-Delaroche in [A2] of these
K-theory groups for the action of a Fuchsian group on P 1(R), which shows that
non-conjugate actions can give isomorphic K-theory groups.

5. Cohomology and the Dixmier-Douady class

Since topological groupoids generalize both topological spaces and topological
groups, it is worthwhile to define a cohomology theory which unifies cohomology
of spaces and group cohomology. Grothendieck’s equivariant sheaf cohomology,
originally defined for discrete group actions, has been extended to étale topological
groupoids by A. Haefliger [H1] and by A. Kumjian [Ku]. As shown recently by
J.-L. Tu in [T2], sheaf and Čech cohomology can be defined for arbitrary topolog-
ical groupoids as a particular case of topological simplicial spaces. This definition
subsumes the previous definitions.

Given a topological groupoid G, let us define a G-bundle A as a topological
G-space with projection map r : A → G(0) such that its fibres Ax = r−1(x) have
an additional structure which is compatible with the topology of A and the action
of G. For instance, we can speak of a G-bundle of groups or a G-bundle of Banach
spaces. When the projection map is a local homeomorphism, one speaks of a G-
sheaf instead of a G-bundle and of a stalk instead of a fibre. Given a topological
groupoid G and a G-sheaf A of abelian groups, we denote by Hn(G,A), n ∈ N

these cohomology groups (we do not here distinguish, as Tu does, sheaf and Čech
cohomology). These are transverse invariants:

Theorem 5.1 ([T2, Section 8]). Let G be a topological groupoid and let A be

a G-sheaf A of abelian groups. Then, the cohomology groups Hn(G,A), n ∈ N are

invariant under Morita equivalence of topological groupoids.

For n = 0 and n = 1, these groups have a simple geometrical description:
H0(G,A) is the group of (global) continuous G-equivariant sections of the projec-
tion map. In order to define H1(G,A), let us introduce the notion of (G,A)-affine
space, which is quite similar to the notion of (G,A)-correspondence given in Defi-
nition 2.5. The difference is that we require that the maps r, s : Z → G(0) coincide
and we replace the commutation of the actions γ(za) = (γz)a by the equivariance
condition γ(za) = (γz)(γa) for (γ, z, a) ∈ G ∗ Z ∗ A. Then H1(G,A) is the group
of isomorphism classes of (G,A)-affine spaces.

Just like for groups, the cohomology group H2(G,A) is related to extensions of
G. Here are some definitions but we refer the reader to [KMRW, T2] for a more
precise account. Let G be a topological groupoid and let A be a G-bundle of abelian
groups. An extension of a topological groupoid G by A is a topological groupoid E
such that E(0) = G(0), together with groupoid homomorphisms i : A → E (where
A is viewed as a groupoid) and p : E → G such that i(0) and p(0) are the identical
map, i is injective, p is surjective, for σ ∈ E, p(σ) is a unit if and only if σ is in the
image of A and σi(a)σ−1 = i(p(σ).a), where γ.a is the image of (γ, a) ∈ G ∗ A by
the action map G ∗ A → A.
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In order to integrate equivalence of groupoids, we also consider the extensions of
the equivalent groupoid GZ = Z ∗Z/G by the induced group bundle AZ = Z ∗A/G,
where Z is a right free and proper G-space. We say that the extensions Ei of GZi

,
where i = 1, 2, are equivalent if there is an equivalence Z of the groupoids Ei,
i = 1, 2, such that the actions of AZi

agree and A\Z is isomorphic to Z1 ∗Z2/G as
(GZ1

, GZ2
)-equivalence . Equipped with the Baer sum of extensions, the equivalence

classes of such extensions form a group Ext(G,A) isomorphic to H2(G,A) ([T2,
Proposition 5.6]), where A is the sheaf of germs of continuous sections of A.

The case when A is the constant bundle S = G(0) × S1, where S1 is the
circle group and the action of G is trivial has received a special attention. The
corresponding extensions are called twists over G [Ku]. They appear in particular
in the theory of projective unitary representations of topological groups and in
the Dixmier–Douady classification of certain continuous fields of elementary C∗-
algebras ([DD], see also [B, Chapter 4]). A general framework is given in [KMRW].

We present it here briefly and under a slightly different form. This theory
concerns G-bundles of elementary C∗-algebras. The notion of Morita equivalence
of C∗-algebras which we have reviewed in Section 2 is easily adapted to G-bundles
of C∗-algebras (some authors, e.g. [L2], use the related notion of G-C∗-algebra):
given a topological space X and two bundles of C∗-algebras A → X and B → X,
an X-Morita equivalence is a bundle of Banach spaces E → X and a structure of
(Ax, Bx)-Morita equivalence on the fibre Ex for all x ∈ X such that all the structure
maps are continuous. If X = G(0) and A,B are G-bundles of C∗-algebras, we shall
say that E is a G-Morita equivalence if it is a G-bundle of Banach spaces and
the action of G preserves the structure maps. Details can be found in [Re3].
By definition, an elementary C∗-algebra A is a C∗-algebra isomorphic to the C∗-
algebra K(H) of compact operators on some Hilbert space H. Equivalently, it is a
C∗-algebra which is Morita equivalent to the C∗-algebra C.

Definition 5.2. A bundle of C∗-algebras A → X is elementary if it is X-
Morita equivalent to the constant bundle X × C. Equivalently, there exists a
bundle of Hilbert spaces H → X such that the bundles A → X and K(H) → X
are isomorphic. A bundle of C∗-algebras A → X is locally elementary if each point
x ∈ X has a neighborhood U such that the reduced bundle A|U → V is elementary.

The classical Dixmier–Douady invariant classifies locally elementary C∗-bundles
over X up to X-Morita equivalence. It is an element δX(A) ∈ H2(X,S), where S
is the sheaf of germs of continuous functions from X to the circle, which can be
described as follows. Let A → X be a locally elementary C∗-bundle. By definition,
there exist an open cover U = {Ui}i∈I of X and for all i a Ui-Morita equivalence Hi

from Ai = A|Ui
to Ui×C. By choosing if necessary a finer cover, there exists for all

i a section ξi of Hi → Ui such that ‖ξi(x)‖ = 1 for all x ∈ Ui. It defines a section pi

of Ai → Ui such that for all x ∈ Ui, pi(x) =Ai
< ξ(x), ξ(x) > is a one-dimensional

projection of A(x). For all (i, j) such that Uij = Ui ∩Uj is non empty and x ∈ Uij ,
we define Lij(x) = pi(x)A(x)pj(x). Then Lij is a Hermitian line bundle overUij .
Given i, j, k such that Uijk = Ui ∩ Uj ∩ Uk is nonempty and x ∈ Uijk, the product
in A(x) gives a product Lij(x) ⊗ Ljk(x) → Lik(x). For x ∈ Uij , the involution in
A(x) gives an involution Lij(x) → Lji(x). For v ∈ Lij(x), we have vv∗ = ‖v‖2pi(x)
and v∗v = ‖v‖2pj(x). We define

E = {(i, x, j, v) : x ∈ Uij , v ∈ Lij(x), ‖v‖ = 1}.
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Endowed with the multiplication (i, x, j, v)(j, x, k, w) = (i, x, k, vw) and the inverse
map (i, x, j, v)−1 = (j, x, i, v∗), it is an extension of the groupoid associated with
the open cover

GU = {(i, x, j) : x ∈ Uij}

by the constant bundle X × S1. Moreover, these groupoids are topological. One
can check that the class of this twist E in Ext(X,X ×S1) does not depend on our
choices. Viewed as an element of H2(X,S), it is the Dixmier–Douady invariant
δX(A). The main result of [DD] is that δX(A) classifies the C∗-bundle A → X up
to X-Morita equivalence.

Let us consider next the locally elementary C∗-bundles over X which are en-
dowed with a G-action, where G is a given topological groupoid with unit space
G(0) = X. Let A → X be such a bundle. There exist an open cover U = {Ui}i∈I of
X and sections pi over Ui consisting of one-dimensional projections as above. We
now introduce the groupoid

GU = {(i, γ, j) : γ ∈ G, r(γ) ∈ Ui, s(γ) ∈ Uj}

which is equivalent to G. For (i, γ, j) ∈ GU , we define the Hermitian line

L(i, γ, j) = pi(r(γ))A(r(γ))(γpj(s(γ))).

We have a product L(i, γ, j)⊗L(j, γ′, k) → L(i, γγ′, k) given by a⊗ b 7→ a(γb) and
an involution L(i, γ, j) → L(j, γ−1, i) given by a 7→ γ−1(a∗), which make

E = {(i, γ, j, v) : (i, γ, j) ∈ GU , v ∈ L(i, γ, j), ‖v‖ = 1}

into a twist over GU defining the Dixmier–Douady invariant δG(A) ∈ H2(G,S).

Theorem 5.3 ([KMRW, Theorem 10.1]). Let G be a topological groupoid.

Two locally elementary G-C∗-bundles are G-Morita equivalent if and only if they

have the same Dixmier–Douady invariant.

In fact, the result of [KMRW] is more precise. It is first shown there that
the G-Morita equivalence classes of locally elementary G-C∗-bundles, with tensor
product of C∗-bundles as composition law, form a group; by analogy with a clas-
sical notion in algebra, this group is called the Brauer group of G and is denoted
by Br(G). Then, it is shown that the above Dixmier–Douady map is an isomor-
phism from Br(G) onto H2(G,S). The notion of K-orientation of a G-real vector
bundle used in [HS] to construct elements of Kasparov KK-groups is related to
the Dixmier–Douady invariant: a G-Euclidean vector bundle of even dimension
(the general case follows by standard constructions) is K-oriented if and only if the
Dixmier–Douady invariant δG(A) ∈ H2(G,S) of the associated complex Clifford
algebra bundle A vanishes. These cohomology groups have been mostly studied for
étale groupoids and in particular in the context of foliations [H1] and for groupoids
of endomorphisms [DKM]. As a corollary of Theorem 5.1, these results can be
applied to those groupoids which are equivalent to étale groupoids. There are also
partial results on Br(G) when G is the semi-direct product X ×Γ of the action of
a group Γ on a space X relating it to the group cohomology of Γ and the Čech
cohomology of X (e.g. [EN]).
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