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ABSTRACT

The infinite source Poisson model is a fluid queue approximation of network data

transmission that assumes that sources begin constant rate transmissions of data at

Poisson time points for random lengths of time. This model has been a popular one as

analysts attempt to provide explanations for observed features in telecommunications

data such as self-similarity, long range dependence and heavy tails. We survey some

features of this model in cases where transmission length distributions have (a) tails so

heavy that means are infinite, (b) heavy tails with finite mean and infinite variance and

(c) finite variance. We survey the self-similarity properties of various descriptor
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processes in this model and then present analyses of four data sets which show that

certain features of the model are consistent with the data while others are contradicted.

The data sets are 1) the Boston University 1995 study of web sessions, 2) the UC

Berkeley home IP HTTP data collected in November 1996, 3) traces collected in end of

1997 at a Customer Service Switch in Munich, and 4) detailed data from a corporate

Ericsson WWW server from October 1998.

Key Words: Data transmission modelling; Internet traffic; Heavy tails; Regular

variation; Pareto tails; Self-similarity; Scaling.
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1. INTRODUCTION

Statistical simulation is of basic importance for the choice of buffer sizes, protocols,

network configurations and other aspects of the design of complex telecommunication

systems. Simulations, and network analysis in general, must be founded on models which

capture important features of the traffic in a realistic and flexible way. Yet the models have

to be simple enough to allow for understanding, theoretical analysis, and easy fitting to

many kinds of observed and synthetic data. A simple model, here termed “the infinite

source Poisson model” and sometimes called the M/G/1 input model, which has the

potential to satisfy these requirements for IP; HTTP, FTP, SMTP and other protocols for

file transfers is surveyed and tested in this paper.

Our aim is to explore the statistical properties and limitations of this model, so its

potential usefulness can be fully exploited. We examine its fit to a number of traffic

measurements in order to understand which aspects of the model agree with reality, where

the model is robust to deviations, and in what respects it may require extension and

redefinition. A core issue is the relation between the micro level infinite source Poisson

model and limiting aggregated models outlined below.

Data sets similar to the ones analyzed in this paper are rapidly being accumulated by

the digital networking industry and by academic researchers. A further aim is to survey

some statistical methods which we have found helpful, and which may be of use to the

engineers and scientists who are coping with these data sets.

Erramili and Willinger[27] applied experimental queueing analysis to study how

classical models without long range dependence can seriously underestimate delays.

Random permutations of the arrival process were used by Andersen and Nielsen[8] to give

further understanding these questions and of the interplay between correlations and

queuing behavior.

The background is the identification of self similarity in various types of

teletraffic flow rates at resolutions above a certain critical threshhold. This has created

widespread interest in the possible origins and effects of the self similarity. Willinger

et. al.[58 60,79,85 87] discussed self similarity of packet counts per unit time in LANS and

WANS and a parallel discussion of self similarity of bytes per unit time in WWW traffic

was conducted by Crovella et al.[17 19,21] Crovella, Kim and Park[20] conducted a large

simulation study to assess the causes and effects of self similarity in situations that



involved slowdown nodes, buffers, varying rates and varying tail parameters. Erramili and

Willinger[27] applied experimental queueing analysis to study how classical models

without longrange dependence can seriously underestimate delays. Random permutations

of the arrival process were used by Andersen and Nielsen[8] to further the understanding of

these questions and of the interplay between correlations and queing behavior. Resnick

and Samorodnitsky[69] constructed an example of a single exponential server fed by a long

range dependent input which had queue lengths and waiting times which were heavy

tailed. Mathematical studies of the connection between on off inputs with heavy tailed on

periods appeared in Refs.[39,47 50,63,79]. The infinite source Poisson model was studied in

Refs.[63,72].

Attempts to explain observed self similarity in network traffic have largely focused on

heavy tailed transmission times of sources sending data to one or more servers. The

common assumptions is that transmission times have iid random lengths with common

distribution F. Often F has heavy tails in which case it is assumed F has a Pareto, or more

generally, regularly varying tail so that

�FðxÞ U 12 FðxÞ , x aLðxÞ; x!1; ð1:1Þ
where L(x) a slowly varying function, so that

t!1lim
�FðtxÞ
�FðtÞ ¼ x a; x . 0; ð1:2Þ

where �F ¼ 12 FðxÞ: We distinguish three cases within F may satisfy.

(i) F has such a heavy tail that the mean is infinite and 0 , a , 1: Such heavy

tails appear in the BU study of files sizes for the month of November (see the

plots in Ref.[72]) and are reported by a Calgary study[7] of file sizes found on

various servers.

(ii) F has a heavy tail with 1 , a , 2 so that the variance is infinite but the mean is

finite. This has been a popular assumption for two reasons. The practical reason

is the extensive traffic measurements of on periods reported in Ref.[86] where

measured values of a were almost always in the interval (1,2). The theoretical

reason is that mathematical analysis of models has been based on renewal

theory and without a finite mean, stationary versions of renewal processes do

not exist and (uncontrolled) buffer content stochastic processes would not be

stable. See for example Ref.[39].

(iii) F has relatively thin tails so that the variance is finite. This includes classical

models for telecommunication.

Section 2 defines the infinite source Poisson model and defines the basic descriptor

processes: number of active sources at time t, cumulative inputted traffic to the sever in

½0; t�; traffic rate, buffer content at t, time for buffer overflow of level g . 0: The traffic

rate process is the cumulative inputted traffic in small time intervals. This is obtained from

the cumulative traffic by differencing. This section also considers known Gaussian and

jump process approximations to the basic description. For Brownian motion

approximations we could not find a proof in the literature, and hence have provided one.

In Section 3 the statistical methods we have used are presented.



Subsequent sections analyze four data sets in order to see what features of the model

are consistent with the data. The data sets are:

. The Boston University data recording http sessions in two labs between November

1994 and February 1995. This data is available at http://ita.ee.lbl.gov/html/traces.

html. We analyzed a 8h 20min part of the trace, with mean traffic rate 30 kbit/s.

. The UC Berkeley data with an 18 day trace collected in Nov. 1996 which contains

the home IP HTTP traffic processed by UC Berkeley during this period. It is

available at http://ita.ee.lbl.gov/html/contrib/UCB.home IP HTTP.html. Here we

analyzed a three hour peak portion of the data, with mean traffic rate of 341 kbit/s.

. A low resolution and a high resolution data set from the two universities in

Munich which were kindly supplied to us by Helmuth Gogl. The low resolution

traces were collected around the clock on Wednesday, November 12, 1997 and

Wednesday, December 17, 1997, and consist of the total number of cells which

passed an ATM link in every two second interval, in the transmit and receive

directions with mean traffic rates 5.6 and 8.8Mbit/s, respectively. The high

resolution trace records 1690729 inter arrival times of ATM cells from a

measurement that captured all traffic in the sending direction of the link over a

period of approximately 137 seconds with a resolution of 1 microsecond. The

measurement was done on Tuesday December 23, 1997 starting at 14:48:15 and

ending at 14:50:33 with a mean traffic rate of 5Mbit/s.

. The number of bits transmitted and time stamps of starts and completions of HTTP

file transfers to and from a corporate WWW Ericsson server, collected on

Thursday and Friday, October 15 and 16, 1998. the trace was very non stationary,

and we restricted the analysis to a 33 minute part of the trace, with a mean traffic

rate 273 kbit/s.

For each data set we attempt to assess compatibility of the data with the model. As

expected, there is not always a perfect fit to say the least. Depending on the richness of the

available data, we wished to sort out the following issues for each data set. Limitations of

time and manpower meant we were not always completely successful.

(1) How do you identify time points which are statistically verified to form a Poisson

process? We examined initializations of sessions and beginnings of data bursts.

When humans log in, it is plausible and widely believed to be an Internet

invariant that the initialization times form a Poisson process but totally

implausible that machine generated downloads triggered by an initial http request

would follow the Poisson assumption. However, even for events caused by

humans, aggregation beyond some scale will have to take place in order for

Poisson behavior to be in force.

(2) We verify heavy tails for such quantities as file sizes, and file transfer times.

Lengths of time depending on human activity such as the length of a login session

at a student lab in the BU study is less likely to exhibit heavy tails. We expect to

observe that fine scalings appropriate for measuring machine generated activity

(milliseconds) are inappropriate for measuring human activity where seconds or

even minutes are appropriate and this may explain why file transmission time



look heavy tailed but login sessions do not. Further investigations into the nature

of distributions where we attempt to fit more than the tail are worthwhile and

useful but it should be noted that it is likely that many macroscopic characteristics

of a network will only be sensitive to tail behavior.

(3) We seek to study the distribution of transmission rates which can be defined as

file size divided by the transfer time of the file. A more difficult question concerns

dependence between transmission rates and file size and to what extent the

dependence on network load is a measurable.

(4) We seek to understand the long range dependence behavior and the local Hölder

behavior of combined traffic and relate this to the heavy tails found in item (2).

An interesting statistical question is whether estimates of the tail parameter a, or
equivalently of g ¼ 1=a; based on such techniques as maximum likelihood

estimation in generalized Pareto models and QQ plots[41,71,54,11] are consistent

with estimates of the Hurst coefficient H and the Hölder exponent, since

theoretically, the model guarantees that these two can be expressed as simple

functions of a for the basic limit approximation. We estimate H and the Hölder

exponent using wavelet and quadratic variation based methods

Note that for fractional Brownian motion (fBm), H and the Hölder exponent are

identical so if in practice the estimates of these two quantities differ significantly,

we have reason to doubt that fbm is the appropriate model.

(5) Many of the descriptors in the infinite source Poisson model have Gaussian or in

some cases jump process approximations. We seek to examine the data to see if

there are characteristics compatible with these approximations and, where

possible, decide which type of approximation is more accurate.

(6) Much of the data exhibits evident non stationarities. (For example, loads on the

Internet are heavy in afternoons, light in early morning.) How do you analyze

non stationary data? One simple technique, because of the abundance of data, is

to restrict attention to a subset of the data where behavior is likely to be more

stationary. Although this is our primary technique, a more complete analysis

could be performed by trying to view a natural period of time (one day?) as a

period and to then deseasonalize the data.

2. BACKGROUND AND BASIC MODELS

For later convenience, we first collect some basic concepts, beginning with

discussions of self similarity, Hurst and Hölder exponents and long range dependence. We

define Lévy stable motion and fractional Brownian motion. We then define the infinite

source Poisson model and give basic properties and descriptor quantities, and asymptotic

approximations.

The main parameters of the infinite source Poisson model are the connection rate, l,
which is the intensity of starts of file transfers, and the tail parameter a of the transmission

times. The three cases a , 1; 1 , a , 2; and 2 , a lead to different asymptotic

approximations which below are treated in separate sections. The approximations are for

large time intervals, ½0; T� and for the two last cases also assume that l is large. A further



issue is that in the middle case the nature of the approximation depends on the relation

between l and T. These results are summarized in Table 2.1 below.

2.1. Self-Similarity, Hurst and Hölder Exponents, Long-Range Dependence

A stochastic process {XðtÞ; 0 # t , 1} is self similar if there exists a constant H, the

Hurst parameter, such that the finite dimensional distributions of the time changed and

rescaled process u HXðutÞ are the same as for the original process, i.e. in formulas, if

u HXðu·Þ fidi¼Xð·Þ; for 0 , u: ð2:1Þ
In particular, since a centered Gaussian process is uniquely determined by its covariance

function, it is self similar if and only if its covariance function C satisfies

u 2HCðus; utÞ ¼ Cðs; tÞ for 0 , u: ð2:2Þ

A second order process, Gaussian or not, which satisfies Eq. (2.2) is called second order

self similar.

A fractional Brownian motion (fBm) BH is a centered continuous Gaussian process

with covariance function

Cðs; tÞ ¼ s2

2
ðjtj2H þ jsj2H 2 jt2 sj2HÞ; 0 , H , 1:

Since C satisfies Eq. (2.2), BH is self similar with Hurst parameter H. By setting H ¼ 1=2
an ordinary Brownian motion, with independent increments, is obtained. It can be seen

from the form of C that fBm has stationary (but not independent) increments also for

H – 1=2: It follows that fractional Gaussian noise (fGn), i.e. the difference sequence

Yk ¼ Xððk þ 1ÞDÞ2 XðkDÞ is stationary (here D is the fixed length of differencing). More

details can be found for instance in Ref.[77].

As discussed in the introduction, network traces looked at on widely varying time

scales above a certain resolution are in the literature often claimed to have similar

statistical properties, and all the limiting process which are discussed below are

Table 2.1. Limiting regimes and model numbers.

Range of

a
Limiting

regime

1st order

approximation

Distributional

approximation

of A

Self-similarity

parameter for

approximation

of A

Model

number

0 , a , 1 l fixed, T !1 Tm(T) Gaussian ð3 aÞ=2 1

1 , a , 2 l fixed, T !1 lmT Stable 1/a 2

l ¼ lðTÞ; T !1
slow growth

l(T)mT Stable 1/a

l ¼ lðTÞ; T !1
fast growth

l(T)mT FBM ð3 aÞ=2 3

a . 2 l fixed, T !1 lmT BM 1/2 4



self similar. This is completely as should be expected. If a process is obtained as a

distributional limit by dilating time linearly and scaling space, then it has to be

asymptotically self similar. See Refs.[56,25].

The semivariogram V of a second order process is defined by

Vðt; tÞ ¼ 1

2
EðXðt þ tÞ2 XðtÞÞ2:

It is easy to see that C can be computed from V and vice versa. For a self similar process,

u 2HVðut; utÞ ¼ Vðt; tÞ: If the process has stationary increments, V does not depend on its

first variable, Vðt; tÞ ¼ VðtÞ; and if it also is self similar, then VðtÞ ¼ Vð1Þt 2H U ct 2H :
If the process is also a centered Gaussian process, this means that it is a fBm. In general, a

process is said to have the local Hölder (mean square) index H0 at t if the semivariogram

satisfies

Vðt; tÞ ¼ ct2Ho þ oðt2Ho Þ; as t! 0; ð2:3Þ
for each t. For a fBm, H ¼ Ho; as is easily seen. The Hölder index of a Gaussian process

gives precise information on sample paths (see e.g. Adler,[5] Ibragimov and Rozanov[43]),

on the rate of convergence of non parametric estimates of the covariance function (Istas

and Laredo[46]) and on the asymptotic behavior of wavelet coefficient of X (Istas,[44]).

There are other definitions of Hölder indices more suitable to the study of path properties

of non Gaussian processes such as multifractals (cf.[75]). Data network applications are

discussed in Refs.[28,31,76].

A process Xa is an a stable Lévy motion if it has stationary independent increments

which follow a non normal stable distribution with index a, 0 , a , 2: Clearly

u 1=aXaðu·Þ also has stationary increments, for any u . 0: Further, by the characterizing

property of the stable distributions, u 1=aXaðutÞ has the same distribution as XaðtÞ for any
t . 0: It follows that Xa is self similar with Hurst parameter H ¼ 1=a: An iid sequence of
a stable random variables is called a stable noise. Thus, in particular the sequence

Xaððk þ 1ÞDÞ2 XaðkDÞ; k ¼ 0; 1; . . . is a stable noise for D . 0: Extensive information

about stable processes may be found in Ref.[77].

Since stable variables have infinite variances, the variogram and the local Hölder

exponent are not defined for stable Lévy motions.

A (centered) second order stationary process X(t) displays long range dependence

(LRD) if its covariance function decreases at a polynomial rate at large lags,

CðtÞ , Ktb 1; t!1; ð2:4Þ
where K is a constant and 0 , b , 1: Another way to think about this is that the spectral

density GðnÞ has a polynomial divergence at the origin,

GðnÞ , K tjnj b
; n! 0;

for some other constant K0. The paradigm of such processes in fGn with 1=2 , H , 1:
The LRD parameter then is related to H by b2 1 ¼ 2H 2 2; i.e. H ¼ ðbþ 1Þ=2: By
analogy with fractional Gaussian noise, the quantity ðbþ 1Þ=2 is sometimes referred to as

the “Hurst parameter” of the process as soon as the behavior (2.4) is observed, even if the

process is not self similar.



2.2. The Infinite Source Poisson Model

We now review the elements of a data transmission model used in Refs.[40,48,49,72,63].

Let {Gk; k $ 1} be the points of a rate l homogeneous Poisson process on Rþ ¼ ½0;1Þ
so that {Gkþ1 2 Gk; k $ 1} is a sequence of iid exponentially distributed random

variables with parameter l. (In the stationary case the Poisson process instead should be

defined on R ¼ ð21;1Þ; which leads to some straightforward change of notation.) We

imagine that a communication system has sources or nodes, and at time Gk a connection is

made and a source begins a transmission at unit rate to or from the server. The duration of

this transmission is a random variable Lk with distribution F, usually of the form �FðxÞ ¼
x a‘ðxÞ: When F has a finite first moment, it is convenient to set

m ¼ EðL1Þ ¼
Z 1

0

xFðdxÞ:

The input rate could be made to deterministically vary over the transmission time of length

Lk as in Ref.[53] but we do not discuss this and other variants. See Refs.[61,62]. We

sometimes refer to the Poisson rate l as the connection rate.

The counting function

M ¼
X1
k¼1

e ðGk ;LkÞ; ð2:5Þ

on Rþ £ ð0;1Þ corresponding to the points {ðGk; LkÞ; k $ 1}; is a two dimensional

Poison process on Rþ £ ð0;1� with mean measure lL £ F; where L stands for Lebesgue

measure. (cf.[67].)

This model is stable under aggregation. If the traffic from two independent infinite

source Poisson models are superposed, then the result also follows an infinite source

Poisson model, with a connection intensity which is equal to the sum of the two intensities,

and a transmission length distribution which is a mixture of the two transmission length

distributions.

2.2.1. Descriptors

Define N(t), the number of active sources at time t by

NðtÞ ¼
X1
k¼1

1½Gk#t,GkþLk� ¼ Mð{ðg; lÞ [ Rþ £ ð0;1� : g # t , gþ l}Þ:

The second expression makes it clear that for each t, N(t) is a Poisson random variable with

parameter

lL £ Fð{ðg; lÞ [ Rþ £ ð0;1� : g # t , gþ l}Þ ¼ l

Z t

0

�Fðt2 gÞdg

¼ l

Z t

0

�FðsÞds V mðtÞ: ð2:6Þ



During a transmission, the transmitting source is sending data to the server at unit rate. The

total cumulative traffic in ½0; t� is

AðtÞ U
Z t

0

NðsÞds ¼
Gk#t

X
ðLk ^ ðt2 GkÞÞ; ð2:7Þ

which expresses A as a shot noise process.[52] Since an active node transmits at unit rate,

the overall transmission rate at time t is N(t) and a surrogate for this, which is more easily

measurable, is the traffic rate process defined as

{Aððk þ 1ÞDÞ2 AðkDÞ; k $ 0};

for some fixed D . 0: Assume the server works at constant output rate r. The buffer

content at time t, XðtÞ; satisfies the storage equation

dXðtÞ ¼ NðtÞdt2 r1½xðtÞ.0�dt; ð2:8Þ

or[38,9,67]

XðtÞ ¼_t
s¼0

½AðtÞ2 AðsÞ2 rðt2 sÞ� ¼_t
s¼0

Z t

s

ðNðsÞ2 rÞds; ð2:9Þ

where we have assumed the initial condition Xð0Þ ¼ 0:
We now describe known behavior of the basic descriptors for the three cases

discussed in the introduction.

2.2.2. The Case 0 , a , 1

The model has been studied in Ref.[72] in this a regime where the mean transmission

time is infinite, assuming the connection rate l is constant and the time interval ½0; T�
expands to infinity. The basic descriptor processes are all explosive and we have in

probability as T !1 that

NðTÞ
mðTÞ

P!1;
AðtÞ
TmðTÞ

P! 1

22 a
;

XðTÞ
TmðTÞ

P! 1

22 a
:

Recall m(T) was defined in Eq. (2.6). Though measurement studies[7,72] report file size

estimates with tails having pareto parameter in this range a , 1; this case can only

describe explosive system behavior prior to the time when the influence of system controls

is felt.

Second order behavior gives Gaussian process approximations for basic descriptors in

terms of {GðtÞ; t $ 0}; a continuous path Gaussian process with covariance function

Cðs; tÞ ¼ ðs_ tÞ1 a 2 jt2 sj1 a
; 0 # s # t: ð2:10Þ



As T !1 we have for t . 0

NðTtÞ2 mðTtÞffiffiffiffiffiffiffiffiffiffi
mðTÞp ) GðtÞ; AðTtÞ2 R Tt

0
mðsÞds

T
ffiffiffiffiffiffiffiffiffiffi
mðTÞp )

Z t

0

GðsÞds;

and X(·) has a weak limit expressed in terms of
R t
0
GðsÞds:

2.2.3. The Case 1 , a , 2

For this case, different approximations have been studied under different limiting

regimes. It is possible to seek approximations when

(a) l fixed and T !1:[54,74]

(b) l ¼ lðTÞ!1 so that l is allowed to increase with T.[63]

(c) l!1 and then T !1 in that order.[79]

(d) T !1 and then l!1 in that order.[79]

When (a) holds, one can check that conditions in Ref.[52] for convergence of Að·Þ to a

limiting self similar Gaussian process fail. Furthermore, we known N(T), the number of

active sources at T, is Poisson distributed with parameter m(T) but since for the case

1 , a , 2; mðTÞ! mð1Þ ¼ lm , 1; it follows that as T !1;

NðTÞ ) POðlmÞ;
a Poisson random variable with parameter lm and as a family of processes NðT ·Þ becomes

asymptotically uncorrelated. So one cannot get the asymptotic behavior of Að·Þ from Nð·Þ:
There is no centering and scaling to make AðT ·Þ asymptotically a Gaussian process,

but one gets a stable limit. Define

bðTÞ ¼ 1

12 F

� �ˆ
ðTÞ ¼ T 1=a‘1ðTÞ; ð2:11Þ

for some slowly varying function ‘1. A variant of (Ref.[53], Theorem 4) in particular gives,

for l fixed, T !1; that

AðTtÞ2 lmTt

bðTÞ ) XaðtÞ; ð2:12Þ

in the sense of convergence of finite dimensional distributions, where Xað·Þ is an a stable

Lévy motion whose marginal distribution is totally skewed to the right. See also

Refs.[63,73]. So on large time scales, AðT ·Þ looks like an a stable Lèvy motion.

Interestingly, one gets easily from the definition of A(T) that sðTÞ U ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðAðTÞÞp

satisfies

s ðTÞ , ðconstÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 3 �FðTÞ

p
, ðconstÞT ð3 aÞ=2‘1=2ðTÞ;

which may be compared to the asymptotic form of bð·Þ given in Eq. (2.11). Observe that

for a [ ð1; 2Þ; 1
a ,

3 a
2

:
From Eq. (2.12), we find the first order growth rate of A(T) to be

since 1
2
, 1

a , 1
� �

lmT so that in probability AðTÞ , lmT :



Provided the constant output rate r satisfies lm , r; the Xð·Þ process of Eqs. (2.8) and
(2.9) has negative drift and is stable. Being regenerative, X(T) will have a limit distribution

given by standard renewal theory.

The limit behavior in Eq. (2.12) assumes that the connection rate l is constant and the

time scale T is growing. If T is fixed and l!1; then one may expect Að·Þ to be

asymptotically Gaussian. Thus, on small or moderate time scales, if the input rate is large,

the cumulative inputted traffic should be approximately Gaussian. This in fact was found

in Ref.[82] as well as the result that if after letting l!1 one lets T !1; then Að·Þ is
approximated by a fractional Brownian motion. On the other hand, as seen above, on large

time scales, with modest connection rate, the cumulative inputted traffic is approximately

a Lévy stable motion. Allowing the connection rates to vary with T produces the following

result which give conditions under which either a fBm or Lévy stable motion is an

appropriate approximation.[63]

Proposition 1. Assume a family of infinite source Poisson models indexed by T, where in

the T th model, l ¼ lðTÞ depends on T. Suppose the connection length distribution does

not depend on T. Recall the definition of bð·Þ in Eq. (2.11). For the Tth model, let AT ð·Þ be
the cumulative input and NT(t) be the number of active sources at time t.

(i) Assume the Poisson rate l ¼ lðTÞ depends on T so that one of the following

equivalent slow growth conditions is satisfied:

(1) limT!1 bðlTÞ
T

¼ 0.

(2) limT!1lT �FðTÞ ¼ 0:
(3) limT!1CovðNT ð0Þ; NT ðTÞÞ ¼ 0:

Then the process ðAT ðTtÞ; t $ 0Þ describing the cumulative input in ½0; Tt�; t $ 0; satisfies
the limit relation

AT ðT ·Þ2 Tlmð·Þ
bðlTÞ

fidi!Xað·Þ;

where Xað·Þ is a Lévy a stable motion. Here
fidi! dentotes convergence of the finite

dimensional distributions.

(ii) Assume the Poisson rate l ¼ lðTÞ depends on T so that one of the following

equivalent fast growth conditions is satisfied:

(1) limT!1 bðlTÞ
T

¼ 1:
(2) limT!1lT �FðTÞ ¼ 1:
(3) limT!1CovðNT ð0Þ; NT ðTÞÞ ¼ 1:

Then the process ðAT ðTtÞ; t $ 0Þ describing the cumulative input in ½0; Tt�; t $ 0, when

properly normalized as

AT ðT ·Þ2 Tlmð·Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lT 3 �FðTÞ

p



converges in C½0;1Þ to a fractional Brownian motion with self similarity parameter

H ¼ ð32 aÞ=2:
Heavy traffic approximations for Að·Þ and Xð·Þ are considered in Ref.[55].

2.2.4. The Case a . 2

We again assume l is fixed but the results undoubtedly hold also if l is allowed to

increase with T. As in the case where 1 , a , 2; NðTÞ is asymptotically Poisson and as

T !1; NðT ·Þ is asymptotically uncorrelated. Hence, we cannot expect to get the

asymptotic behaviour of A(·) from N(·).

For the case a . 2; the cumulative input Að·Þ can be approximated by a Brownian

motion. We set

A ðTÞðtÞ U AðTtÞ2 lTtmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lTEðL21Þ

q ð2:13Þ

and, in C½0;1Þ; the space of continuous functions on ½0;1Þ; as T !1;

A ðTÞð·Þ ) Bð·Þ; ð2:14Þ
a standard Brownian motion. Furthermore, this implies a functional central limit theorem

for Xð·Þ : If lm . r; so that the system is unstable,

XðTtÞ2 Ttðlm2 rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lTEðL21Þ

q ) BðtÞ ð2:15Þ

in C½0;1Þ: If lm , r; then the limit of X(Tt) is 0.

These claims are proved in the Appendix.

2.2.5. Summary

We summarize some of the relevant facts about the infinite source Poisson model in

Table 2.1. The column “model number” is used for referencing in Table 4.1 below.

3. ESTIMATION METHODS

This section gives a brief introduction to the statistical methods we have used. Many

are standard, but will still be mentioned briefly and references will be given, in keeping

with the aim to give a guide for analysis. However some are of more recent origin.

Specifically, we have used rather recently developed quadratic variation and wavelet

methods to estimate the Hurst and Hölder exponents. These methods will be presented in

more detail.



In some situations, only traces from aggregated traffic are measured but a micro level

model is needed for simulation. Hence, a further topic for the present section is to what

extent it is possible to infer parameters of the infinite source Poisson model from

measurements of aggregate traffic.

In practice, a frequent goal of network measurement analysis is to construct a

simulator for the design of networks. A simulator needs the parameter values for the model

as an input. The statistical methods we describe provide such values, which can be used

directly, or as a basis for extrapolation to what parameter values may be expected in the

future, for new groups of subscribers. In this section, we also make some brief comments

about design of simulators.

The methods we discuss throughout assume stationarity of the measured traffic. In

reality the characteristics of the traffic, especially of the process of starts of file transfers,

vary substantially with the time of day, between different days in the week, and between

seasons, and contain strong trends. We circumvent this problem by selecting visually

stationary parts of the traces for study. In fact, this may correspond to what is practically

interesting: it’s the behavior during the (approximately stationary) peak periods which is

of primary interest.

3.1. Testing for Independence of Heavy-Tailed Variables

The infinite source Poisson model assumes that the transfer times are independent,

and similarly the stable limit for aggregated traffic implies that successive traffic rate

measurements are independent.

A basic approach to testing for independence is to use the correlation function.

However correlations of heavy tailed data may have a more complex behavior than in the

light tailed case, see e.g. Refs.[15,24,30,70,73] and have to be interpreted with some care. A

standard useful way to circumvent this problem is to make an appropriate marginal

transformation before computing correlations. In the present situation this amounts to

using the logarithms of the data.

A drawback with this approach is that taking logarithms obscures the impact of the

very large transfer times which are of major importance. Hence it is desirable to

complement with methods which do not use transformations. We employed two

methods to check for independence which use the original observations. Both are based

on the heavy tailed acf, i.e., on the autocorrelation function computed without

subtracting means.

The first, informal, method can detect many forms of nonlinear dependence in heavy

tailed observations. It simply is to split the data into parts, say two to five parts, and to

compute the heavy tailed acf on each of the parts. If the observations in fact are i.i.d., or

come from a linear process, then these acf’s should look the same. The second method is to

use simulations from the known limiting distribution of the heavy tailed acf under

independence to construct confidence intervals, and to reject independence if the observed

acf deviates from these intervals. For more details, see Ref.[30] and for a more formal

treatment consult.[73] (An alternative, attractive, method is to use permutation tests for,

say, the maximum of the heavy tailed acf over some number of lags to judge if this is larger



than what is caused by randomness alone. However, for very large data sets, such as the

present ones, this method is computationally burdensome.)

3.2. Marginal Distribution and Estimation of Means

of Heavy Tailed Variables

The file sizes, file transfer times, file transfer rates ( ¼ (file size)/(file transfer time)),

and traffic rates (cumulative inputted traffic in small time intervals) have similar statistical

properties, and are amenable to the same types of analysis.

The precise shapes of the distributions are affected by special, and rapidly changing

conditions, such as, for example, automatic hookup to Netscape’s homepage. Thus only

nonparametric (histogram or kernel density) estimation seem reasonable for the central

parts of the distribution. However, at high aggregation levels, these details are less

important, and what is needed are good estimates of expected values and tails of the

distributions.

For heavy tailed non negative iid data X;X1. . .;Xn (such as the ones analyzed below)

with tails PðX . xÞ , Lx a with 1 , a , 2; where existing statistical techniques require
that we now assume that the slowly varying function L in Eq. (1.1) is a constant L, the

standard finite variance estimates of variation of the mean are not applicable. It is still

possible to estimate the expected value m ¼ EðXÞ by the mean of the observation and an

asymptotic confidence 100p% confidence interval for m may be obtained as

�X^ ðL̂Þ 1=ân1=â 1c
1=â
â Sâ;1;1ð12 pÞ; ð3:1Þ

with ca ¼ Gð22 aÞjcosðpa=2j=ða2 1Þ (c.f. Ref. [77], Theorem 1.81.). Here Sa;1;1ð12 pÞ
is the 1 2 p th quantile of the completely (positively) asymmetric stable distribution with

tail parameters a, in the parametrization of the cited reference. Estimates of L, a are

discussed in the next section.

3.3. Tail Estimation

There is already a substantial literature on this topic, see e.g. Ref.[26] and references

therein. Since one is interested in events of a size rarely encountered in the available

data, a parametric model for the tail is unavoidable. The standard procedure is then to

choose an appropriate high level u and to use only those observation exceeding u for the

estimation of the relevant parameters. Note that estimates will be sensitive to the choice

of level u.

On theoretical grounds (asymptotic theory, stability under change of level, and “the

right amount of flexibility”) the Poisson generalized Pareto model is preferred. In this

model, the exceeding over the threshold u are i.i.d. and follow a generalized Pareto (GP)

distribution of the form

GgðxÞ ¼ 12 1þ gx

s

� � 1=g
; 1þ gx

s
. 0; s . 0; g [ R:



This is a heavy tailed distribution for g . 0 with a ¼ 1=g; for g ¼ 0 this is the exponential

distribution and for g , 0 the distribution has finite upper endpoint. See for example

Ref.[26]. The times at which exceeding occur follow a Poisson process which is

independent of the sizes of the exceeding. This model is implied by the stronger

assumption that the observations {Xn} are iid with a regularly varying tail.

The intensity of the Poisson process is simply estimated by the number of exceedings

divided by the total number of observations and the parameters of the GP distributionmay be

estimated by themethodofmaximum likelihood. S þ programs for this estimationhave been

made available byA.McNeill, http://www.math.ethz.ch/~mcneil/. Another relevant software

package,Xtremes, is a PCpackage for analyzinggraphing extremevalues and comes onadisk

with the book.[66] Straighforward asymptotic confidence intervals based on the information

matrix do not perform well for a small or moderate number of exceedings, but instead profile

likelihood intervals do, see Ref.[78].

In addition to maximum likelihood analysis, we have used semiparametric graphical

methods for variables with a Pareto like tail, such as qq plots of quantiles of a standard

exponential distribution against the logarithms of the ordered exceedings and estimatinga by

the slope of an ordinary regression line. This method of QQ plotting does not use the detailed

form of the GP distribution and is asymptotically less efficient than other similar estimators,

such as the Hill estimator. However, it can be used with any standard statistical software, and

has the advantage of being directly linked to a readily interpreted graphical display. It also

gives a useful impression of the size of deviations from a Pareto model, since a pareto tail

corresponds to a straight line. The method is discussed in detail in Ref.[54].

Finally a practical consideration, similar to the choice of bandwidth in density

estimation, and a subject of much current research, is the choice of the level u, or,

equivalently, the number of order statistics used for the tail estimation. In this paper we

have used informal, graphical methods as discussed e.g. in Ref.[71], which look at changes

in the estimators as the level u is changed.

3.4. Starts of File Transfers

That the file requests appear as a Poisson process is equivalent to the interarrival times

being i.i.d. and exponentially distributed. We have investigated the Poisson process

assumptions by making qq plots of the interarrival times against exponential quantiles,

and by looking at the correlation functions of the interarrival times.

3.5. Stable Lévy Processes

At low aggregation levels, and for 1 , a , 2 traffic rates in the infinite source

Poisson model are asymptotically stable and independent. For maximum likelihood

estimation of the parameters and model checking we have followed the prescriptions in

Ref.[64] and used the very convenient accompanying software which can be downloaded

from http://www.cas.american.edu/~jpnolan/stable.html.



We have used the most common parametrization of stable distributions, which

corresponds to the characteristic function

E expðitXÞ ¼
exp 2sajtja 12 ibtan pa

2

� �
signðtÞ� �þ idt

� �
a – 1

exp 2sjtj 1þ ib 2
p signðtÞlnjtj

� �þ idt
� �

a ¼ 1
:

8<:
3.6. The Hölder Index

For a Gaussian process {XðtÞ; t $ 0} a short survey of estimators for the local Hölder

index Ho is given in Lang.[57] Hall and wood[36] study the so called box counting the

estimation method based directly on the capacity of fractal dimension[42] and show that the

estimator has a large asymptotic bias. Hall et al.[37] and Feuerverger et al. studied

estimators based on level crossings. Constantine and Hall,[16] cf. also Gladyshev[34]

discussed estimators based on simple empirical quadratic variation. At scale 1=n and for a
process with stationary increments on ½0; 1�; this is

Vn ¼ 1

2

Xn
k¼1

ðXðk=nÞ2 Xððk2 1Þ=nÞÞ2;

which suitably normalized converges with probability 1,

n!1lim n2Ho 1Vn ¼ c;

where c is given by Eq. (2.3), i.e. by VðtÞ ¼ ct2Ho þ oðt2HoÞ:
However, these quadratic variations estimators are not scale invariant and all of the

estimators mentioned so far converge slowly, Istas and Lang[45] and Kent and wood[51]

propose an improved method, where the “simple” difference Xðk=nÞ2 Xððk2 1=nÞ is

replaced by general discrete differencing of X. More precisely, they introduce the weights

a ¼ ða0; a1; . . .; apÞ a discrete difference operator of degree p $ 1; and consider

the empirical quadratic variations associated with it,

Ua;n ¼
Xn pþ1

j¼1

Xp
i¼0

aiXððiþ j2 1Þ=nÞ
 !2

:

In this paper we use an estimator of Ho which is based on two such “general” quadratic

variations. Specifically, from the sequence a ¼ ð1;25; 10;210; 5;21Þ we define a

sequence b with “double time mesh,” i.e. by putting b2i ¼ ai and b2iþ1 ¼ 0 for 0 # i # 5

and estimate Ho by

Ĥo ¼ 1

2
ln2

Ub;n

Ua;n

� �
:

This estimator is discussed in Istas and Lang (Ref.[45], p. 432). This sequence a
corresponds to the binomial coefficients in the expansion of ðu2 vÞ5; ðu; vÞ [ R2: An
advantage of the estimator is that it filters out polynomial trends up to order 4, and hence is

rather robust to smooth non stationarities of the mean.



3.7. The Hurst Exponent

In this section we describe a recently developed wavelet estimation methodology. The

method works under a variety of assumptions. If the process under investigation is

stationery with finite variance, the method yields an estimate of the parameter b introduced

in Eq. (2.4), with b . 0 corresponding to LRD. When applied to the increments of a

selfsimilar process, the wavelet method yields an estimate of 2H 2 1; as shown below.

Now, for a selfsimilar process with finite second moments and stationary increments the

increments process has b ¼ 2H 2 1: Hence also for this case LRD corresponds to b . 0:
However, if the selfsimilar process has infinite second moments, 2H 2 1 can be

greater than zero even if there is no LRD. For example, stable Lévy processes have Hurst

parameter H ¼ 1=a; so that 2H 2 1 . 0 (since 0 , a , 2) even though the process has

independent increments and hence is as far from LRD as possible. To summarize, for

processes with finite variance, if the wavelet method gives an estimate clearly greater than

zero, then there is LRD. However, for processes with heavy tails an estimate of which is

greater than zero does not necessarily mean that there is LRD.

A naive estimator for b may be obtained from the empirical covariance function. For

strongly correlated data this is known to be unreliable. Several alternative estimation

methods have been developed: the aggregated variance, Whittle, R/S, absolute value,

periodogram, variance of residuals, aggregated Whittle, local Whittle and wavelet

methods. The first three methods are treated in Ref.[12]. For discussion and comparisons of

all of the methods we refer to Refs.[6,3] and references therein. Here we use the wavelet

method because it provides an appealing compromise between low computational cost and

good statistical performance. It is also more flexible than maximum likelihood based

estimators such as Whittle’s estimators since it does not require an exact parametric model

for the spectral density. In addition, it is based on identification of scaling in a log log

diagram, which makes it possible to judge the range of scales on which the model fits.

A final advantage is that it is robust to smooth non stationarities. In many cases we have

also computed, as a sanity check, estimates using traditional techniques such as the R/S

statistic and associated plot and the variance time plot, and in all cases agreement with the

wavelet method was good.

We here outline the main ideas and refer to Refs.[1,3,4,82,83] for an exhaustive

presentation. A wavelet c is a smooth function which is well localized both in position and

frequency and which satisfies the admissibility condition 0 ¼ R c ¼ F ðcÞð0Þ; where F ðcÞ
is the Fourier transform of c. Usually, it is also required that the wavelet has some

vanishing moments,
R
t ncðtÞ ¼ 0; n ¼ 0; 1. . .N: By “well localized” is meant that the

function has compact support or at least is rapidly decaying. To a reference wavelet c,
usually called the “mother wavelet”, is associated a two parameter family of functions cba

obtained by translation and dilation,

cbaðtÞ U 1ffiffiffi
a

p c
t2 b

a

� �
; b [ R; a . 0:

If the mother wavelet c is localized around some central position t0, then it is clear form

the definition that cba is shifted to position at0 þ b: Similarly, if the Fourier transform

F ðcÞ is centered around some central frequency n0, then F ðcbaÞ is centered around a 1n0:



The admissibility condition ĉð0Þ ¼ 0 ensures that the function stays localized in frequency

after dilation. The wavelet transform WcX of a process X is a function on

the position frequency plane R £ Rþ;

WcXðb; aÞ U
Z

1ffiffiffi
a

p c
t2 b

a

� �
XðtÞdt ¼

Z ffiffiffi
a

p
cðsÞXðasþ bÞds: ð3:2Þ

Roughly speaking, the filter,WcXðb; aÞ retains the part of the process which contributes to
the frequency a at the position b. No information is lost, in the sense that the original signal

can be retrieved from Eq. (3.2) by a reconstruction formula.

For random processes, the wavelet transform captures the stationarity and scaling

properties. If the process Xð·Þ is stationary, or has stationary increments then the process

WcXð·; aÞ is again stationary as is clear from the second formula in Eq. (3.2). If a process Y

is H self similar with stationary increments and finite second moments, then it follows

readily from the definition that

EjWcYðb; aÞj2 ¼ a2Hþ1EjWcYðb=a; 1Þj2

If we define XðtÞ ¼ Yðt þ DÞ2 YðtÞ for D . 0; then by change of variables, and using a

first order Taylor expansion and self similarity in the third step,

WcXðb; aÞ ¼
Z

1ffiffiffi
a

p c
t2 b

a

� �
{Yðt þ DÞ2 YðtÞ}dt

¼
Z ffiffiffi

a
p

c s2
bþ D

a

� �
2 c s2

b

a

� �	 

YðasÞdt

,
Z ffiffiffi

a
p

2
D

a
c 0ðsÞ

	 

aHYðsÞds ¼ 2aH 1=2D

Z
c 0ðsÞYðsÞds; a!1;

ð3:3Þ

under suitable regularity conditions. Thus, if second moments exist

CðaÞ ¼ EjWcXðb; aÞj2 , Ka2H 1; a!1; ð3:4Þ
where K ¼ D2Ej R c0ðsÞYðsÞdsj2: Thus, in particular this holds for fGn.

Now assume Xð·Þ is any stationary process with the LRD property (2.4). The large

scale behaviour of the wavelet coefficients is

CðaÞ ¼ EjWcXðb; aÞj2 , Kba
b; a!þ1; ð3:5Þ

where Kb ¼ K
R
dnjnj bjF ðcÞðnÞj2; as shown by a straightforward comoputation. This of

course agrees with Eq. (3.4) for fGn, since H ¼ ðbþ 1Þ=2:
Even if the original process Xð·Þ is long range dependent, the corresponding wavelet

transform is short range dependent as a function of b. The idea of the wavelet estimator of

the LRD parameter for LRD stationary processes is to take advantage of this decorrelation

and to compute an estimator b̂ using Eq. (3.5). In practice, this is done using so called

multiresolution analysis, which provides a fast algorithm to compute the wavelet

coefficients on a dyadic grid in the position time plane, i.e. the coefficients dðj; kÞ ¼
WcXð2jk; 2jÞ; j; k [ Z: The information contained in these coefficients is sufficient to



reconstruct the process (see Ref.[23]). By Eq. (3.5)

Cð2jÞ ¼ Ejdðj; kÞj2 , Kb2
jb; j!þ1; ð3:6Þ

and the decrease of correlation between the wavelet coefficients dðj; kÞ is controlled by the
number of vanishing moments, N, in the following way,[81,29]

jEdðj; kÞdðj; k 0Þj ¼ Oðj2 jðk2 k 0Þjþb 1 2NÞ; j2 jðk2 k 0Þj!1: ð3:7Þ
Now, Cð2jÞ may be estimated by the sum of the coefficients at fixed scale,

Ĉð2jÞ ¼ 1

nj k

X
jdj;kj2;

where nj is the number of available coefficients at scale 2j. The parameter b in Eq. (3.5) or

equivalently H ¼ ðbþ 1Þ=2 is then simply estimated from a linear regression in the

log log diagram of dCð2jÞCð2jÞ:
However, taking the logarithm introduces a bias ðE log – logEÞ: Under the

simplifying assumptions that the process is Gaussian and the wavelet coefficients are

perfectly decorrelated (instead of Eq. (3.7)), Ĉð2jÞ is a sum of chi squared independent

variables, and the bias can be explicitly computed and removed.

Since the variance of the wavelet coefficients increases with the scale, the quality of

the estimator is improved by performing a weighted linear regression, which gives more

weight to small scales. Altogether, the estimator of b is defined as, see Ref.[83],

b̂ ¼
P

yjðjS2 SjÞ=s2
j

SSjj 2 S2j
;

where

S ¼
X

1=s2
j ; Sj ¼

X
j=s2

j ; Sjj ¼
X

j2=s2
j ;

with

gðjÞ ¼ G0ðnj=2Þ
Gðnj=2Þ log 22 log2ðnj=2Þ . 2

1

nj log 2
;

yj ¼ logðĈð2jÞÞ2 gðjÞ;

s2
j ¼ VarðyiÞ ¼ zð2; nj=2Þ

log22
.

2

njlog220

G being the Gamma function and z a generalized Riemann Zeta function. Here, the sums

run over some selected range of scales ½jmin; jmax�; which is chosen a priori. The smallest

scale jmin should be large enough for the asymptotic regime to be reached, while jmax is

limited by the lack of coefficients at the coarsest scale. Using the relation H ¼ ðbþ 1Þ=2
the estimator of b at once gives an estimator for H.

In Ref.[83] it is shown that, if decorrelation actually were perfect, then the asymptotic

variance of the estimator for b would achieve the Cramer Rao lower bound. Numerical



simulations exhibited in Ref.[83] show agreement with this approximate result. Moreover,

the estimator is empirically shown to be robust with respect to some deviations from the

Gaussian assumption. An approximate confidence interval for H is (see Ref.[4]):

Ĥu 2 sĤu
ze # b # Ĥu þ sĤu

ze;

where ze is the 12 e quantile of the normal distribution and

s2
Ĥu

¼ 2

njmin
log22

12 2 J

12 2 Jþ1ðJ 2 þ 4Þ þ 2 2J
;

J ¼ jmax 2 jmin is the number of scales which is used in the regression. This of course also

gives a confidence interval for H.

We also performed a small simulation study. On 500 simulated paths of length 4096

of a fGn with H ¼ 0:8 we computed the estimator of H using jl ¼ 1; j2 ¼ 10 and the

Daubechies1 wavelet. The empirical means and standard deviations for the estimator were

0.797, and 0.038, where the latter should be compared with the value 0.012 obtained for

the theoretical standard deviation.

An appealing feature is that the wavelet transform performs a “smooth

differentiation” of the signal, with the degree of differentiation equal to the number of

vanishing moments. Thus, as already mentioned, means and smooth trends are removed,

and non stationary processes which have stationary increments of order N produce

stationary wavelet coefficients (Ref.[14], see also Ref.[35] for the fractional increments). If

such nonstationary processes exhibit a scaling of type (3.5), then the corresponding

parameter can be estimated by the same procedure as before.

Suppose now X is self similar with Hurst parameter H, but not necessarily long range

dependent. Using Eq. (3.3) above, it may be seen that then, also in cases with infinite

variance, the wavelet method gives an estimator of H, when taking logarithms makes

moments finite. In particular, for a stable Lévy motion, the method estimates H ¼ 1=a:
This is discussed in detail in Ref.[2]. Thus, as already pointed out, an estimated value of b
which is clearly different from 0.5 does not necessarily indicate LRD it could also be

caused by heavy tails. This comment also applies to, for example, the R/S statistic. See

Ref.[80].

3.8. Inferring the Parameters of the Infinite Source Poisson
Model from Aggregated Data

Assume that a trace of cumulative traffic has been observed during a time interval

½0; T� in a situation which is well described by the infinite node Poisson model with

1 , a , 2 and at a high aggregation level (i.e. with lT �FðTÞ large). Further, recall the
notation from Section 2.5 and suppose the regularly varying factor in Eq. (1.1) is (at least

approximately, and over the range of interest) equal to a constant, L.

By Proposition 1, the observed cumulative traffic then is approximately distributed as

an expectation term mðTÞ ¼ lmT added to a centered fBm with H ¼ ð32 aÞ=2 and

variance s2ðTÞ ¼ lT 3 aLð42 aÞð22 aÞ 1ð32 aÞ 1: From the observations it is

possible to find estimates of m̂ðTÞ; Ĥ; ŝ2ðTÞ of mðTÞ;H;s2ðTÞ as described above. This



immediately leads to the estimate

â ¼ 32 2Ĥ:

Knowledge of the traffic rates alone does not contain enough information to make it

possible to untangle l, m and L. We hence assume that we have more detailed information

or experience from other data sets which allows a reasonable guess m̃ of the value of m.
The remaining parameters may then be estimates as

l̂ ¼ m̂ðTÞ=ð ~mTÞ
and

L̂ ¼ ŝ2ðTÞl̂ 1T ð3 âÞð42 âÞ 1ð22 âÞð32 âÞ:
If we instead assume that the data are at a low aggregation level and the stable

approximation holds, then the trace of the cumulative traffic is approximately distributed

as the same mean term mðTÞ ¼ lmT as above, plus ðlT=LÞ1=aXað·Þ: From the traffic rate

data, using Nolan’s software, we obtain estimates m̂ðTÞ; â; dlT=LÞ1=alT=LÞ1=a of the mean shape and

scale. Proceeding in the same way as before this leads to the estimators

l̂ ¼ m̂ðTÞ=ð ~mTÞ
and

L̂ ¼ ðl d
T=LÞ1=aT=LÞ1=aÞ âl̂ 1T 1:

3.9. Simulation Methods

As discussed in the introduction, an important use of traffic models is to produce

simulated traces, and such traces are also useful for testing estimation methods. For each

of the three main models, stable noise, fGn, and the infinite source Poisson noise,

simulated traces and the wavelet regression estimator for estimating the Hurst parameters

are shown, in Figs. 3.1 3.3 .

Since stable noise simply consists of i.i.d. stable variables, simulation is straightforward.

We used the built in simulator in the program package Splus. The parameter values were

chosen as the estimated values for the UCB 10 s traffic rate trace, cf. Section 4.3.2 below. The

maximum likelihood estimates which were obtained from the simulated trace were â ¼
1:49^ :09; b̂ ¼ 1:00^ :00; ŝ ¼ 90; 000^ 600; d̂ ¼ 446; 000^ 1; 100, in reasonable

agreement with the true parameters (given in the caption to Fig. 3.1). It may be noted that the

wavelet estimate of the Hurst parameter (Fig. 3.1) is close to 1=a ¼ 0:66 and hence is well

away from 1/2 although the variables are independent, rather than long range dependent, c.f.

the discussion at the end of Section 2.1.

The best available method to simulate fGn is imbedding in a circulant process. The

method is described in Ref.[88], and we used software which is made available by G. Chan

at http://www.maths.unsw.EDU.AU/~grace/.

The infinite source Poisson moel was simply simulated by building up traces from

i.i.d. exponential starts of file transfers, and i.i.d. transfer times. For the present purpose of



model evaluation and illustration, we only used the simplest possible transfer time

distributions, i.e. Pareto distributed variables with parameters roughly adjusted to match

the measured traces. For use of simulation to aid in design, a more sophisticated choice

would be desirable, at the very least means should be adjusted to have correct value (c.f.

Section 3.8). For the purposes of Section 4, we call the resulting tace simM/G/1.

4. DATA ANALYSIS

This section contains the statistical analysis of the traces we briefly introduced in

Section 1. The plan is as follows: In the next subsection we give a quick account of our

impressions of how well the models from Section 2 (see Table 2.1) fit the various data sets.

The tables in subsection 4.2 summarize the results of the statistical analysis. The traces are

then discussed one by one in separate subsections. This includes amore detailed description

of the data, some further discussion of special issues for the separate traces, and conclusions

Figure 3.1. Synthetic trace from stable noise (a ¼ 1:52; b ¼ 1; s ¼ 86; 000; d ¼ 438; 000) used
as the traffic rate: left) the traffic rate,middle) qq-plot (solid line) against fitted stable distribution (the

dashed lines are the confidence interval), and right) wavelet regression estimation of the Hurst

parameter, Ĥ ¼ :60^ :06:

Figure 3.2. Synthetic trace from fGn,H ¼ :8; used as the traffic rate: left) the traffic rate, and right)
wavelet regression estimation of Hurst parameter, Ĥ ¼ :81^ :01:



trace by trace. Subsection 4.8 contains a rather extensive discussion of some of the very

large numbers of issues, which arose in the analysis of these quite diverse data sets.

4.1. Does the Infinite Source Poisson Model Fit the Data

Table 4.1 lists features of the different theoretical models given in Table 2.1 and

summarizes how strongly the data sets exhibit the model features. The discussion is

extended in the subsections for the individual traces. The main conclusions are that the

simulated trace simM/G/1, the UCB sys 10s, the Eri syn 1s and the UCB 10s traces are

well described by a suitable choice of the limiting model. However, the fact that the UCB

data changes from model 2 to model 3 when the transfer rates are made constant

(in the UCB sys 10s trace) indicates that the good fit of the Stable Levy motion to the UCB

10s data is not explained by the Section 2 theory. The remaining traces deviate strongly

from all the models.

The second column of Table 4.1 shows an estimate of (lT �FðTÞ obtained by using l
from Table 4.2 , with T as 1 second for “BUburst 1s” and T as 10 seconds for “BUburst

10s” and “UCB 10s”, etc, and �FðTÞ estimated by #(observations . T)/# observations

(except for simM/G/1 where parameters were known). The next two columns contain

subjective judgements of the fit of the marginal distributions to a Gaussian and a stable

distribution. The family of stable distributions is quite rich, and even in the cases which are

labeled “bad” in the “stable” column of the table, the visual discrepancies in the QQ plot

between histograms and fitted densities were small. (In all cases the tail estimator in

McNeil’s EVIS program were larger than those in the mle fitted stable distributions

obtained using Nolan’s software.

The fifth column classifies the dependence in the traffic rate measurements. The

entries are based on the estimated correlation function of the log traffic rates, using the

standard 95% asymptotic confidence limits. Two scales are used. The first one is “str” if of

the first 200 correlations at least 50 are. .1, “med” if between 20 and 50 are. .1, “sm” if

less that 20 are . .1, and “tiny” means that all correlations are , .1. For the second scale

“long” means that the area where most correlations are significantly different from 0

extend more than 200 lags, “int” that this area lasts for between 50 and 200 lags, and “sh”

Figure 3.3. SimM/G/1, Synthetic trace from the infinite source Poisson model, Poisson intensity

8, a ¼ 1:2 used as the traffic rate: left) traffic rate (resolution 1 second), middle) qqplot against

normal distribution, and right) wavelet regression estimation of Hurst parameter, Ĥ ¼ :90^ :01:



that the it is shorter than 50 lags. It should be noted that for different data sets, “lags” may

correspond to rather different amounts of real time. The entry “indep” means the traffic

rates were judged to be compatible with independence. The sixth column rates the

distributional self similarity of the traces. It is based on a visual appreciation of qqplots of

traces at different resolutions. The seventh column indicates the model (if any) from Table

2.1 most appropriate for the modelling of each trace. The last column gives our judgement

on the quality of the fit evaluated as “poor”, “intermediate” and “good” (the reasons for

these valuations are presented in the detailed analysis of each trace). Finally, an entry “ ”

means that the estimate was not available or that none of the models in Table 2.1 was

appropriate.

Table 4.2. Traffic rates: summary of statistical analysis. Whenever

possible, numerical results are given as point estimate ^ “standard

deviation.” Abbreviations are explained in Section 4.1.

Data set g ð¼ 1=aÞ Ĥ H* Ĥo

sim M/G/1 .13 ^ .03 .90 ^ .01 .90 .88

BUburst 10s .36 ^ .13 .89 ^ .02 .67 ^ .01 .73

BUburst 1s .17 ^ .03 .81 ^ .01 .67 ^ .01 .87

UCB 10s .05 ^ .18 .58 ^ .03 .62 ^ .01 .65

UCB syn 10s .60 ^ .14 .95 ^ .07 .62 ^ .01 1.36

Munich lo TX .09 ^ .04 .89 ^ .01 — .86

Munich lo RX .03 ^ .05 .97 ^ .01 — .85

Munich h .1s .17 ^ .12 1.02 ^ .03 — .66

Munich h .01s .10 ^ .03 1.03 ^ .04 — .56

Ericsson .47 ^ .09 .88 ^ .02 .86 ^ .08 1.21

Eri syn 1s .31 ^ .12 1.48 ^ .02 .86 ^ .08 1.51

Table 4.1. Traffic rates: summary of statistical analysis and model fit. Abbreviations are explained

in Section 4.1.

Data set lTF̄(T) Gauss Stable Dep Self-sim Model Model fit

SimM/G/1 8 good Bad str/long good 4 good

BUburst 10s .09 med good str/long bad 3 poor

BUburst 1s .07 med Bad nonstat — 3 poor

UCB 10s 16 Bad good indep good 2 good

UCB syn 10 s 16 good Bad str/long good 3 good

Munich lo TX — Bad Bad str/long bad — —

Munich lo RX — Bad Bad nonstat — — —

Munich hi .1s — Bad Bad med/int bad — —

Munich hi .01s — Bad Bad sm/long — — —

Ericsson .5 Bad Bad nonstat med — —

Eri sys 1s .5 medium Medium gstr/long good 3 medium



4.2. Summary of the Results of the Data Analysis

Table 4.2 contains results for the traffic rate measurements. The left most column

contains the shape parameter g (related to the tail index a by a ¼ 1=gÞ of the traffic rates
estimated by maximum likelihood using a generalized Pareto model (Subsection 3.3).

Standard deviations are calculated assuming independence. In all cases the top 5% of the

observations were used, and the fit to a Generalized Pareto distribution, as judged by QQ

plots was good (except Eri syn 1s). It might be worth recalling that a value of g close to

zero means light tails, that the variance is finite for g , 1=2; and that the important case

with finite means and infinite variance ð1 , a , 2Þ corresponds to g [ ½1=2; 1Þ:
After this come the Hurst exponent H with standard deviation, estimated by the

wavelet method with the Daubechies wavelet and the number of vanishing moments and

jmin, jmax chosen to given good fit to the regression on scales (Subsection 3.6). We also

calculated the Hurst exponent from the tails of the files sizes as H* ¼ ð32 aÞ=2 with

a ¼ 1=g taken from the file size column in Table 4.2 and with standard deviations

obtained by the delta method. The following column shows the Hölder parameter Ho,

estimated by the quadratic variation method (Subsection 3.7). Finally, an entry “ ” means

that the estimate was not available.

Table 4.2 only presents the data sets which contained information about individual file

transfer. In the first column, the intensity l of starts of transfers is estimated as the total

number of transfers divided by total in seconds, and in the next the fit of the interarrival

times to an exponential distribution as checked by qq plots is given. In the remaining

columns, the shape parameter g is estimated and dependence is checked in the same way

as for Table 4.2. The column marked “time” refers to the download time of a file and

“filesize” refers to the size of the downloaded file. In the column marked rate, we

computed the transmission rate as

ðfile sizeÞ=ðtime to download the fileÞ

and then estimated the shape parameter g. The parameter g for the rate in the Ericsson

trace could not be reasonably estimated; see the data description below.

In the following, the file sizes and traffic load will be implicitly given in bytes, and the

traffic rate corresponds to the cumulative traffic load in a given time interval. For

Table 4.3. Starts of transfers and file sizes: summary of statistical analysis. The columns “time,”

“file size” and “rate,” show the shape parameter g ( ¼ 1/a) for the transfer times, file sizes, and

transfer rates, Numerical results are given as point estimate ^ “standard deviation.” Abbreviations

explained in Section 4.1.

Data set Intens Exp Dep Time Dep File size Dep Rate Dep

BUburst .14 no Nonstat .60 ^ .02 tiny/sh .69 ^ .13 tiny/sh 1.01 ^ .14 tiny/sh

UCB 6.72 yes Tiny/long .57 ^ .02 tiny/int .52 ^ .02 tiny/sh .79 ^ .04 tiny/sh

Ericsson 1.39 no sm/sh .78 ^ .16 tiny/sh 1.15 ^ .18 sm/sh — sm/sh



the Munich data, the traffic is measured in number of cells, which is proportional to the

number of bytes (1 cell is 53 bytes).

4.3. The BU Traces

4.3.1. Data Description

This data contains four components and are described and analyzed in Refs.[19,22].

Below we describe the BU and the derived BUburst traces, which were obtained from

the posted data. Both contain times of requests, file sizes, transfer rates and transfer

times, before and after “burstification” for a period of approximately 28,000 seconds

(8 hours and 20min) with the most intense traffic in the February 1995 part of the trace.

The construction of the traffic rate data sets BUburst 1s and Buburst 10s is explained

below. The calculation of traffic rates assumes that the transmission rate did not change

during the transmission of a file, and hence the constructed traffic rates deviate from

the real ones.

The traffic was generated from two rooms of users during the period October 1994 to

February 1995. The statistical characteristics of data vary considerably from one month to

the next. We have only used data from the room containing 32 work stations used by

undergraduates, with all the cache file requests removed. This trace is the most complete

among the public domain data sets we are aware of. It was recorded at a time when Mosaic

was the most common browser. Unlike Netscape, the source code of Mosaic is publicly

available and could be altered for measurements purposes. A followup study by a BU team

is reported in Ref.[10].

The data consists of the record of all the individual sessions generated by the

different users. A session is a succession of URL requests (http, ftp, gopher,. . .) made

by one user from logging in until logout. Every request corresponds to a line in the

session file which contains the following information: machine number, starting time of

the request (in micro seconds since January 1, 1970), URL of the requested document,

size of the document (in bytes) and transfer time (in microseconds). The cache files,

that is files already stored on the user disk, are marked with a zero transmission time

and file size.

The BUburst data resulted from the need to distinguish between file requests made by

humans and machine generated requests. Typically a human initiated request, e.g. for a

web page, triggers a cascade of file transfers, and hence very small intervals between file

transfers usually are machine generated. If we think of users as being sources in the infinite

source Poission model, we must correct for this cascading. Hence we lumped together

requests which arrived less than.5 seconds apart into a single “request” which we will refer

to as a “burst”. The selection of the “threshold”.5 seconds was based on a close look at the

data. The size of the burst is then the sum of the sizes of the files lumped together, and the

duration is from the beginning of the first file transmission from the BUburst data by

calculating traffic rates at 1s and 10s resolutions respectively. A typical session before and

after creating the bursts is presented below. The 100682 initial requests resulted in 56516

bursts, out of which the period we studied contains 4161.



4.3.2. The Number of Logged on Work Stations

Due to the diurnal cycle. (strongly visible because of the small number of users), the

traffic is highly non stationary, see Fig. 4.1 which shows the number of active sessions.

The periods with 0 logged on stations typically occur during nights and week ends.

4.3.3. Discussion

The interarrival times for the BU and BUbust traces over the entire month were

clearly not exponentially distributed. For BUburst there was some indication of

exponential like behavior for small interarrival times, but the distribution was heavy tailed

as revealed by a QQ plot (see Section 3.3) yielding the estimate â ¼ 1:54, cf Fig. 4.2 . In

view of the low aggregation level this is not surprising.

BU Buburst

Begin
download URL

File
size

Transfer
time

Begin
download

File
size

Transfer
time

43817.159177 “http://cs www.bu.edu/” 2069 2.994023 43817.159177 4591 4.903682
43820.586374 “http://cs www.bu.edu/lib/pics/bu logo.gif” 1805 0.551812
43821.538385 “http://cs www.bu.edu/lib/pics/bu loabel.

gif”
717 0.524474

43835.427403 “http://cs www.bu.edu/courses/Home.html” 3382 0.510081 43835.427403 3382 0.948917
43836.36075 “http://cs www.bu.edu/lib/pics/bu logo.gif” 0 0.0
43836.37632 “http://cs www.bu.edu/lib/pics/bu label.gif” 0 0.0
43842.134286 “http://cs www.bu.edu/students/grads/tahir/

CS111/”
1065 0.404507 43842.134286 1065 0.404507

43846.456855 “http://cs www.bu.edu/students/grads/tahir/
CS111/hw6.ps”

32246 0.498012 43846.456855 32246 0.498012

Figure 4.1. BUburst: left) Number of active sessions versus time (in seconds), January 1995. right)

Detail of the left plot showing one day.



For the BUburst trace the transmission times, file sizes, and transfer rates had heavy

tails with ĝ . :5 The tails of the transmission rates dominated the tails of the transmission

times and file sizes, in contrast to our expectations.

The BUburst 1s and BUburst 10s traffic rate data sets have rather light tailed marginal

distributions. However, the distributions still look much more stable than normal. Since

the traffic rates are quite dependent (or non stationary), they cannot be well modeled by a

stable Lévy noise.

The Hurst and Hölder estimates were rather similar, while the Hurst estimate derived

from the fBm model and the ĝ for the transfer times was smaller.

We selected a short period with high traffic. Realistic models should include the

variation in the number of logged on workstations.

An extensive statistical analysis of these data has been carried out by the authors of

the trace.[17] In particular they present similar estimates for tails and traffic rates and

explain the discrepancy with the theory through the low traffic level.

From Fig. 4.2 one sees that left tail (near 0) of the inter arrival times looks like an

exponential or Weibull tail while the right looks Pareto. The autocorrelations of the

interarrival times seem significant but rather small. Figures. 4.3 and 4.4 show the marginal

distributions of the traffic rates and the Hurst parameter estimations. For heavy tailed data it

is difficult to plot an information histogram so we show the histogram of the long the data.

Figure 4.2. BUburst. Inter-arrival times of bursts: left) qq-plot against exponential distribution,

middle) Pareto fit for the 400 largest values (last 10 %), ða ¼ 1:54), right) autocorrelation function.

Figure 4.3. BUburst 10s. Traffic rates: left) trace, middle) histogram of log traffic rates; right)

wavelet regression estimation of the Hurst parameter H ¼ :89^ :02:



Finally, this data set is rather old on the timescale of the Internet evolution, and

in particular the paratmeter values obtained from it may be rather different from current

ones.

We conclude by discussing the extent to which feature of the limiting infinite source

Poisson models (Table 2.1) capture the behavior of the traffic rates. Recall that the tail

index of file sizes and transfer times are in the large (1,2) and there seems to be long range

dependence (or non stationarity) and also self similarity. This suggests Model 3.

However, the tails of the traffic rates are heavier than normal, and overall the normal

distribution does not fit the data. Hence model fit is poor.

4.4. The UCB Traces

4.4.1. Data Description

The UCB data is an 18 day trace of the home IP HTTP traffic processed by UC

Berkeley during November 1996. It consists of the Internet connections through the server

of the university established by individual dial up users. The traces together with a

detailed description of them is available at http://ita.ee.lbl.gov/html/contrib/UCB.home

IP HTTP.html.

The data content is similar to the BU traces (initiation time of a file transfer, file size,

transfer times of a request IP address of client). We have not attempted to burstify the UCB

data, as we did with the BU data. However, a much larger number of users are included

and the traffic rate is higher. Due to the non stationarity and the diurnal cycle, we chose to

restrict the analysis to several hours of peak traffic on a weekday, i.e. the period 5 8 p.m.

on Thursday November 7. This part of the trace consists of about 80,000 requests. We

would like to emphasize the need to carefully select the period for analysis, since some

network outages occurred during the recording of the trace. E.g. one outage can be

observed on November 6, from 5 pm to 8 pm.

As for the BU data, the actual traffic rates were not available and we again constructed

approximate traffic rates by assuming constant (but different from transmission to

transmission) transmission times.

Figure 4.4. BUburst 1s. Traffic rates: left) trace, middle) histogram of log traffic rates; right)

wavelet regression estimation of the Hurst parameter, H ¼ 0:81^ :01:



4.4.2. Discussion

An exponential distribution fits the inter arrival times fairly well. While rather many

of the estimated correlations for the long interarrival times are significantly different from

zero, they are quite small (and perhaps caused by a small nonstationarity)

and independent interarrival times seems a reasonable approximation (Fig. 4.6).

The file size and transmission time distributions were close to the borderline

between finite variance and infinite variance while the transmission rate was

considerably more heavy tailed. The distribution of long transfer rate is clearly bi

modal (Fig. 4.5, left), perhaps due to different modern sppeds. A natural consequence

is that the distribution of long transfer times is also bi modal (Fig. 4.5, right). There

seems to be no hope of finding simple parametric forms which accommodate these

distributions.

Figure 4.5. UCB Histograms of left) log transfer rates and right) log transfer time.

Figure 4.6. UCB inter-arrival times: left) qqplot against exponential distribution, right)

autocorrelation function of interarrival times.



The UCB 10s traffic rates show a quite good fit to the stable Lévy noise model,

actually the qq plot and density estimates were quite similar to those for the simulated

stable noise. The ML estimates of the marginal parameters of an a stable distribution were

a ¼ 1:52^ :02; b ¼ 1:00^ :00; s ¼ 86000^ 1200; d ¼ 438000^ 2300: Note that the
value of the tail index a is very different from the value aT ¼ 1=:05 ¼ 20 estimated using

the semi parametric approach described in section 3.3.

The stable Lévy motion model fitted somewhat less well for traffic rates computed

using shorter time interval. This aspect of the data agrees with the analysis in Section 2.5,

Proposition 1. The effect of varying block size on the marginal distribution of the traffic

rates is illustrated in Fig. 4.11.

The distributional shape is similar for different sizes of the time intervals and hence

indicates distributional self similarity. Figures 4.7 4.9 show the wavelet regression

estimation of the Hurst parameters to be close to the independent increments Brownian

motion value 0.5.

To what extent do the features of the limiting infinite source Poisson model (Table 2.1)

capture the empirical behavior of the traffic rates? For the UCB 10s data, the tail index of

file sizes and transfer times are in the range (1,2), the traffic rates seem independent and

self similar, and the stable distribution fits the data well. Thus, Model 2 seems to describe

the data well. However, lT �FðtÞ takes the rather large value 16 (Fig. 4.10).

Figure 4.7. UCB, traffic rate 1 second blocks, ðĝT ¼ 43^ :06Þ left) trace,middle) histogram of log

traffic rate, and right) wavelet regression estimation of the Hurst exponent, Ĥ ¼ 0:50^ :04:

Figure 4.8. UCB, traffic rate 2 second blocks, ðĝT ¼ :05^ :17Þ left) trace, middle) histogram of

log traffic rate, and right) wavelet regression estimation of the Hurst exponent, Ĥ ¼ 0:50^ :01:



4.5. The Munich Traces

4.5.1. Data Description

TheMunich lo data set contains measurements of cell rates for both the sending (TX)

and receiving (RX) directions of an ATM link. The link, a Customer Service Switch (GDC

APEX 200) with a line speed of 155Mbit/connects the Munich University network with

the German Scientific Broadband Network. The data, kindly provided to us by Helmuth

Gogl, was collected round the clock on Wednesday, November 12, 1997 (TX) and

Wednesday, December 17, 1997 (RX) with a temporal resolution of 2 seconds, i.e. the total

number of cells (1 cell is 424 bits) that passed the ATM link every 2 seconds was recorded.

The maximum bandwidth which was available was about 20Mbit/s.

The traffic recorded was pure IP (mainly HTTP, FTP, and NNTP) data traffic, without

any audio/video components. A shorter sample covering the period between 10 a.m. until

Figure 4.9. UCB, traffic rate 10 seconds blocks, ðĝT ¼ :05^ :17Þ left) trace, middle) histogram of

log traffic rate, and right) wavelet regression estimation of the Hurst exponent, Ĥ ¼ 0:58^ :03:

Figure 4.10. UCB 10s traffic rate: left) qqplot (solid line) against estimated stable distribution

(dashed lines are the confidence interval), and right) density estimate and density of estimated stable

distribution a ¼ 1:52^ :02; b ¼ 1:00^ :00; s ¼ 86000^ 1200; d ¼ 438000^ 2300:



1 p.m. was selected for analysis. The shorter period was chosen to obtain a roughly

stationary data set. However, for the RX direction, the influence of the lunch hour is still

clearly visible.

The Munich hi data set was recorded at the recorded at the same ATM link, but

with a much higher time resolution. It contains 1690729 inter arrival times of ATM

cells from all traffic in the TX direction over a period of approximatively 137 seconds

with a resolution of 1micro second. The measurement was done on Tuesday, December

23, 1997 starting at 14:48:15 and ending at 14:50:33. A mean utilization of

5.062Mbit/s (11938 cells/s) was recorded, which corresponds to about 25% utilization

(given the 20Mbit/s maximum bandwidth). A detailed description of the data is given

in Ref.[32].

Figure 4.11. UCB: comparison of the distribution of traffic rate over time blocks of varying

lengths: left) qqplot of log traffic rate for 1 second blocks against 10 second blocks and right) qqplot

of log traffic rate for 2 second blocks against 10 second blocks.

Figure 4.12. Munich lo, RX: left) trace, middle) histogram of log traffic rate, and right) wavelet

regression estimation of the Hurst exponent H ¼ :97^ :01:



4.5.2. Discussion

All four Munich traces come from the same server, and similar traffic situations. The

RX cells had typically passed through and been reassembled into frames in more routers

than the TX traces. The temporal resolution varied by a factor 200, from the high

aggregation level of 2 seconds down to a low one of .01 second. (We did not consider finer

time resolutions in order to keep a certain aggregation level). The different kinds of traffic,

HTTP, FTP, and NNTP, had rather different characteristics, as exhibited in figures in

Ref.[32].

The traffic rate traces have similar light tails with gT close to zero. The distributions

are neither normal nor stable, with heavier tails then for normals but not as heavy as for a

stable distribution; cf. Table 4.2 and Figs. 4.12 4.15 . In fact, lognormal QQ plots showed

rather good fit. The marginal distributions had different shapes for the different traces.

There is a clear and strong long range dependence, which persists over a wide range of

scales as seen by autocorrelation functions and wavelet regression plots and also by the fact

that for all four traces the estimates of the Hurst exponent are close to the same value, .95.

In addition, the Munich lo RX trace was clearly nonstationary. However, based on

theoretical considerations and numerical experiments, this is not expected to influence the

Hurst and Hölder estimates significantly.

Figure 4.13. Munich lo, TX: left) trace, middle) histogram of log traffic rate, and right) wavelet

regression estimation of the Hurst exponent H ¼ :89^ :01:

Figure 4.14. Munich hi .1s: left) trace, middle) histogram of log traffic rate, and right) wavelet

regression estimation of the Hurst exponent H ¼ 1:02^ :03:



The Hölder exponents throughout are smaller than the Hurst ones, and decrease

from values of around .85 corresponding to strong local dependence for the high

aggregation levels down to .56 which is close to independent increments for

the.01 second trace.

In the fBm model, the Hurst and Hölder exponenets are the same. Here, this is clearly

not the case. One explanation could be that although the tails of the marginal distributions

are lighter than Pareto, they still are rather heavy, which may inflate the Hurst exponents

(recall that the i.i.d. stable variables considered in this paper have Hurst exponents . 1/2).

However, what is not explained by the infinite source Poisson model is that the data seem

more independent on a finer time resolution. A possible explanation of this discrepancy is

the slow variation of l due to a varying number of users.

An extensive analysis of these data at the cell level, and after collection into “bursts,”

is made in Refs.[32,33]. Both on the cell and the burst level, estimated Hurst exponents were

smaller than our estimates since this analysis concerned short time distances it is in

agreement with the finding that the Hölder exponents were smaller than the Hurst ones. An

expected result was that the lengths of very short interarrival times between cells (,10ms)
were not exponential, but had a discrete distribution determined by the system clock

frequency.

None of the models from Table 2.1 seem to fit the data well, and, in particular, the

traffic rates are not even distributionally self similar.

4.6. The Ericsson Trace

4.6.1. Data Description

The Ericsson trace consist of time stamps of starts and completions of the TCP

connections that correspond to HTTP file transfers to and from a corporate WWW server

which holds home pages and information primarily directed to about 2000 company users.

In addition, people at other Ericsson companies around the world have access to the server.

The recording was started Thursday Oct 15, 1998, at 15:20 and was ended Friday Oct 16 at

Figure 4.15. Munich hi .01s: left) trace, middle) histogram of log traffic rate, and right) wavelet

regression estimation of the Hurst exponent H ¼ :1:01^ :04:



15:49. The information extracted from the data gives the times of connection starts,

connection durations, number of bytes transferred (from server to user as well as the

opposite direction), and client identification for each connection. Approximately 2% of

the connections resulted in missing data for server to client transfers. The reason was that

the connection was abnormally terminated and the number of bytes transferred could not

be obtained from the data saved in the trace. The data set is quite nonstationary, and hence

a more stationary subset covering 2000 seconds was chosen for analysis. As for the BU and

UCB traces approximate traffic rates were constructed from the data described above.

For unexplained reasons the measurement system erroneously added 30milliseconds

to about 18% of the transfer times.

4.6.2. Discussion

There were both stationarity and measurement problems with this data set, but it was

also the most recent one. It had the most heavy tailed transfer times and the file sizes.

However, the transfer rates were light tailed but we have not included the estimated value

of g in Table 4.2. This interarrival times were close to independent, but their distribution

had heavier than exponential tails, as expected for this relatively low aggregation level.

The two Hurst estimates were similar, while the Hölder estimate was in the

differentiable region.

The traffic rates were light tailed and the wavelet regression showed good agreement

with the fBm model, but the marginal distributions were clearly nonnormal.

Because of the measurement and non stationarity problems, conclusions from this

data set are necessarily tenuous. We still briefly discuss how features of the limiting

infinite source Poisson models (Table 2.1) describe the traffic rates. The tail index of file

sizes and transfer times are in the range (0,1) and (1, 2), respectively. Traffic rates exhibit

evidence of non stationarity but ignoring this, neither the Gaussian nor the stable

distribution gives a good fit. Hence none of the models seem to apply to the data.

4.7. The Synthetic UCB and Ericsson Traces

4.7.1. Data Description

The UCB syn 10s and Eri syn 1s traces were constructed from the same segments of

the UCB and Ericsson data sets which were used in the analysis of work rates in Sections

4.6 and 4.4. The new traces were constructed as follows: File transfer started and ended as

they did in the real trace, but the transfers were changed to make transfer rates equal to

one. From the resulting “data sets” we then calculated 10 and 1 second traffic rates,

respectively to obtain he “UCB syn 10s” and “Eri syn 1s” traces.

The infinite source Poisson model assumes that transfer rates are constant, and we

hence thought it interesting to compare a situation where this indeed was the case with the

real traces where the transfer rates had a heavy tailed distribution.



4.7.2. Discussion

The UCB syn 10s traffic rate conformed with a fBm expect in that the Hölder estimate

was in the differentiable region, Ho $ 1: For the Eri syn 1s the marginal distribution were

close to normal except for a few observations in the tails. The Hurst and Hölder estimates

were both close to 1.5. We believe this is a consequence of non stationarities in the data,

which clearly show up in Figs. 4.16 4.18 . Both synthetic traces were very different from

the real ones.

As shown in Fig. 4.19 , large values of transfer times and transfer rates were fairly

independent; the scatter plot of transfer times vs. transfer rates hugs the two axes which

shows that either the two quantities are independent or if dependent, their joint distribution

is multivariate regularly varying satisfying a condition of asymptotic independence

(Ref.[67], page 290ff).

To conclude, Model 3 from Table 2.1 fits the UCBsyn trace well and this model also

seems reasonable for the Eri syn 1s trace, although the is some discrepancy in the tail of the

marginal distribution.

4.8. Summary and Conclusions

We have provided a summary in Section 2 of the description and properties of a

fairly flexible model which we have called the infinite source Poisson model. This model

Figure 4.16. Ericsson traffic rates: left) trace, middle) histogram of log traffic rate, and right)

wavelet regression estimation of Hurst exponent H ¼ :88^ :02:

Figure 4.17. UCB syn 10 s traffic rates: left) trace, middle) qqplot vs. normal variable, right)

wavelet regression estimation of the Hurst parameter H ¼ :95^ :07:



predicts that on large times scales (i.e. as T !1), traffic will have certain properties

and we catalogued these properties according to whether the regular variation index a
of the connection length distribution F satisfied (i) a , 1; (ii) 1 , a , 2 or (iii) a , 2:
We also surveyed in Section 3 statistical methods for estimating model parameters in

order that we could diagnose whether our model provided a good fit to four data sets.

Our assessment of the statistical methods selected is that they were convenient to

apply and aided understanding of the data. However, we have downplayed difficulties

in estimating tail parameters such as a or g. Such estimates are sensitive to either the

choice of threshold or choice of number of upper order statistics as has been amply

documented; see, for example, Refs.[30,68,71]. Similar choices have to be made in the

estimation of Hurst parameters. More development is needed to provide reliable

confidence intervals for estimates, especially of long range dependence parameters and

Hölder exponents. Better understanding of the estimation of Hölder exponents would

be useful as well as a clearer understanding of the relationship between treatments

using the second order definition (2.3) and the pathwise treatments in, for example

Ref.[75].

Global statistical properties such as heavy tails and long range dependence were

amply in evidence in our data as expected and as predicted by the model. Transfer times,

file sizes and transfer rates were consistently heavy tailed, usually with 1 , a , 2: (See
Table 4.2 and 4.2) Traffic rates frequently displayed evidence of long range dependence as

shown in Table 4.1.

Figure 4.18. Eri syn 1 s traffic rates left) trace,middle) qqplot vs. normal variable, right) regression

estimation of the Hurst parameter H ¼ 1:48^ :02:

Figure 4.19. Plot of transfer times against transfer rates for left) the BUburst trace, middle) the

UCB trace, and right) and the Ericsson trace.



However, the estimated marginal distributions of traffic rates changed markedly

with aggregation level for all of the traces except for the UCB and synthetic data and

thus we conclude that almost all the real traffic rates were not distributionally self

similar. Either the mode does not adequately fit the data or considered time scales are

too small for the asymptotic behavior discussed in Section 2.2 to hold. Our maximum

aggregation level was 10 seconds. Exceeding this level, presumably, would have

improved the fit of the asymptotic models but was judged to be less useful from an

applied point of view.

The scaling behavior of the actual traffic rate traces as summarized by the wavelet

estimator of the Hurst parameter was compatible both with the fGn model and with the

stable noise model (see the column for Ĥ in Table 4.2). The fGn and stable noise model are

the asymptotic limits given in Section 2.1 when 1 , a , 2: However, all measured

marginal distributions were far from normal, and hence the fGn model does not fit the data.

The stable distributions are much more flexible and generally fitted the data better. In one

case, the UCB 10s traffic rates, the stable noise model provided a good description of the

trace (Fig. 4.10). However, generally speaking, estimates of a given in Table 4.2

(remember a ¼ 1=g) using the maximum likelihood estimation in the generalized Pareto

distribution model produced lighter tails than using Nolan’s maximum likelihood

estimators[66] to fit stable distributions directly to the data, so there is doubt that the stable

model adequately fits the tails of the data.

An overall impression is that the infinite source Poisson model struggles to

adequately describe our data. The assumption of constant transfer rates in the model

is at the center of the problem. This is clearly shown by the UCB syn and Eri syn

traces where the real transfer rates were changed to a fixed rate ( ¼ 1). In particular,

the UCB trace conformed fairly well with the limiting fBm model in the properties

studied by us (Table 4.1 and Section 4.7). This was in complete contrast to the actual

measured traces which had widely varying transfer rates and were quite far from

being a fBM (Sections 4.4 and 4.6). Examining file transfer rates in, for example, the

BU data shows that such rates should more realistically be modeled as random with a

heavy tailed distribution. Furthermore, file transfer rates seem to be only

asymptotically independent of file transfer times (Fig. 4.19). Non independence is

expected since TCP’s self clocking mechanism assures that transfer rates and times

will be correlated for short connections. Implementations of TCP which include

features designed to make bandwidth sharing more equitable and to improve slow

start functionally may make these effects less pronounced.

Another difficulty in the model is identifying Poisson time points from the data.

This is impossible with certain data sets as the Munich data and difficult with the BU

data. A common paradigm is that activities initiated by humans is well modeled by

Poisson processes. This was in agreement with our analyses of the UCB data (Table

4.2 and Fig. 4.6). However this simple paradigm has to be informed by the non

stationarity of most collected data and by the fact that a Poisson process model is

only expected (and observed) when activities initiated by many humans are

aggregated. Furthermore, many types of web based activity are initiated by machine

and cannot be expected to follow the Poisson process except perhaps at extremely

high aggregation levels. A possible refinement of the infinite source Poisson model is

a Poisson cluster model where activity triggered by humans is modeled by Poisson



cluster initiations and machine triggered actions are the cluster points associated to

the Poisson cluster starts. Another alternative is the Markov modulated Poisson

process or Markovian arrival process.

Here are some additional final comments.

. All the traces had very clear diurnal and weekly variations and trends. An informal

technique which is widely used is to select a subset of the data for analysis which is

visually stationary. An often used heuristic rule is to not consider data over time

intervals greater than 4 hours. In situations where data is often copious, this waste

of data may not be serious but thought needs to be given to models which

incorporate the non stationarity explicitly. If data subset selection is used, the

choice of subset should be determined by stationary situations of particular

interest; for example the desire to model times of peak load.

. It is important to know which time scale is of interest. We are able to detect

behavioral differences over time scales in the range 0.01s 10 s. Also, at very fine

resolutions of the order of microseconds, protocols and clock frequencies are very

influential as was seen in the Munich high resolution data. Pareto behavior of tails

of transfer times is not apparent until times exceed tens of seconds and therefore

correlation behavior of the cumulative input will not match those of the limiting

models for lags of smaller order. Hence, one should not expect limiting

approximations to be applicable at resolutions finer than tens of seconds.

. Without added refinements, the infinite source Poisson model is clearly not

capable of describing behavior on very fine time scales. Fine time scale behavior is

presumably affected by the passage through many protocol layers and control

mechanisms such as TCP and thought to modelling the effect of such controls is

urgently needed. For some results in this direction using the concept of

multifractals see Refs.[75,76]. Investigating such a refinement of the model is a long

term goal.

. Models should be quite different for high and low numbers of users or active

nodes. For relatively low numbers of active nodes, say up to several hundred

users, rather detailed models are needed. These should incorporate at least the

varying number of active users, the activity levels of the users, the specific

kinds of tasks of interest, and machine generated bursts of transfers of several

files caused by one user request. In addition it is likely that models and

approximations should be rather different at high and low utilization levels;

that is when traffic rates constitute a high percentage of the maximum rate

allowed by a link.

In situations with superposition of a large number of users (thousands or

more) the assumptions of the infinite source Poisson model gave a good

description of user behavior during stationary periods. In fact the asymptotic

fractional Brownian motion described well the simplified version of the traffic

obtained by enforcing the assumption of constant transfer rates, for the UCB

data, as discussed in Section 4.6 above.

. For our data, fBm was inappropriate for modeling the real traffic rates with varying

transfer rates.When the transfer rates were artificially set to be constant, in particular

for the UCB syn trace, there was good fit. It is clear that also at coarse resolutions



actual network traffic is strongly influenced byflowcontrolmechanisms such asTCP,

server behavior, congestion, caching strategies and other factors. To obtain useful and

realistic models, these factors cannot be ignored. Since much of the network traffic

passes through a large and varying number of routers and switches, simplistic

modeling of the behavior of the queue in one router is unlikely to achieve acceptable

levels of realism. To find realistic and useful models for highly loaded systems

serving large number of users which are subject to flow control, protocol

modifications and congestion is an urgent area for further modeling research. The

urgency is emphasized by the rapidly changing nature of the Internet.

APPENDIX: PROOFS OF THE RESULTS IN SECTION 2.2.4

We now discuss the verification of the claims in Subsection 2.2.4 and continue to

apply the results of Ref.[52] with AkðsÞ ¼ s ^ Lk: We have

EðAðtÞÞ ¼ l

Z t

0

Eðu ^ L1Þ du ¼ l

Z t

0

Z u

0

�FðuÞdv du t lmt;

s2ðtÞ ¼ E

Z t

0

ðL1 ^ uÞ2du
� �

¼ l

Z t

u¼0

Z u

v¼0

�FðvÞ2v dv
� �

du

so that,

t!1lim
s2ðtÞ
t

¼ l
u!1lim

Z u

0

�FðvÞ 2vdv ¼ l

Z 1

0

x2FðdxÞ ¼ lEðL21Þ;

and we conclude

s2ðtÞ t tlEðL21Þ: ð5:1Þ
We get, as T !1; that for s , t;

E A1ðTsÞA1ðTtÞð Þ ¼ E L211½L1#s�
� � ¼ sE L11½s#L1#t�

� �
¼ stP½L1 . t�!

Z 1

0

x2FðdxÞ ¼ EðL21Þ; ð5:2Þ

since when a . 2 we have T 2 �FðTtÞ! 0 and

Ts

Z Tt

Ts

xFðdxÞ # Ts

Z Tt

Ts

x2

Ts
FðdxÞ ¼ 1·

Z Tt

Ts

x2FðdxÞ! 0:

Therefore, when a . 2; the function E(A1)(s)A2(t)) is two dimensional regularly varying

with index 0. Thus (Ref.[52], Proposition 2.2) E(A(s)A(t)) is regularly varying with index 1

and limit function ðx , yÞ

Ĉðx; yÞ U
Z x

0

1du ¼ x;



which is the covariance function of Brownian motion. Unlike the case 1 , a , 2; where
convergence in distribution to Brownian motion did not hold, it will hold in in the present

case 2 , a: This is relatively easy to verify since

1

t

Z 1

e
ffi
t

p y

Z t

u

�FðyÞdudy ¼ 1

t

Z 1

e
ffi
t

p yðt2 yÞ �FðyÞdy # t

t

Z 1

e
ffi
t

p y �FðyÞdy

¼
Z 1

e
ffiffi
t

p y �FðyÞ dy! 0; ðt!1Þ;

since EðL21Þ , 1: From (Ref. [52], Theorem 3.3), we get

A ðTÞðtÞ U AðTtÞ2 lTtEðL1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lTEðL21Þ

q ) BðtÞ; ð5:3Þ

in the sense of convergence of finite dimensional distributions where B(·) is a standard

Brownian motion.

A version of Eq. (5.3) in the J1 topology (cf. Ref.
[13]) also holds according to (Ref.[52],

Proposition 3.4), provided we show as T !1

1ffiffiffi
T

p
Z T
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Since A1(1) ¼ L1, Eq. (5.4) becomes

1ffiffiffi
T

p
Z T

0

EðL1 2 L1 ^ uÞ du ¼ 1ffiffiffiffi
T

p
Z T

0

E ðL1 2 uÞ1½L1.u�
� �

du

which by the Schwartz inequality is bounded by
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Since F̄ is regularly varying, so is
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�F

p
and its index is2a=2 , 21: So
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p
is integrable

and the ratio converges to 0 as required.

We now show how to verify Eq. (5.5) for the case a . 2: The left side of Eq. (5.5) is

1ffiffiffi
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and

Li 2 ðs2 GiÞ ^ Li ¼
0; if s2 Gi $ Li;

Li 2 ðs2 GiÞ; if s2 Gi , Li;

8<:
¼

0; if Gi þ Li # s;
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8<:
Therefore Eq. (5.5) can be rewritten
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Since Gn , n almost surely, it is easy to see that Eq. (5.6) is implied by
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The left side of Eq. (5.7) is
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as n!1 for every e . 0: Now the jth probability term in Eq. (5.8) is
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Note
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Set zi ¼ hi 2 ji: The probability in Eq. (5.9) is

P
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and Eq. (5.8) is bounded by
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Now by Chebychev’s inequality
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which by Minkowsky’s inequality is dominated by
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as n!1; due to Eq. (5.11).

Having shown Eq. (5.5) a . 2; we get tightness and hence the functional form of

Eq. (5.3).

This leads to a functional limit for the content process X(·) of Eq. (2.9) and verifies the

claims Eq. (2.14) and (2.15) as follows. Define

jT ðtÞ ¼ AðTtÞ2 rTt

so that from Eq. (5.3) we have

jT ðtÞ2 Ttðlm2 rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lTE L21

� �q ) BðtÞ

in C[0,1). If lm . r; so that the system is unstable since the input overwhelms the traffic

rate, then applying (Ref.[87], Theorem 6.4 [ii]) yields

XðTtÞ2 Ttðlm2 rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lTE L21

� �q ) BðtÞ ð5:12Þ

in C[0,1). Note, the condition lm . r guarantees AðTtÞ2 rTt
P!1 and seems necessary to

get a nontrivial limit in Eq. (5.12) due to the denominator becoming infinite. If lm , r;
then the limit of the term X(Tt) in Eq. (5.12) is the function which is identically 0 by

(Ref.[84], Theorem 6.4 [iii], page 81).
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