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Abstract  We first briefly recall the basic mechanisms controlling the hydrodynamic and 

thermo-diffusive stability of planar laminar premixed flames, and give the state of the 

theoretical analysis. We then describe some novel experiments to observe and measure the 

growth rate of cellular structures on initially planar flames. The first experiment concerns the 

observation of the temporal growth of wrinkling on a freely propagating planar flame. A 

second experiment concerns the spatio-temporal growth of structures of controlled 

wavelength on an anchored flame. The experimental observations are compared to theoretical 

dispersion relation. Finally, we compare observations of the non-linear evolution to saturation 

with the predictions of an extended Michelson-Sivashinsky equation.  

Introduction 

 In general, planar flame sheets are unstable to perturbations and will spontaneously 

form cellular structures. Darrieus[1] in 1938 was the first to recognize that the gas expansion 

produced by heat release in a wrinkled premixed flame will deviate the flow lines in the front 
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towards the normal to the flame. Since the Mach number,   M ≡ SL / c , (where SL is the 

laminar flame speed and c is the speed of sound) of deflagrations is very small, the flow is 

quasi-incompressible. Hence the upstream flow lines are also deviated, creating flow 

divergence and velocity gradients that will increase the wrinkling of the flame (Fig. 1). 
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Figure 1. Structure of a wrinkled flame front  showing the hydrodynamic streamlines and 

the diffusive fluxes of heat and mass. 

 This unconditional hydrodynamic instability was predicted independently by Landau 

[2] in 1944. Considering the flame as a thin interface between unburned and burned gases, he 

found that the growth rate, σ, of this hydrodynamic instability should vary as  
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where k is the wavenumber of the perturbation and   E = ρu / ρb  is the gas expansion ratio. A 

more complete description can be found in the work of Zeldovich et al.[3].  

 If the finite thickness of the flame front is considered,  δ = Dth SL , where Dth is the 

thermal diffusivity,  then the effect of wrinkling will induce transverse heat and mass fluxes 
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that alter the local flame temperature and  lead to modifications of the local flame speed [3-5]. 

A purely one-dimensional diffusive instability of premixed laminar flames (pulsating 

propagation), has been predicted [6, 7] for mixtures having a very high Lewis number coupled 

with a very high activation energy. However the theoretical threshold value of these 

parameters is beyond the range of real flames and this type of instability has never been 

observed experimentally. 

 The combined effects of preferential diffusion and hydrodynamic instability has been 

studied some twenty years ago by many authors [8-11].  The approximation of high activation 

energy and multi-scale asymptotics were used to solve the problem at three physically distinct 

scales, which are the inner scale of the chemical reaction zone (scale  δ / β ), the scale of the 

diffusion zone (scale δ) and the outer scale of the hydrodynamic zone (scale   k−1). 

Here,  β ≈10 is the reduced activation energy, or Zel’dovich number: 

 
  
β =

E
kTb

 (Tu − Tu )
Tb

 (2) 

The effect of gravity acting on two fluids of different density, burned and unburned gas, was 

also included on the analysis. The effect of gravity can help stabilise flames when the light 

burned gas is above the heavy unburned gas. The most complete description of laminar flame 

stability is given in a little known 1983 paper of Clavin and Garcia [12]. These authors solve 

the dynamics of small amplitude wrinkling of premixed flames including the effect of 

temperature dependent diffusion coefficients. They find that the dispersion relation for the 

growth rate, σ , of small amplitude wrinkling with wavenumber k is given by: 

     (σ τ t )2 A(k ) + σ τ t B(k ) + C(k ) = 0 (3) 

The growth rate of the instability is given by the real part of σ . The wavenumber dependent 

coefficients in (3) are given by : 
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Here,     δ = Dth / SL is the thickness of the thermal diffusion zone,   τ t = δ / SL  is the flame 

transit time,     Fr = SL
2 /(g δ) is the Froude number of the flame, g is the acceleration of gravity 

(positive when the flame propagates downwards) and   Pr = ν / Dth is the Prandtl number. The 

quantities J and H account for the temperature dependence of the diffusivities. They are given 

by the integrals: 

 

    

H = (hb − h(θ ) dθ
0
1∫ ,

J = (E − 1) h(θ )
1 + (E − 1) θ0

1∫ dθ
 (5) 

where     θ = (T − Tu ) /(Tb − Tu)  is the reduced temperature,   h(θ)  is the thermal diffusivity 

times density (  ρ Dth) at temperature θ , normalised by its value in the unburned gas, and  hb  is 

the value of     h(θ)  in the burned gas. The above relations were obtained in the linearised limit 

of long wavelength low frequency perturbations   k δ << 1,   σ τ t << 1 with small amplitude of 

wrinkling. The expressions are accurate to order   (k δ)2 and   (σ τ t )2. 

 The sensitivity of the local burning velocity to curvature and stretch is contained in the 

Markstein number, Ma, [8]. When the Markstein number is positive, which is generally the 

case, the effect of curvature is to decrease the burning velocity of a region that is convex 

towards the unburned gas, implying that the flame is thermo-diffusively stable. Clavin and 
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Garcia [12] have given an expression for the Markstein number for the simplified case of an 

overall one-step chemical reaction controlled by an Arrhenius law: 

 
    
Ma =

E
E − 1

J +
β
2

h(θ ) ln(θ−1)
1 + (E − 1)θ

dθ
0
1∫  (6) 

In (6), β  is the reduced activation energy, or Zel’dovich number. The first term on the r.h.s. 

of (6) arises from transverse convective transport of heat and species within the diffusive 

thickness of the wrinkled flame. The second term arises from transverse diffusive transport of 

heat and mass. Equation (6) shows that when convection within the flame thickness is also 

considered, a flame can be thermo-diffusively stable (Ma > 1) even for Lewis numbers 

smaller than unity. 

 The approximation of one-step chemistry is not good and in general and (6) should be 

considered only as a rough approximation. It is generally necessary to obtain Markstein 

numbers from experimental measurements [13-16] or from direct numerical simulations [17, 

18]. 

 Figure 2 shows typical plots of the real part of the reduced growth rate,  σ τ t , 

calculated as a function of the reduced wavenumber,  k δ , for propane air flames. For small 

wavenumbers, the growth rate first increases linearly with the wavenumber, as predicted by 

Darrieus and Landau. Then, at larger wavenumbers, the growth rate decreases with the square 

of the wavenumber, due to thermo-diffusive effects. The effect of gravity is to shift the 

growth rate curve downwards and to reduce the range of instable wavenumbers. The effect is 

only significant for slow flames,     SL < 0.2 m/s. For sufficient slow flames,     SL < 0.12 m/s, 

the effect of gravity can stabilise downwards propagating flames at all wavenumbers [11, 13]. 
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Figure 2. Reduced growth rate of Darrieus-Landau instability plotted as a function of 

reduced wavenumber for flame speeds in the range   0.1 ≤ SL ≤ 0.4  m/s. (lower to upper in 

steps of 0.025 m/s). Other parameters appropriate for lean propane flames. The data needed 

in equations (3-5) were taken from the CHEMKIN package [19]. Ma = 4.5 [13]. 

 This linear analysis is expected to be correct during the linear part of the growth of the 

Darrieus-Landau instability. However, until recently, there has been no direct experimental 

verification of the theory. The reason for this lies in the difficulty of producing the initial 

condition of a planar, freely propagating, unstable flame. The characteristic growth time of 

the instability is typically 20-50 ms, which is short compared to the time needed to establish a 

freely propagating flame of finite dimensions. It follows that the Darrieus-Landau instability 

has nearly always been observed in the phase of non-linear saturation. 

Experimental Verification on Planar Flames 

 The first direct experimental verification of (2) was performed by Clanet and Searby 

[20]. They used a novel technique of acoustic restabilisation to produce a perfectly planar 

laminar flame that is otherwise intrinsically unstable. The imposed acoustic field was then 

removed on a short time scale, (about 1 ms), and the unconstrained growth of the Darrieus-

Landau instability was observed. The contents of this section will describe their work. 
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 Effect of Acoustic Field on a Laminar Flame 

 The effect of an imposed acoustic field on a freely propagating premixed laminar 

flame front has been given by Searbyand Rochwerger [21]. In the approximation     a k << 1, 

where a is the amplitude of the wrinkling, these authors have shown that the dynamics of a 

flame front in an imposed acoustic field characterised by the frequency,  ωa , and displacement 

velocity,   ua, is dominated by the effect of the periodic acoustic acceleration acting on the 

flame seen as a thin interface between two fluids of different density. The dynamics of this 

system can be obtained from (3) and (4) by introducing this periodic acoustic acceleration into 

the Froude number, along with the acceleration of gravity: 

 
    
Fr−1 =

g δ

SL
2

− ωa ua cos(ωa t ) (7) 

Writing     α( y, t ) = a exp(σ t − i k y), where α  is the amplitude of wrinkling at wavenumber 

k, it can be seen that (3) is the time Fourier transform of the following equation of motion 

for α : 

 
    
A(k ) ∂2α

∂t2
+ B(k ) ∂α

∂t
+ C(k ) − C1(k ) cos(ωat )[ ]α = 0  (8) 

Where the wavenumber dependent coefficients A(k), B(k) and C(k) are given in (4). The 

acoustic acceleration has introduced an extra term   C1(k ) : 
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Equation (8) is formally equivalent to a parametrically driven damped harmonic oscillator in 

which the acoustic acceleration appears as the driving force. This equation, (8), can be 

reduced to the Mathieu equation [22] by a simple substitution of variables [8]. The solutions 
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of this latter are known to present regions of instability separated by a stable domain, Details 

are given in [21].  
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Figure 3. Regions of stability and instability of lean premixed propane flame subjected to a 

periodic acoustic acceleration.  

 It may be noted that the flame front does not have a single characteristic frequency, 

but a continuum associated with the continuum of wavelengths that can be excited on its 

surface. In Fig. (3), we have plotted a typical stability diagram for the solutions to equ (8), 

using parameters appropriate for a lean propane-air flame. The stability thresholds are plotted 

as a function of reduced wavenumber for the reduced frequency  ω τ t  = 0.88. The lower 

pocket of instability, at small wavenumber and low acoustic amplitudes corresponds to the 

Darrieus-Landau instability including thermo-diffusive effects. A remarkable feature is that 

the limits of this unstable domain moves towards each other as the acoustic amplitude is 

increased from zero. For an acoustic amplitude   ua / SL  ≈ 3, the upper and lower wavelength 

limits of this unstable zone merge, and the planar flame front is restabilised at all 

wavenumbers with respect to the hydrodynamic instability. At higher acoustic levels, there is 

a second domain of instability. In this domain, the flame structures oscillate at half the 

acoustic frequency; it is the domain of parametric instability. The fact that a finite value of 

excitation is needed to excite this instability is related to the presence of a damping term in 
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equ.(8). The lower threshold of this unstable domain is a function of the reduced acoustic 

frequency. As the reduced frequency is decreased (or equivalently, as the laminar flame speed 

is increased), the lower threshold moves downwards and will overlap the lower instability 

domain. However, for excitation frequencies of a few hundred Hertz and for moderate flames 

speeds less than 0.2 m/s, the flame can be stable at all wavelengths for a small range of 

acoustic excitations having acoustic displacement velocities   ua ≈ 3.5 SL . This corresponds to 

an acoustic intensity of about 140 dB. See reference [21]. This acoustic stabilisation window 

has been used to maintain an intrinsically unstable flame in a planar state, prior to observing 

the growth of the Darrieus-Landau instability. 

 Experimental Set-up for Acoustically Stabilised Flame 

 

        

Figure 4. Experimental set up used to prepare an acoustically stabilised planar premixed 

flame and photograph of an acoustically stabilised flame. 

 The experimental apparatus is shown in Fig. 4. The premixed gases are fed into the 

bottom of a Pyrex glass tube 100 mm diameter and 400 mm long, just below a 50µm porous 

plate whose role was to laminarise the flow. The flame was held stationary in the laboratory 

frame, about 50 mm below the tube exit, by careful adjustment of the gas flow rate. A 2 mm 
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aluminium honeycomb structure 40 mm long was placed a few centimetres upstream from the 

flame to help maintain a laminar and homogeneous gas flow. A helical cooling tube was 

wound round the outside of the Pyrex tube, below the flame front, in order to prevent wall 

heating by heat conduction and radiation from the flame. The Pyrex tube was closed at its 

lower extremity by a loudspeaker, which was fed from a micro-computer used as a 

programmable signal generator. The acoustic impedance of the porous plate is high and the 

Pyrex tube behaved as an open-closed resonator. It was excited in the 1/4 wavelength 

longitudinal mode (230 Hz). The natural acoustic damping time (≈12 ms) was not always 

short compared to the growth time of the Darrieus-Landau instability. To overcome this 

limitation, at the start of a measurement, the damping of the acoustic standing wave was 

increased artificially by injecting one cycle of a signal in phase opposition with the pressure 

in the tube. An intensified high-speed cine camera recorded the luminous emission from the 

flame. 

 Experiments were performed with lean propane-air mixtures with equivalence ratios in 

the range 0.56 ≤ Φ ≤ 0.67, corresponding to burning velocities in the range 0.11 m/s ≤ SL ≤ 

0.20 m/s. For leaner flames, the front was intrinsically stable at all wavelengths. For faster 

flames, a flat laminar flame could not be obtained by this method. In order to control the 

wavelength and orientation of the cellular structures that developed when the acoustic 

stabilisation was removed, the upstream gas flow was slightly perturbed by placing an array 

of parallel wires, 2 mm in diameter, on the downstream face of the honeycomb. The object of 

this scheme was to excite purely 2-D cells at a chosen wavelength of 2 cm, close to the most 

unstable wavelength, see Fig.2. The luminous emission from the flame front was filmed edge-

on in a direction parallel to the axis of the cells. Fig.5 shows a sequence of typical images 

taken from a high speed film during the growth of the Darrieus-Landau instability. The time 

t = 0 corresponds to the instant at which the acoustic field was removed. 
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Figure 5. Images taken from a high speed film of the growth of instability. Framing rate 

500 i/s. Wavelength = 2 cm. Flame speed  = 0.115 m/s. 

The apparent thickening of the flame, particularly at high cell aspect ratios indicates the 

presence of slight three-dimensionality of the wrinkling. The peak to peak amplitude of the 

wrinkling was measured on digitized images and plotted in semi-log coordinates as shown in 

Fig.6. 
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Figure 6. Semi-log plot of the amplitude of the cellular structures of Fig.5.  

Fitted curve from equ.10. 

The large scatter of the points in the early stages of the growth arise from the small amplitude 

of the cells, of the order of the apparent flame thickness. The non-linearity at long times 
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indicates the onset of saturation of the instability. This nonlinearity of the shape of the cells is 

clearly visible in Fig.5 after 140 ms. These points were systematically eliminated before data 

reduction to obtain the growth rate. The points were fitted to an exponential function of the 

form: 

 
    
a(t ) =

1
2

a0 +
v0
σ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ exp(+σ t ) + a0 −

v0
σ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ exp(−σ t )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , (10) 

which is the general solution of     ∂
2a / ∂t2 = σ2 a  with the initial conditions     a(0) = a0 and 

    ∂a(0) / ∂t = v0. Here,   v0  is the rate of increase of the wrinkling at time t = 0, supposed equal 

to the measured peak-to-peak velocity modulation produced by the wires in the flow. The 

precision of the growth rate obtained by this procedure was ± 5 s-1. These experimentally 

measured growth rates are plotted as a function of laminar flame speed in Fig.7. 
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Figure 7. Comparison of experimental and calculated growth rates. The flame speeds, SL, 

were taken from [23] and gas expansion ratios were calculated using the CHEMKIN package 

[19]. 

 All measurements were made at a fixed (forced) wavelength of 2 cm. The full line in 

Fig.7 shows the calculated growth rates obtained from the dispersion relation (3). A 

Markstein number of 4 was found to give best agreement with the experimental data. This 

value of 4, for lean propane-air mixtures may be compared with the value 5 found 
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experimentally by Tseng et al. [14], the value of  and the value 4.3 found previously by 

Searby and Quinard [13]. 

Experimental Verification of Growth Rate on Inclined Flames 

 In the previous section we have described an experimental technique that has been 

used to observe the temporal growth rate of the Darrieus-Landau instability on an initially 

planar flame. Because of limitations inherent to the technique, the observations were limited 

to relatively slow flames, SL < 0.2 mm/s and to observation at a wavelength close to that of 

maximum growth rate. In this section we will describe a different experimental technique 

used by Truffaut and Searby [24, 25] to measure the growth rate of the instability on an 

inclined flame over a wider range of wavenumbers and flame speeds. 

 In these experiments a small amplitude oscillation, at frequency f, was imposed at base 

of the inclined flame and the resulting structure was convected downstream by the tangential 

component of the gas flow. The wavelength of the structure is   λ = u// / f  where     u//  is the 

tangential convection velocity. In this configuration the growth of the instability is spatio-

temporal and not simply temporal. The spatial growth rates were converted to temporal 

growth rates using a Lagrangian time obtained from the displacement velocity of the wrinkles, 

    u// . This conversion is expected to be valid if adjacent cells have (nearly) the same size. This 

condition is satisfied when the growth time is long compared to the time taken to convect the 

pattern a distance of one wavelength downstream, i.e. for   ℜ[σ−1] >> f −1. Thus (3)-(5) were 

again used to analyse the results of the experimental measurements. 

 Equations (3)-(5) are strictly valid only for planar flames propagating upwards or 

downwards. The case of an inclined flame in a gravity field has been treated theoretically by 

Garcia and Borghi [26]. The effect of gravity is to introduce a bulk force with a component 

parallel to the flame front and the problem becomes asymmetric. In a simplified analysis, 
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Garcia and Borghi found that 2-D wrinkles, whose axes of wrinkling are horizontal, can have 

a finite propagation velocity, different from the convective velocity. According to their 

analysis, this propagation velocity goes to zero for horizontal and for vertical flame fronts. In 

the experiments of Searby and Truffaut, the flame fronts are close to vertical (< 5°) and 

moreover the Froude number of the flames,   Fr = SL
2 /(g δ) was always very large (Fr > 90). 

The effect of gravity is then expected to be negligible. Experimentally, it was found that the 

measured displacement velocity of the wrinkles was always equal to the velocity of the 

tangential gas flow. 

 Inverted-‘V’ Burner and Flame Excitation Device 

A laminar slot burner was used to produce a two-dimensional inverted-‘V’ premixed flame 

and an electrostatic deflection system was used to impose the wavelength of the perturbation. 
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Figure 8. Schematic diagram of the inverted-‘V’ burner and excitation system.  

Right, photograph of 2-D flame 

 The experimental apparatus is shown schematically in Fig.8. The premixed propane-

air-oxygen gas was fed to the bottom of a burner designed to produce a laminar “top-hat” 

velocity profile at the exit. The burner comprised a divergent section, a settling chamber, a 
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convergent section and a nozzle. The 60 mm high divergent section was filled with 4 mm 

diameter glass beads to break up the incoming flow. The flow was then laminarised in a 

140 mm square settling chamber containing an aluminium honeycomb, followed by three 

metal grids of decreasing mesh size. Finally a 2-D convergent section, with a contraction ratio 

of 30:1, accelerated the flow up to the 8x80 mm exit section and reduced the residual velocity 

fluctuations to a small fraction of the mean flow velocity. The 1:10 aspect ratio of the exit 

provided a 2-D inverted-‘V’ flame. End effects perturbed the flame for less than 10 mm at 

each extremity. The thickness of the viscous boundary layers was less than 1.5 mm and the 

transverse velocity profiles were flat to better than 1 % over the central region of 5 mm. The 

residual turbulence was less than 0.5 %. In order to minimise the development of a thermal 

boundary layer near the walls, both the convergent section and nozzle were water-cooled at 

the temperature of the unburnt mixture (20°C). 

 

Figure 9. Instantaneous image of growth of Darrieus-Landau instability of a propane-air-

oxygen flame, equivalence ratio = 1.33, 28 % oxygen, flow velocity 8.56 m/s, excitation 

frequency 2100 Hz.  

One side of the flame was anchored on a thin tungsten rod, 0.6 mm diameter, placed just 

above and parallel to the burner exit, see Fig.9. The laminar flame was perturbed on one face 

by applying an alternating high voltage between the rod and the burner exit. The resulting 

electric field displaces the flame locally and produced a periodic sinusoidal 2-D wrinkle on 

the flame front as shown in Figs.8 and 9. The axis of the wrinkle was parallel to the burner 

slot. The wrinkle was convected downstream by the gas flow and its amplitude was observed 
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to increase exponentially. This system permitted a precise control of both the initial amplitude 

and of the wavelength of the wrinkle through control of the amplitude and of the frequency of 

the applied signal. Typical ranges of voltage and frequency were 2-4 kV and 1-4 kHz 

respectively. 

 A similar electrostatic technique was first used by Polanyi and Markstein in 1947 [27]. 

However the present system is slightly different, in that Markstein placed a deflection 

electrode in the burned gas, whereas we used the electrode as a flame holder. We have 

observed that, for a given voltage, the amplitude of small wavelength wrinkles was much 

greater when the flame was excited via a flame-holder, probably because the electric field acts 

more locally on the flame front. The deflection of a flame in an electric field is attributed to a 

body force produced by momentum transfer between charged particles and neutral molecules. 

Some authors [28, 29] have argued that the momentum transfer from heavy ions dominates 

momentum transfer from electrons, giving rise to a non-zero body force in the direction of the 

electric field. 

 Experiments were performed on rich propane-air flames and propane-air-oxygen 

flames with equivalence ratios in the range 1.05 ≤ Φ ≤ 1.33. The corresponding laminar flame 

velocities were in the range 0.43 m/s ≥ SL ≥ 0.27 m/s [23] for the propane-air flames. The 

velocities were 0.69 m/s and 0.51 m/s for flames with 28 % oxygen at equivalence ratios of 

1.05 and 1.33. The gas flow velocities were 7.4 m/s, 6.05 m/s and 8.56 m/s. 

 Data Acquisition 

The wrinkled flame front was observed using a short exposure intensified CCD camera, 

viewing parallel to the long edge of the burner slot. In this configuration the flame is a long 

3–D object. Since we were interested in imaging a cross section of the flame, we used an 

optical system having a short depth of focus and a high magnification ratio. The camera was 
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focussed in the centre of the burner slot and the depth of focus was roughly 2 mm. This value 

also represented the uncertainty in the knowledge of the position of the object plane. The 

resulting relative uncertainty in the magnification of the image is less than 1 %. An 

inconvenient of this optical system is some unsharpness of the image due to the superposition 

of the out-of-focus contours from other distances. However the resolution of the images 

obtained by this method was acceptable, see Fig.9. 

 The video camera was triggered at a frequency close to 50 Hz by a pulse generator 

synchronized to an appropriate sub-harmonic of the excitation signal. An adjustable delay 

allowed us to take images at different phases of the excitation. For all images, the gate-time of 

the intensifier was less than 100 µs and the optical gain was adjusted manually so as to obtain 

non-saturated images. The images were digitized at a resolution of 760*570 pixels. The 

spatial calibration, obtained by imaging a grid placed in the object plane, was 52.6 µm per 

pixel. 

 In the experiment described here, the flame front was not freely propagating, but 

attached to a flame holder in the proximity of a companion front, forming an inverted-‘V’ 

flame. In this situation, care must be taken to ensure that the observed perturbations were 

growing freely. Firstly it was ensured that residual and external flow perturbations were so 

small that only the imposed wavelength appears on the flame front. This was verified by 

noticing that, in the absence of electric excitation there was no detectable motion of the flame 

front. The residual perturbations were so small that they did not have time to grow to 

measurable amplitude before they were convected to the flame tip. Secondly it was ensured 

that the two flame fronts did not interact. It is known that the hydrodynamic field ahead of a 

wrinkled premixed flame is modified over a characteristic distance equal to     k−1 [30]. If the 

distance between the two fronts is smaller than this value, the instability developing on one 

side of the flame can be influenced by the presence of the other flame. To avoid this problem 
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the angle between the two sides of the flame was kept small and their spacing, in the field of 

visualization, was kept large compared to   k−1. For this reason the measurements were also 

restricted to wavelengths less than 6 mm. The absence of interaction between the two flame 

fronts can be checked from images such as Fig.9. The lower side of the flame shows no 

perturbation from the wrinkled side of the flame, except at the far right side of the image, 

close to the flame tip, where the amplitude of the wrinkling is already saturated. It may be 

concluded that the contrary is also true, the wrinkled side of the flame was not affected by the 

presence of the unperturbed side. 

 Data Processing 
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Figure 10. Plot of flame profile from Fig.9 showing method of measuring amplitude of 

wrinkling and corresponding peak-to-peak amplitude. 

Images of the flame, such the one shown in Fig.9, were processed to obtain the amplitude and 

the wavelength of the wrinkles as a function of the distance downstream. A program searched 

for the brightest pixel on each vertical line of pixels in a sub-window containing the excited 

side of the flame. The program then fitted a parabola through the intensity at this point and at 

two other points on each side of the maximum. The flame position was given by the position 

of the maximum of the fitted curve. This algorithm gave the position of the flame front as a 

function of the distance from the flame holder. A typical plot is shown in Fig.10.  
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Figure 11. Semi-log plot of peak-to-peak amplitude of flame wrinkling obtained from 

Fig.10.  

After low pass filtering of the curve the maxima and minima were located. The value 

corresponding to excitation in phase opposition was approximated by interpolation of the 

preceding and following minima (or maxima), as shown in Fig.10. In this way, the peak-to-

peak amplitude and the wavelength of the wrinkle were obtained for each extremum position. 

For each frequency of excitation this operation was repeated for 4 different phases of the 

signal. The peak-to-peak amplitude was then plotted in semi-log coordinates, as shown in 

Fig.11.  The spatial growth rate of the instability, σ, was obtained by fitting this curve 

with an exponential function. The initial points, close to the flame holder, were influenced by 

the presence of the rod and also by the presence of the electric field. The amplitude of the 

wrinkle in this region was of the order of the apparent flame thickness δ ≈ 0.2 mm. These 

points were systematically ignored, along with the downstream points in the region of 

saturation where the wrinkles are cusped. The amplitude of the wrinkling was measured with 

a precision of the order of δ ≈ 0.2 mm, so there was a resulting uncertainty in the values of the 

fitted parameters. The spatial growth rate was thus measured with a precision that ranged 

from 10 % to 30 %, depending on the size of the wrinkles. 
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  Results 

 The experimental results showed that the wrinkles produced at the base of the flame 

were convected downstream at a constant velocity,   u// , equal to the tangential flow velocity 

to within experimental error. The wavelength of excitation is thus given by     λ = u// / f where 

f is the excitation frequency. We have not observed any tendency for the wrinkles to have a 

finite propagation velocity with respect to the flow, as suggested in the work of Garcia and 

Borghi [26]. The amplitude of the wrinkles was observed to increase exponentially up to the 

onset of saturation, visible in Figs 9, 10 and 11. 

 

Figure 12 Measured growth rate of Darrieus-Landau instability as a function of imposed 

wavenumber for propane-air flames at four different equivalence ratios. The curves are 

calculated from (3). 

 The spatial growth rate was converted to a temporal growth rate from knowledge of 

the convection velocity of the structures,   σ = σ x u// . The non-dimensional temporal growth 
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rates were plotted as a function of the non-dimensional wavenumber in Fig. 12. The 

dimensional growth rate was typically 150-300 s-1 for propane air flames. The minimum 

value of     f / σ  was 3. Similar plots for the oxygen-enriched flames are shown in Fig.13. 
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Figure 13. Measured growth rate of Darrieus-Landau instability as a function of imposed 

wavenumber for propane flames with 28 % oxygen at two different equivalence ratios. The 

curves are calculated from (3). 

 These experimental results are compared to the theoretical dispersion relation (3) of 

Clavin and Garcia [12] where the acceleration of gravity been put equal to zero. This 

approximation is justified because the Froude number, based on the flame speed and gravity, 

is always greater than 90 in these experiments. The numerical data used for the calculations is 

listed in table 1. 

 The Markstein number of each flame has been treated as an unknown parameter. For 

each flame we have plotted the theoretical curve for the Markstein number that agrees best 

with the measured results. To give an idea of the variation of the theoretical curves with this 

parameter, we have also plotted curves for the best values of Ma ± 0.3 or ± 0.2 according to 

sensitivity. It can be seen that the theoretical curve and the experimental measurements agree 

to within experimental uncertainty. It can also be seen that, for large wavenumbers, the 

measured growth rate of the instability decreases with increasing wavenumber, as predicted 
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by theory including the effects of both hydrodynamics and preferential diffusion. These 

experimental values of the Markstein number are comparable with other values given in the 

literature for rich propane-air flames [14, 31]. 

     21 % O2             28 % O2 

 Φ 1.05 1.15 1.25 1.33 1.05 1.33  

 SL m/s 0.43 0.41 0.35 0.27 0.69 0.51  

 Tb K 2067 2082 2066 2033 2334 2326  

 δ µm 47.6 49.6 57.7 74.4 28.9 38.1  

 τt µs 111 121 165 276 41.8 74.8  

 E 7.05 7.11 7.05 6.94 7.97 7.94  

 J 3.97 3.98 3.94 3.87 4.36 4.29  

 H 1.108 1.106 1.089 1.067 1.198 1.164 

 

Table 1. Numerical values used to calculate the curves in Figs.12 and 13 

 These experiments were limited to wave lengths less than 6 mm to avoid interaction 

between the two flame fronts. This constraint imposed a lower limit on the reduced 

wavenumber, k δ, which was thus limited to the range 0.04−0.15. This value is smaller than 

unity, but not very much smaller, so the results are at the limit of the domain of validity of 

linearised asymptotic flame theory (k δ << 1). It may also be noted that the maximum reduced 

growth rate,   σ t , is 0.1 for the richest propane-air flame. The results are thus also at the limit 

of validity low of the low frequency assumption. 

Nonlinear saturation of the instability 

 In the previous sections we have been concerned with the small amplitude linear 

growth rate of the instability. It was seen that the growth rate is well described by linearised 

asymptotic laminar flame theory. In this section we will be concerned with the nonlinear 

effects leading to the saturation of the amplitude of the structures, see Figs 9 and 11. 
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 The origin of the saturation mechanism is easily understood qualitatively. Consider a 

wrinkled flame, flat on average, propagating into a quiescent fresh mixture. At all points, the 

flame propagates in the direction of the local normal to the flame front. When the aspect ratio 

of the structures formed by the instability is not small, the local direction of propagation of 

the flame front is significantly different from the average plane of the flame. It is easy to see 

that an initially sinusoidal structure will distort. The radius of curvature of zones that are 

convex towards the unburned gas will increase, whereas the radius of curvature of concave 

zones will decrease until a cusp is formed. 

 A simple model equation for the evolution of the flame shape, including this 

geometrical nonlinearity leading to amplitude saturation, has been proposed by Sivashinsky 

[9, 32] in the limit of small gas expansion (E−1 << 1). This equation, known as the 

Michelson-Sivashinsky equation, for the time evolution of the wrinkled flame, can be written 

in a simplified dimensional form: 
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where     α( x, t )  is the local position of the wrinkled front with respect to some reference plane, 

x is the transverse coordinate and kn is the neutral wavenumber for which the growth rate 

    σ(k ) is zero. The linear operator   I (α, x)  multiplies α by |k| in wavenumber space. It 

corresponds to the Darrieus-Landau instability. 

   I (eikx , x) = k eikx (12) 

 The second derivative,     (∂
2α / ∂x2 ), describes the change in local burning velocity with 

curvature and stretch [8, 33]. The nonlinear x-dependant term,   (∂α / ∂x)2, arises from 

inclination of the flame front and together with the curvature term,   (∂
2α / ∂x2 ), will lead to 
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saturation. Equation (11) was obtained in the limit of Lewis number close to unity, and small 

gas expansion ratio, E−1 << 1. The acceleration of gravity is not considered here. In real 

flames the gas expansion ratio is not a small parameter, typically E ≈  6. Using the analytical 

results obtained by Boury [34, 35], Searby, Truffaut and Joulin [25] have argued that the 

following extension to the Michelson-Sivashinsky equation is a better model equation for the 

evolution of wrinkled flames when the gas expansion is not small compared to unity: 
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here Ω is the constant of proportionality found by Landau, see equ (1). Equation (13) reduces 

to (12) in the limit E−1 << 1. Searby, Truffaut and Joulin [25] have further adapted equ (13) 

to the case of an anchored flame with nonzero tangential flow velocity. They propose the 

following model equation to describe the growth of cellular structures with arbitrary gas 

expansion and convected by a tangential velocity   u// : 
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The time averaged values of the increase in arc length, 
  
(1 / 2) ∂α / ∂x( )2 , and the time 

averaged normal velocity of the fresh gases are considered to depend only on     x / u// . Since 

neither term appears in the linear analysis, they are at least quadratic in the amplitude of 

wrinkling. 
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Using a pole decomposition scheme and adapting the results of references [36, 37], it can be 

shown that (14) has an exact solution: 
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where Ω and a are defined above,     χ = x − u// t and   τ = x u//  are the Lagrangian distance and 

time respectively,   χ0 and K are constants, and the functions A and B are solutions to the 

coupled ordinary differential equations: 
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The function   B → ∞ for τ → −∞ .  Admittedly (15-16) is not the most general known exact 

solution to (14) (see Refs. [36, 37]), but it is the only relevant one if kn/3 < K ≤ kn when 

starting from an infinitesimal 2π/K-periodic pattern [38].  At fixed x, the above solution for 

  α(χ, τ )  oscillates in time with a pulsation   ω = u// K .  This yields K if   u//  and ω are known.  

The local maxima and minima of   α(χ, τ )  occur when cos(K(χ − χo)) = ± 1.  The peak to 

peak amplitude of wrinkling,   α p− p, is thus easily found: 
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 This result can easily be compared with the experimental observations in Fig.11. The 

unknown quantities in (17) and (16) are a(E), Ω(E) and kn. The parameters a(E) and Ω(E) 

were evaluated using the expansion coefficients in table 1. The parameter kn was obtained 

from the experimental measurement of the dispersion relation, Fig.13, by adjusting a parabola 
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    σ τ t = Ω k / kn( )1 − k / kn( ) through the measured points. The mean tangential flow velocity, 

u//, was 8.59 m/s. 
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Figure 14. Comparison of prediction of eq.(17) with the data from Fig 11. Ω(E) = 1.79, 

a(E) = 1.78, k / kn  = 0.38. 

 The result of the calculation is shown in Fig.14, along with the experimental points 

taken from Fig.11. The only adjustable parameter in this plot is the initial amplitude of 

wrinkling. All the other parameters are predetermined. It is not really surprising that the 

exponential part of the growth is well represented, this just means that, to order k2, the 

Michelson-Sivashinsky equation (14) has the same dispersion relation as the Clavin-Garcia 

equation (3-4). It is however remarkable that the Michelson-Sivashinsky equation also 

correctly predicts both the saturation amplitude of the structures and the width of the cross-

over region between exponential growth and constant saturated amplitude. 

 The complete non-linear flame profile is given by (15-16). We have used this equation 

to calculate the curve shown in Fig.16. We have used the same input data as in Fig.15. Extra 

experimental parameters are the initial flame position and the initial phase of wrinkling. The 

excitation frequency is 2100 Hz. As expected from Fig.15, equation (15-16) gives a good 

overall prediction of the growth of the instability. It also gives a good representation of the 
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form of the wrinkling, evolving from a sinusoidal to a cusped shape. The precision of the 

measurements of the flame profile from Fig.9 is insufficient to make any direct comparison 

concerning the radius of curvature of the cusps.  
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Figure 15. Comparison of prediction of (15) with the flame profile of Fig.10. Input data as 

in Fig.15. 

 However it is clear from the comparison of the observed and calculated flame profiles 

in Fig15, that the flame front accelerates towards the burnt gas as the wrinkling increases, and 

the amplitude of this acceleration is strongly underestimated by (15), in which the increase in 

average flame speed arises solely from the increase in the arclength of the front, given by: 
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 The origin of this strong increase in apparent overall flame propagation speed is the 

production of a large-scale flow circulation induced by the increased average propagation 

velocity along the flame. This x-dependant increase in the average flame speed creates an x-

dependant increase in the pressure jump across the flame brush, which in turn bends the 

overall hydrodynamic flow.  
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 We may finally remark that this transverse circulation, will make the other, unexcited, 

side of our two-dimensional Bunsen flame acquire a time-averaged deflection from its straight 

unperturbed shape. This is indeed the case, as can be seen in Fig.5. The unexcited side of the 

flame is curved away from the unburned gas, and this curvature increases towards the flame 

tip. Accordingly, measuring the instantaneous distance between the two flame fronts, then 

subtracting the unperturbed value should give access to a comparison of theory and 

experiments that is unaffected by the global transverse circulation. This has been done in 

Fig.17.  
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Figure17. Comparison of the predictions of (16) with the flame profile of Fig.5, after 

correction for the large-scale transverse flow. 

 This treatment noticeably improves the agreement compared to Fig.16. Experimentally 

the last cell is still more developed than predicted. However, considering the small distance 

between the two opposed flame fronts at this location, this difference can be attributed to a 

small-scale hydrodynamic interaction between the two flame fronts. In Fig.5, the development 

of a cell at the far end of the unexcited flame front is indeed a sign of such an interaction. 

Conclusion 

 We have recalled the mechanisms controlling the stability of planar laminar premixed 

flames, along with a brief historical survey of the theoretical approaches used to model them 
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analytically. Despite the fact that the intrinsic instability of planar flames has been recognised 

for nearly a century and that the first attempts at an analytical description were performed 

over fifty years ago, experimental validation of the predicted growth rates of unstable 

structures has been obtained only recently. The main reason for this lies in the experimental 

difficulty of preparing and controlling an initially planar premixed flame front in a regime 

where the planar front is unstable. 

 We have described two novel experiments in which the growth rate of cellular 

structures on planar flames has been measured directly. In the first experiment an unstable 

laminar flame front is maintained initially planar by the action of an imposed acoustic field. 

The temporal growth rate of 2-D wrinkling is then observed after removal of the stabilising 

acoustic field. In the second experiment the spatio-temporal growth of wrinkling is observed 

on an inclined anchored flame. The residual turbulence of the gas flow is sufficiently low that 

turbulence induced perturbations at the base of the flame are not amplified to a perceptible 

amplitude before reaching the tip of the flame. Perturbations of controlled wavelength and 

amplitude are then created by an electrostatic deflection system. This technique has permitted 

the exploration of a significant portion of the dispersion curve. The spatial growth rate of the 

wrinkling was converted to a temporal growth rate using a Lagrangian time. These 

experimental observations have confirmed the validity of the analytical theory. 

 In the final section of this paper we have investigated the non-linear saturation of the 

instability. Our experimental observations have been compared to the predictions of a 

Michelson-Sivashinsky equation, extended to the case of strong gas expansion and adapted to 

include tangential convective flow. It was seen that the extended equation correctly describes 

both the amplitude of structures at saturation and also the transition region from exponential 

growth to saturation. The experimental observations show a strong apparent overall increase 

in velocity of the wrinkled flame front. The origin of this effect is attributed to the generation 
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of a large-scale hydrodynamic flow, induced by the x-dependence of the pressure jump across 

the wrinkled flame. This effect is absent from the Michelson-Sivashinsky description. 
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