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Wavelet dimensions and Time evolution

Charles-Antoine Guérin,

Centre de Physique Théorique, Marseille

and

Matthias Holschneider,

Centre de Physique Théorique, Marseille

Abstract

In this chapter, we study some aspects of the chaotic behaviour of

the time evolution generated by hamiltonian systems, or more gener-

ally dynamical systems. We introduce a characteristic quantity, namely

the lacunarity dimension, to quantify the intermittency phenomena that

can arise in the time evolution. We then focus on the time evolution of

wave packets according to the Schrödinger equation with time indepen-

dent hamiltonian. We introduce a set of fractal dimensions constructed

by means of the wavelet transform, the (generalized) wavelet dimen-

sions. We show that the lacunarity dimension of the wave packets can

be obtained via the wavelet dimensions of the spectral measure of the

Schrödinger operator. This establishes a precise link between the long

time chaotic behaviour of the wave packets and the small scales spectral

properties of the hamiltonian.
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2 Wavelet dimensions and Time evolution

11.1 Introduction

In this chapter, we are interested in the characterization of some inter-

mittency phenomena that can arise in chaotic dynamical systems. Our

aim is to introduce parameters to quantify the strength of intermittency

in a turbulent signal. To motivate the discussion, let us begin with a sim-

ple example. Consider a particle whose motion in X ⊂ IRn is governed

by some hamiltonian system

∂q

∂t
=

∂H

∂p
,

∂p

∂t
= −

∂H

∂q
,

where q(t) ∈ IRn and q(t) ∈ IRn are the conjugate generalized coordi-

nates at time t. Denote by T ∗(X) ⊂ IR2n the phase space associated to

the motion and x(t) = (q(t), p(t)) the position of the particle in phase

space. If the Hamiltonian H is time independent, the evolution of x(t) is

given by a flow Φt, that is a one parameter semi group of transformations

x(t+ s) = Φt(x(s)), t, s ≥ 0.

By Liouville’s theorem, the area in phase space is conserved under the

hamiltonian flow. Precisely, we have for any bounded region A in T ∗(X):∫
A

dpdq =

∫
ΦtA

dpdq.

Thus the “surface” measure (this is actually a surface for n = 1) on the

phase space

μ(A) =

∫
A

dpdq

is invariant under Φt. Furthermore, if the phase space T ∗(X) is compact,

then μ is finite.

Now suppose we can evaluate the location of the particle in phase

space periodically in time (with some period say τ) by means of some

stroboscopic system, that is we are given a discrete set of values xn =

x(nτ). The passage from xn to xn+1 reads

xn+1 = F (xn),

where F = Φτ is the evolution operator over one period. Thus the sys-

tem (T ∗(X), μ, F ) is a discrete dynamical system associated to the
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Fig. 11.1. Theoretical characteristic function of the motion.
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Fig. 11.2. Observed characteristic function of the motion.

finite invariant measure μ. It follows from the Poincaré recurrence the-

orem that μ-almost every point of a region in phase space is recurrent.

Precisely, for all A ⊂ T ∗(X), there is a set B ⊂ A with μ(B) = μ(A)

such that for all x0 ∈ B, the sequence (xn+1) returns infinitely many

times in A.

Now a natural question arises. How frequently does the particle return

to the same region A of phase space ? This can be visualized by forming

the function

h(t) = χA(x(t)),

where χA is the characteristic function of A

χA(x) =

{
1 if x ∈ A

0 elsewhere.

The recurrent motion of the particle is mirrored in the intermittent

behaviour of h(t) (figure 11.1). The more lacunary this function is, the

sparser is the come back in region A. Thus, the strength of intermittency

is characterized by the degree of lacunarity of the h(t).

Now let us state the problem in a more abstract and general frame-

work. Consider a particle whose motion x(t) in some phase space, possi-
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bly unbounded, is given by an arbitrary dynamical system and as before

test if the particle is present or not in some fixed region A by looking

at the function h(t) = χA(x(t)). The physical windowing system which

corresponds to the characteristic function may not be perfect, so it is

more natural to take h(t) = ϕ(x(t)), where ϕ is some smooth positive

function well localized in region A (figure 11.2).

At instant T , the fraction of time < h >
T

spent by the particle in

region A is

<h>
T
=

1

T

∫ T

0

dt h(t).

If < h >
T

converges toward some finite constant as T → ∞, the limit

can be interpreted as a rate of presence in region A. If the particle never

returns in A, then < h>
T
∼ T−1, T → ∞. In the general case where

the particle returns intermittently in A, we may expect some overall

decrease of the form <h>
T
∼ T−α, T → ∞. The scaling may or may

not exist. However, we can always define the following exponents

d+0 [h] = lim sup
T→∞

log
(∫ T

0
dt h(t)

)
log T

, d−0 [h] = lim inf
T→∞

log
(∫ T

0
dt h(t)

)
log T

.

The problem is that < h>
T
is an average quantity and therefore only

gives a rough idea of the real time evolution. Indeed, for given exponents

d±0 [h] several scenarios are possible. For instance, think of a particle

going further and further away from its initial localization in phase space

so that < h >
T
∼ T−1 as T → ∞ and therefore d+0 [h] = d−0 [h] = 0.

Another situation is a particle wandering somewhere in phase space but

returning infinitely many times in the same region A with more and

more time needed for each come back in such a way that the fraction of

time spent in A still scales like T−1 whence again d+0 [h] = d−0 [h] = 0.

Thus, it appears that the exponents d+0 and d−0 are not capable to

detect the intermittent nature of the motion. To get a sharper descrip-

tion, we propose to consider not only the mean value <h>
T
but also

the higher momenta

<tmh>
T
=

1

Tm+1

∫ T

0

dt tm h(t), m = 1, 2...

and the associated upper and lower exponents

d+m[h] = lim sup
T→∞

log
(∫ T

0
dt tm h(t)

)
log T

, d−m[h] = lim inf
T→∞

log
(∫ T

0
dt tm h(t)

)
log T

.
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Note that the above exponents are invariant under a time translation

h(t) → h(t+ t0), that is the time origin that we have taken to be 0 can

actually be any arbitrary constant. In the next section, we will prove

that the limit

dlac[h] = lim
m→∞

d−m[h]

m

exists. We will call it lacunarity dimension because it measures, in some

sense, the degree of lacunarity of a positive function. Then, we will

focus on a case of quantum chaos and show that the lacunary character

of the time evolution can be related to fractal spectral properties of the

corresponding Hamiltonian via the fractal wavelet dimensions .

11.2 The lacunarity dimension

Since the above definition of the lacunarity dimension is not at all intu-

itive, let us motivate it by looking at the following simple example.

Example 1 Consider the function:

h(t) =

∞∑
n=0

δ(t− bn),

where δ(t) is the Dirac function

δ(t) =

{
1 if t = 0,

0 else.

This can be seen as the characteristic function of a motion with in-

finitely short times of sojourn in some region of recurrence, the bn corre-

sponding to the successive instants of return. Here, we choose a sequence

(bn) which becomes more and more lacunary as n increases, precisely

bn+1 ∼ bγn, n → ∞,

with γ > 1 and b0 > 1. In this case, d+m[h] and d−m[h] can be computed

explicitly. Indeed we have, for all T ≥ b0,∫ T

0

dt tmh(t) =
∑
bn≤T

bmn ∼ bmN , T → ∞,

where N is the unique integer such that bN ≤ T < bN+1. The log-log
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b0 b1 b32b

tm

log T

log dt h(t)

slope = m/ γ

T

0

slope = m

Fig. 11.3. Computation of d±
m
[h] in a simple case.

diagram of the function
∫ T

0
dt tmh(t) is plotted on figure 11.3. Clearly,

it appears that:

d+m[h] = lim
N→∞

log
(∫ bN

0
dt tmh(t)

)
log bN

= m,

and

d−m[h] = lim
N→∞

log
(∫ bN

0
dt tmh(t)

)
log bN+1

=
m

γ
,

that is the upper and lower exponents d+m[h] and d−m[h] have different

rates of growth in m. Now this example supplies motivation for the

following

Theorem 11.2.1 Let h be a positive measurable function such that

d+0 [h] < ∞. Then the limit

dlac[h] = lim
m→+∞

d−m[h]

m

exists and satisfies 0 ≤ dlac[h] ≤ 1. Moreover, the limit

lim
m→+∞

d+m[h]

m

also exists and is trivial in the sense that it is either 0 or 1. We call

dlac[h] the lacunarity dimension of h and we say the function h is lacu-

nary if dlac < 1.
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Fig. 11.4. Lacunary function

Since the proof is quite heavy, although not difficult, we have defered it

to the appendix.

The example given above to introduce the lacunarity dimension is in-

structive but not realistic because the true characteristic function of a

motion cannot be expressed in terms of Dirac functions (the speed of

the particle is finite!). Therefore, the example needs to be refined by

taking account of the time of sojourn in the region of recurrence. We

now consider the following

Example 2 Let h(t) be a positive function which can be written as a

superposition of polynomially localized bumps centered a instants bn

h(t) =
∞∑

n=0

ϕ(t− bn),

where

ϕ(t) = (1 + |t|)−K .

We take K > 1 and again we assume the bn to scale asymptotically

like bn+1 ∼ bγn, n → ∞, with γ > 1 and b0 > 1. Such a function

is illustrated in figure 11.4. Straightforward computations leads to the

following expressions for d+m[h] and d−m[h]. If m−K + 1 ≤ m/γ, as can

occur for small m, then

d+m[h] = m, and d−m[h] =
m

γ
, (11.2.1)
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else if m/γ ≤ m−K + 1 (for large m), then

d+m[h] = m, and d−m[h] = m−K + 1. (11.2.2)

If the function ϕ is exponentially localized, ϕ(t) = e−|σt|, we obtain

d+m[h] = m and d−m[h] = m
γ for all m. The proof is given in the appendix.

Again, we see that the introduction of a weight tm in the averages tends

to separate the upper and lower exponents d+m[h] and d−m[h], at least for

the lowest momenta, and thus makes the lacunarity more visible. Note

that here d+0 [h] = d−0 [h] = 0. Therefore the classical averages
∫ T

0
dt h(t)

do not reveal the chaotic behaviour of the function h, whereas the higher

momenta do. Indeed, the rate of growth of d−m[h] as m increases in

the first regime (small m) gives access to γ. This parameter tells how

fast the gaps enlarge with the time, that is it quantifies the strength

of intermittency in the time evolution. The value of m for which the

regime transition occurs give access to the parameter K, which measures

the accuracy of the bumps, that is the form of the window ϕ. In this

example, we have a competition between the lacunarity of the sequence

(bn) and the localization of the function ϕ(t). When m increases, the

bumps tmϕ(t) become less amd less well separated and so the lacunarity

becomes less and less apparent. This explains why for large m the

exponent d−m[h] does not depend anymore of the parameter γ if ϕ is only

polymomially localized. In that case, we have actually dlac[h] = 1 and

thus the lacunary behaviour of h(t) is not shown up with our definition.

However, we can observe d−m[h] ∝ m/γ on some range (see figure 11.5),

from which we deduce that h is lacunary but with a bad localization.

Note that the same kind of problem often arises with fractal dimensions

in physics. Some natural objects can be assimilated to fractals up to

a certain scale, but the fractality breaks down when one looks at too

small a scale. For these objects, the fractal dimension with a theorical

definition is trivial although a certain scaling law exists in some range

of scales.

Now let us make some comments on the choice of the sequence bn. In

the above example, we took the instants of return bn to grow like bn+1 ∼

bγn, γ > 1, and with this assumption we obtained dlac[h] = 1/γ ( at least

for exponentially localized window function ϕ). This example can appear

somewhat artificial and restrictive. However, in many cases, one can boil

down to this kind of lacunary functions by a simple change of variables.

For instance, if the bn grow in a geometrical ratio, bn+1 ∼ γbn, n → ∞,
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d   [h]
m
-

= m/ γ

d   [h]
m
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m

Fig. 11.5. Different regimes for d−
m
[h]

then it is not hard to verify that for exponentially localized bumps we

have dlac[h] = 1 but dlac[h ◦ log] = 1/γ, that is h(log t) is lacunary.

We end this section with a negative result which allows us to restrict

the set of lacunary functions.

Proposition 11.2.1 Let h(t) be a positive measurable function. If for

some m0 ≥ 0 we have

d+m0
[h] = d−m0

[h] = α > 0,

then dlac[h] = 1, that is h cannot be lacunary.

The proof is given in the appendix. This statement in particular

excludes all the functions h(t) satisfying <h>
T
∼ T−D with 0 < D < 1

to be lacunary, because in that case d+0 [h] = d−0 [h] = 1−D > 0.

11.3 Quantum chaos

We will now study the problem of intermittent time evolution in the

framework of quantum mechanics. Consider a particle whose motion is
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now governed by the Schrödinger equation

∂ψt

∂t
= −iHψt,

where ψt ∈ L2(IRn) is the wave function of the particle at time t. The

Hamiltonian H is a self adjoint operator acting on the Hilbert space

H = L2(IRn). If H is time independent, the dynamics of this system is

given by the evolution operator e−iHt

ψt = e−iHtψ0. (11.3.1)

The evolving state ψt usually spreads in configuration space and looses

its initial localization. This spreading is estimated by the so called sur-

vival probability |〈ψt | ψ0〉|
2
. More generally, the space time behaviour of

the wave packets can be estimated by comparing ψt with some reference

state φ in H. Let us define

h(t) = |〈ψt | φ〉|
2
. (11.3.2)

This quantity is the probability for the state ψt to be in configuration φ

or more simply, if φ is the characteristic function of some region Ω ⊂ IRn,

this is the probability of finding the particle in region Ω at time t. Now

let us introduce μ: the spectral measure of H associated to ψ0 and φ,

uniquely defined by (see e.g [6])

< f(H)ψ0, φ >=

∫
dμ(x)f(x)

for all measurable functions f . From (11.3.1) and (11.3.2) it follows that

h(t) = |μ̂(t)|
2
,

where μ̂ is the Fourier transform of μ

μ̂(t) =

∫
dμ(x)e−itx.

Thus, the evolution of ψt is governed by the Fourier transform of the

spectral measure. It is therefore natural to try to relate the long time

behaviour of h(t) to the spectral properties of the hamiltonian. So some

heuristic arguments have been given in [4] supporting the fact that the

averages

<h>
T
=

1

T

∫ T

0

dt h(t).

exhibit a scaling behavior <h>
T
∼ T−D where D is a fractal dimension
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of the measure μ, namely the correlation dimension (e.g [5]). In [2]

some new fractal dimensions have been introduced by means of wavelet

transforms, namely the q-wavelet dimensions κ±
q , q = 1, 2... For these

dimensions it has been shown that the heuristic argument is actually

true and that the long time evolution of < h >
T

is governed by the

upper respectively lower 2-wavelet dimension κ+
2 [μ] and κ−

2 [μ], also

called upper and lower wavelet correlation dimension . Precisely we

have d+0 [h] = −κ−
2 [μ] and d−0 [h] = −κ+

2 [μ]. In the following, we want to

show that an easy generalization of these to the q−wavelet dimensions

makes it possible to express the exponents d±m[h], and consequently the

lacunarity dimension dlac[h], in terms of fractal dimensions of μ. In the

next section, we introduce our main tool, the wavelet transform. Then

we define a two parameter set of wavelet dimensions κ±
q,m, which we

relate to the exponents d±m[h] In order not to get to far off the main

flow of argument, the long or technical proofs have been relegated to the

appendix.

11.4 The generalized wavelet dimensions.

We now wish to introduce the wavelet dimensions. We will first make

some brief recall on the wavelet analysis and list a few properties that

are necessary for the following. We follow here the notations of [3]. A

wavelet is basically a complex valued function g of zero mean (
∫
g = 0),

which is well localized both in real space and Fourier space ( this will

soon be made more precise). The wavelet transform of a complex valued

function s with respect to an analysing wavelet g is given by

Wgs(b, a) =

∫
dt

1

a
g

(
t− b

a

)
s(t).

or in Fourier space

Wgs(b, a) =
1

2π

∫
dω eiωbĝ(aω)ŝ(ω), (11.4.1)

where ∧ is the usual Fourier transform on S(IR)

ĝ(ω) =

∫
dx e−iωxg(x).

This is a function over the position-scale half plane IH = IR × IR+.

Intuitively, the wavelet transform acts as a filter selecting the details
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present in s at scale a and position b. If we introduce the following

notations, to be maintained in the remainder

gb,a(t) =
1

a
g

(
t− b

a

)
, ga(t) =

1

a
g

(
t

a

)
, g̃(t) = g(−t),

then the wavelet transform may be seen as a convolution

Wgs(b, a) =

∫
dt ga(t− b)s(t) = g̃a ∗ s(b)

or a family of scalar products in IR

Wgs(b, a) =

∫
dt gb,a(t)s(t) = 〈gb,a | s〉 .

Thus, the wavelet analysis consists in comparing some function to a

family of dilated and translated versions gb,a of a mother wavelet g. The

wavelet synthesis of a function T over IH with respect to a reconstructing

wavelet h is given by

MhT (t) =

∫
IH

da

a
db T (b, a)

1

a
h

(
t− b

a

)
.

This is essentially the inverse of the wavelet transform. Now let us

introduce the function spaces on which the wavelet analysis is to be

developed. Let S(IR) be the Schwartz space of C∞ functions ϕ which,

together with their derivatives, are rapidly decreasing

sup
m,n

|tm∂nϕ(t)| < ∞, for all m,n > 0.

Denote S+(IR) the subset of Schwartz functions having positive frequen-

cies only ( ϕ̂(ω) = 0 if ω ≤ 0). For any such function, the Fourier

transform is smoothly vanishing at zero or, what amounts to the same,

all the moments cancel

ϕ̂(ω) = O(ωn) ⇔

∫
dt tnϕ(t) = 0, n ∈ IN.

The reason for taking wavelets with no negative frequencies is that it

considerably simplifies the computations and allows nice inversion for-

mulae. Let us also introduce S(IH) the space of highly localized functions

on the half plane, that is the functions T (b, a) satisfying

sup
IH

|T (b, a)| (a+ a−1)m(1 + |b|)m < ∞,

for all m > 0. Then the following holds true
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• If g and s are in S+(IR), then Wgs is in S(IH).

• if h is in S+(IR) and T in S(IH), then MhT is in S+(IR).

If furthermore the constant

cg,h =

∫ ∞

0

dω

ω
ĥ(ω)ĝ(ω) (11.4.2)

is non zero, then we have the reconstruction formula

c−1
g,hMhWg = 1IS+(IR), (11.4.3)

where 1IS+(IR) is the identity operator on S+(IR). Now, upon reconstruct-

ing with g and analysing with h, we obtain the so called cross kernel

equation , which relates the wavelet transforms with respect to different

wavelets g and h

Wgs(b, a) =

∫
IH

da′

a′
db′

1

a′
Pg→h

(
b− b′

a′
,
a′

a

)
Whs(b

′, a′),

whith Pg→h(b, a) = c−1
g,hWhg(b, a). If we introduce a (non commutative)

convolution on S(IH) by

T1 ∗ T2(b, a) =

∫
IH

da′

a′
db′

1

a′
T1

(
b− b′

a′
,
a

a′

)
T2(b

′, a′),

then the above equation may be more simply rewritten as

Wgs(b, a) = Pg→h ∗Whs(b, a), (11.4.4)

an important equation for the following. Thus, the passage from one

wavelet to another in the half plane is done by convolution with a highly

localized kernel. If μ is a Borel measure on IR, its wavelet transform with

respect to a wavelet g ∈ S+(IR) is given by

Wgμ(b, a) =

∫
dμ(t)

1

a
g

(
t− b

a

)
= g̃a ∗ μ(b),

and the cross kernel equation is still valid

Wgμ(b, a) = Pg→h ∗Whμ(b, a). (11.4.5)

Since we are interested in local properties, we will by now only consider

finite Borel measures μ on IR. This in particular includes the case of

functions in L1(IR), which can be trivially identified with finite measures.

Given some analysing wavelet g ∈ S+(IR) and some real q ≥ 1, we define

Ggμ(a, q) = ‖Wgμ(·, a)‖
q
q =

∫
db |Wgμ(b, a)|

q
.
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The above quantity is finite since by Young’s inequality (see the ap-

pendix)

Ggμ(a, q) = ‖g̃a ∗ μ‖q ≤ ‖μ‖1 ‖g̃a‖q < ∞.

At small scales, a scaling behavior of the form Ggμ(a, q) ∼ aκq can in

general be observed giving rise to the definition of fractal dimensions

κq. This approach has been developed in [2]. We propose to extend this

definition by introducing a supplementary parameter. For m ∈ IR, we

define the function

Γgμ(t, q,m) =

∫ 1

t

da

a
am Ggμ(a, q), (11.4.6)

and look at its small scale behavior t → 0. Note that Γgμ(t, q,m) is a

monotone function of t. Therefore, the limit exists, but may be infinite.

In the opposite case when this limit is finite, we rather look at the rate

of convergence by putting

Γgμ(t, q,m) =

∫ t

0

da

a
am Ggμ(a, q).

To summarize, we have

Γgμ(t, q,m) = min

{∫ t

0

da

a
am Ggμ(a, q),

∫ 1

t

da

a
am Ggμ(a, q)

}
.

The generalized wavelet dimensions κ±
q,m are now defined by

κ+
q,m[μ] = lim sup

a→0

log Γgμ(a, q,m)

log a
, κ−

q,m[μ] = lim inf
a→0

log Γgμ(a, q,m)

log a
.

These are intrinsic dimensions of the measures μ, as the following theo-

rem shows.

Theorem 11.4.1 The generalized wavelet dimensions κ±
q,m are well

defined in the sense that they do not depend on the analysing wavelet

g ∈ S+(IR), provided g �= 0.

The proof of this theorem is given in appendix.

11.5 Time evolution and wavelet dimensions

The generalized wavelet dimensions κ±
q,m can be related to the exponents

d±m introduced in section 11.1 in the following way.
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Theorem 11.5.1 Let μ be a finite Borel measure on IR and let h(t) =

|μ̂(t)|
2
. Then we have for all integer m ≥ 0

d+m[h] = −κ−
2,−m[μ], and d−m[h] = −κ+

2,−m[μ]. (11.5.1)

The proof is also given in the appendix. An immediate corrolary is

dlac[h] = − lim
m→∞

κ+
2,−m[μ]

m
. (11.5.2)

This shows that the lacunary long time evolution generated by the

Schrödinger equation is related to the generalized wavelet dimensions

of the spectral measure of the Hamiltonian H.

We wish to conclude this chapter by some remarks on the bearing of

wavelet dimensions in the above time evolution problem. The reader

may reasonably ask why we introduced complicated fractal dimensions

κ±
q,m and the non intuitive spectral measure μ to rewrite a quantity

which is already physically interpretable, namely dlac[h]. The reason is

the following. To form the spectral measure, we need three ingredients:

the Hamiltonian itself, the initial state ψ0 and the reference state φ.

Now these are time independent data. Thus, once the dynamics and

the initial state of the system have been given, the equation (11.5.2)

automatically provides the lacunarity dimension of h(t). On the other

hand, to compute directly the lacunarity dimension by means of the

exponents d−m[h] would require the full knowledge of h(t) over a huge

time span, possibly too long for measurements. Moreover, expressing

the lacunarity dimension in terms of wavelet dimensions set up a precise

correspondence between the long time evolution of the dynamical system

and the fractal spectral properties of its generator (the Hamiltonian).

The next natural question might be why we use wavelet dimensions and

not “classical” fractal dimensions such as the correlation dimension, the

box dimension, etc...The answer is simple: the usual fractal dimensions

are not adapted to characterize signed or complex measures, whereas

the wavelet dimensions are. For instance, the oscillating singularities

appearing in “chirps” functions such as sin(|x|
−α

) are not detectable by

means of the usual fractal dimensions whereas the wavelet dimensions

can show them up. For positive measures, however, the wavelet dimen-

sions can in some cases be related to better known fractal dimensions. In

particular, it has been shown in [1] that for any finite positive measure

μ we have
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κ+
2 [μ] = D+[μ] and κ−

2 [μ] = D−[μ],

where D+[μ] and D−[μ] are the upper respectively lower correlation di-

mension (see e.g [5]) of the measure μ. Therefore, the lacunary dimen-

sion in the time evolution can be related to a classical fractal dimension

of the spectral measure if this latter is positive. This is for example the

case if the reference state coincides with the initial state, that is φ = ψ0

(see section 11.3 for notations). In the general case of complex spectral

measures, the correlation dimension has to be replaced by the wavelet

correlation dimension.

Acknowledgments. Many thanks to Hans van den Berg for his careful

and patient reading and to the Laboratoire Geosciences-Rennes, where

most of this work was done, for its warm hospitality.

11.6 Appendix

Proof of theorem 11.2.1 For the purpose of the proof, we introduce

the notations

H(T,m) =

∫ T

0

dt tmh(t)

and

η(T,m) =
logH(T,m)

log T
.

With this notation we have

d+m[h] = lim sup
T→∞

η(T,m), and d−m[h] = lim inf
T→∞

η(T,m).

For fixedm,H(T,m) is a non decreasing function of T such thatH(T,m) ≤

TmH(T, 0). Therefore,

0 ≤ d+m[h] ≤ d+0 [h] +m,

0 ≤ d−m[h] ≤ d−0 [h] +m.
(11.6.1)

On the other hand η(T,m) is, for fixed T , infinitely many times dif-

ferentiable with respect to m. An elementary computation gives for

T > 1

∂η(T,m)

∂m
≥ 0,

∂2η(T,m)

∂m2
≥ 0,
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that is η(T,m) is a non decreasing convex function of m. Thus, for any

0 ≤ α ≤ 1, we have

η(T, αm) ≤ α η(T,m) + (1− α) η(T, 0).

Now we use the inequalities

lim sup(f + g) ≤ lim sup f + lim sup g

lim inf(f + g) ≤ lim inf f + lim sup g

which yield

d+αm[h] ≤ α d+m[h] + (1− α) d+0 [h]

d−αm[h] ≤ α d−m[h] + (1− α) d+0 [h],

and thus

d+αm[h]− d+0 [h]

αm
≤

d+m[h]− d+0 [h]

m
,

d−αm[h]− d+0 [h]

αm
≤

d−m[h]− d+0 [h]

m
.

Since any m′ > m can be expressed as m/α with 0 < α < 1, this

means that (d+m[h]−d+0 [h])/m and (d−m[h]−d+0 [h])/m are non decreasing

functions of m. Now in view of 11.6.1 we have

0 ≤
d−m[h]− d+0 [h]

m
≤

d+m[h]− d+0 [h]

m
≤ 1.

It follows that the limits limm→∞ d±m[h]/m exist and lie between zero

and one. Finally, let us show that limm→∞ d+m[h]/m is either zero or

one. If h is of compact support, this is evident because in this case

d±m[h] = 0. So we may suppose that h has unbounded support. Then

look at

lim sup
T→∞

log
(∫ T+1

T
dt h(t)

)
log T

.

If the above quantity is a finite constant, say α, then we can find a

sub-sequence (Tn) and a constant C > 0 for which∫ Tn+1

Tn

dt h(t) ≥ CTα−1
n .

This gives ∫ Tn+1

1

tmdt h(t) ≥

∫ Tn+1

Tn

tmdt h(t) ≥ CTm+α−1
n ,



18 Wavelet dimensions and Time evolution

whence d+0 [h]+m ≥ d+m[h] ≥ m+α−1 and therefore limm→∞ d+m[h]/m =

1. In the opposite case where

lim sup
T→∞

log
(∫ T+1

T
dt h(t)

)
log T

= −∞,

it is not hard to see that
∫ T

1
dt tmh(t) is a convergent integral for all m

and therefore d±m[h] = 0. This proves the theorem.

Proof of example 2 Take some γ′ with 1 ≤ γ′ ≤ γ and some integer

N and let us estimate∫ bγ
′

N

0

dt tmh(t) =

∞∑
n=0

∫ bγ
′

N

0

dt tmϕ(t− bn).

To this end, let us look separately at each term appearing in the sum.

While n ≤ N , we have for any ε > 0∫ bγ
′

N

0

tmϕ(t−bn)dt =

⎧⎨⎩
∫ b1−ε

n

0

+

∫ b1+ε
n

b1−ε
n

+

∫ bγ
′

N

b1+ε
n

⎫⎬⎭ tmϕ(t−bn)dt = I1+I2+I3.

Using the approximations ϕ(t) ∼ t−K , t >> 1, we obtain the following

estimates

I1 ≤ b(m−K+1)
n ,

I3 ∼ b
γ′(m−K+1)
N .

On the other hand we have

c bm(1−ε)
n ≤ bm(1−ε)

n

∫ b1+ε
n

b1−ε
n

ϕ(t− bn)dt

≤ I2

≤ bm(1+ε)
n

∫ b1+ε
n

b1−ε
n

ϕ(t− bn)dt ≤ C bm(1+ε)
n ,

for some positive constants c and C.

Thus, if we regroup the first N terms of the sum, we obtain

c′ b
ρ(m,γ′)(1−ε)
N ≤

N∑
n=0

∫ bγ
′

N

0

dt tmϕ(t− bn) ≤ C ′ b
ρ(m,γ′)(1+ε)
N (11.6.2)

for some other positive constants c′ and C ′, where ρ(m, γ′) = max {γ′(m−K + 1
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The contribution of the terms with n > N is negligible because∫ bγ
′

N

0

dt tmϕ(t− bn) ≤

∫ bγ
′

N

0

dt tmϕ(bγ
′

N − bn)

∼ b−K
n b

γ′(m+1)
N << b

γ′(m−K+1)
N .

Therefore we have

c′′ b
ρ(m,γ′)(1−ε)
N ≤

∫ bγ
′

N

0

dt tmh(t) ≤ C ′′ b
ρ(m,γ′)(1+ε)
N , N → ∞, (11.6.3)

with c′′, C ′′ > 0. Since ε can be choosen arbitrarily small, it follows that

lim sup
N→∞

log

(∫ bγ
′

N

0
dt tmh(t)

)
log bγ

′

N

= lim inf
N→∞

log

(∫ bγ
′

N

0
dt tmh(t)

)
log bγ

′

N

=
ρ(m, γ′)

γ′
.

This yields the following estimates for d+m[h] and d−m[h]

d+m[h] ≥ sup
1≤γ′≤γ

ρ(m, γ′)

γ′
,

d−m[h] ≤ inf
1≤γ′≤γ

ρ(m, γ′)

γ′
.

(11.6.4)

It turns out that the above inequalities are actually equalities. Indeed,

fix some γ′ and some ε > 0. For any T > 0, we may find N such that

bγ
′

N ≤ T < b
γ′(1+ε)
N . Then

log bγ
′

N

log T

log
∫ bγ

′

N

0
dt tmh(t)

log bγ
′

N

≤
log

∫ T

0
dt tmh(t)

log T
≤

log b
γ′(1+ε)
N

log T

log
∫ b

γ′(1+ε)

N

0
dt tmh(t

log b
γ′(1+ε)
N

Taking successively the limit superior and inferior, this leads to

ρ(m, γ′)

γ′(1 + ε)
≤ d−m[h] ≤ d+m[h] ≤

ρ(m, γ′)(1 + ε)

γ′
.

Again we may choose ε arbitrarily small and since this holds for any

γ′ we have equalities in (11.6.4). Now we have to distinguish different

regimes for m. If m is small enough to have m − K + 1 ≤ m/γ, then

ρ(m, γ′) = m for all 1 ≤ γ′ ≤ γ. Consequently,

d+m[h] = m, and d−m[h] =
m

γ
. (11.6.5)

If m/γ ≤ m−K+1, then ρ(m, γ′)/γ′ = m/γ′ if 1 ≤ γ′ ≤ m/(m−K+1)

and ρ(m, γ′)/γ′ = m−K + 1 if m/(m−K + 1) ≤ γ′ ≤ γ. This yields

d+m[h] = m, and d−m[h] = m−K + 1. (11.6.6)
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The case of exponential localization can be obtained by letting K → ∞,

in which case (11.6.5) is verified for all m. This concludes the proof.

Proof of proposition 11.2.1 For the proof we need the following

lemma, that we give without demonstration since it is well-known.

Lemma 11.6.1

lim inf
t→0

log s(t)

log t
= sup{γ ∈ IR | s(t) ≤ O(tγ), t → 0, }

lim sup
t→0

log s(t)

log t
= sup{γ ∈ IR | tγ ≤ O(s(t)), t → 0.}

We are now going to show that d+m[h] = d−m[h] = α+m for all m ≥ m0.

First suppose m0=0. Then, for all m ≥ 0, we have d−m[h] ≤ d+m[h] ≤

m + α. Now let ε > 0. By lemma 11.6.1, we can find for all δ > 0 two

positive constants 0 < c < C such that

c Tα−δ ≤

∫ T

1

dt h(t) ≤ C Tα+δ.

Rewriting this for T 1−ε in place of T and opposing the sign gives

−C T (α+δ)(1−ε) ≤ −

∫ T 1−ε

1

dt h(t) ≤ −c T (α−δ)(1−ε)

and adding line by line the last two inequalities yields

c Tα−δ − C T (α+δ)(1−ε) ≤

∫ T

T 1−ε

dt h(t) ≤ C Tα+δ.

Upon choosing δ small enough, we have α− δ > (α+ δ)(1− ε) and

c Tα−δ ≤

∫ T

T 1−ε

dt h(t) ≤ C Tα+δ.

Again by lemma 11.6.1, it follows that

lim sup
T→∞

log
∫ T

T 1−ε dt t
mh(t)

log T
= lim inf

T→∞

log
∫ T

T 1−ε dt t
mh(t)

log T
= α. (11.6.7)

Now, since
∫ T

1
dt tmh(t) ≥ Tm(1−ε)

∫ T

T 1−ε dt t
mh(t), this yields m+ α ≥

d+m[h] ≥ d−m[h] ≥ α + m(1 − ε). Since ε is arbitrary, this shows that

d+m[h] = d−m[h] = m + α, in which case the lacunarity dimension is one.

If m0 �= 0, we may apply the same reasoning to tm0h(t) instead of h(t)

and the conclusion follows.
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Proof of theorem 11.4.1 Let us begin with some comments on the

definition of the function Γgμ. The rate of decay of the wavelet transform

Wgμ(b, a) as a → 0 (resp. a → ∞) reflects the behaviour of the Fourier

transform μ̂ at ∞ (resp. 0). Precisely, we have

μ̂(ω) ≤ O(ωm), ω → 0, ⇒ Wgμ(b, a) ≤ O(a−m−1), a → ∞,

μ̂(ω) ≤ O(ωm), ω → ∞, ⇒ Wgμ(b, a) ≤ O(am+1), a → 0
(11.6.8)

uniformly in b. (This is a consequence of (11.4.1)). Thus, if s is in

C∞(IR) ∩ L1(IR), then by (11.6.8), Ggs(a, q) = ‖Wgs(·, a)‖
q
q is rapidly

decaying at small scales. It follows that μ and μ + s have the same

wavelet-dimensions κ±(q,m). Hence, if we define < μ > the class of

equivalence of μ modulo smooth functions ( that is < μ′ >=< μ > if

μ′−μ can be identified to a C∞ function), then two measures belonging

to the same class < μ > have the same wavelet dimensions. Now, for a

given measure μ, we always can find μ′ in < μ > whose Fourier transform

is flat around O. It suffices to takes μ′ = μ− φ ∗ μ with φ ∈ S(IR) and

φ̂(ω) = 1 + O(ωm), ω → 0, for all m. Therefore, we may assume that

condition (11.6.8) holds when we compute the wavelet dimensions. In

that case, Ggμ(a, q) is rapidly decreasing at large scales and we may

thus replace
∫ 1

t
by

∫∞

t
in the definition of Γgμ(t, q,m), that is we may

set

Γgμ(t, q,m) =

∫ ∞

t

da

a
am Ggμ(a, q).

With this remark in mind, we can begin the proof. Take g and h

two analysing wavelets in S+(IR). Let us compare Γgμ(t, q,m) and

Γhμ(t, q,m) as t → 0. From equation (11.4.5) it follows that with

Ka′,a(b) =
1

a′
Pg→h

(
b

a′
,
a

a′

)
the passage from Wgμ to Whμ reads

Whμ(·, a) =

∫ ∞

0

da′

a′
Ka′,a ∗ Wgμ(·, a

′).

However we have to make sure that Ka′,a is well defined. The only

possible obstruction to this is the constant cg,h as defined in (11.4.2)

which may vanish. (Note that it is never ∞ for g, h ∈ S+(IR).) How-

ever it cannot vanish for all the dilated and translated versions g
β,α

=
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α−1g([·−β]/α) of g since this would merely mean that the wavelet trans-

form of h with respect to g vanishes, which is impossible for h �= 0. Now

replacing g by one of its dilated and translated versions gβ,α amounts to

replace Wgμ(b, a) by

Wgβ,α
μ(b, a) =

1

α
Wgμ

(
b− β

α
,
a

α

)
and therefore the dimensions computed with gβ,α instead of g are the

same. We therefore may suppose that cg,h �= 0.

Now we have

‖Whμ(·, a)‖q =

(∫
db |Whμ(b, a)|

q

)1/q

≤

{∫
db

(∫ ∞

0

da′

a′
|Ka′,a ∗Wgμ(·, a

′)(b)|

)q}1/q

≤

∫ ∞

0

da′

a′

{∫
db |Ka′,a ∗Wgμ(·, a

′)(b)|
q
}1/q

by Minkowski’s

=

∫ ∞

0

da′

a′
‖Ka′,a ∗Wgμ(·, a

′)‖q

≤

∫ ∞

0

da′

a′
‖Ka′,a‖1 ‖Wgμ(·, a

′)‖q by Young’s inequality

On the other hand,

‖Ka′,a‖1 =

∫ +∞

−∞

db
1

a′

∣∣∣∣Pg→h

(
b

a′
,
a

a′

)∣∣∣∣H(a/a′),

with

H(a) =

∫ +∞

−∞

db |Pg→h(b, a)|

This is a nonnegative function that is rapidly decaying as a + 1/a gets

large. Now set

Λ =

∫ ∞

0

da′

a′
H(a/a′),

which is a finite constant thanks to the high localization of H, and

dν(a′) = Λ−1 da
′

a′
H(a/a′),

which is a probabilty measure. Then, using Jensen’s inequality, we ob-

tain

‖Whμ(·, a)‖
q
q = Λq

(∫ ∞

0

dν(a′) ‖Wgμ(·, a
′)‖q

)q
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≤ Λq

∫ ∞

0

dν(a′) ‖Wgμ(·, a
′)‖

q

q

= Λq−1

∫ ∞

0

da′

a′
H(a/a′) ‖Wgμ(·, a

′)‖
q

q . (11.6.9)

Now suppose that we are in the case

lim
t→0

∫ 1

t

da

a
am Ggμ(a, q) = ∞.

Then, as was explained in the last remark, we may compute the wavelet

dimension with

Γgμ(t, q,m) =

∫ ∞

t

da

a
am Ggμ(a, q).

With this assumption, (11.6.9) yields

Γhμ(t, q,m) =

∫ ∞

t

da

a
am ‖Whμ(·, a)‖

q
q

≤ O(1)

∫ ∞

t

da

a
am

∫ ∞

0

da′

a′
H(a/a′) ‖Wgμ(·, a

′)‖
q

q

= O(1)

∫ ∞

0

da′

a′
H(1/a′)

∫ ∞

t

da

a
am ‖Wgμ(·, aa

′)‖
q

q

= O(1)

∫ ∞

0

da′

a′
a′

−m
H(1/a′)

∫ ∞

ta′

da

a
am ‖Wgμ(·, a)‖

q
q .

= O(1)

∫ ∞

0

da′

a′
H(1/a′)Γgμ(ta

′, q,m)

= O(1)

∫ ∞

0

da′

a′
H(t/a′)Γgμ(a

′, q,m),

that is

Γhμ(t, q,m) ≤ O(1)

∫ ∞

0

da

a
H(t/a) Γgμ(a, q,m).

As can be easily checked, the same relation holds in the alternative

case

Γgμ(t, q,m) =

∫ t

0

da

a
am Ggμ(a, q).

Since g and h can be exchanged in the above inequality, it follows that†

Γhμ(t, q,m) ∼

∫ ∞

0

da

a
H(t/a) Γgμ(a, q,m). (11.6.10)

† The notation f ∼ g means C−1f(x) ≤ g(x) ≤ Cf(x) for some constant C > 0
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Note that the integral on the right-hand side is always finite because

Γgμ(a, q,m) is of at most polynomial grothw in a + 1/a whereas H is

rapidly decreasing in a+ 1/a.

Now suppose that Γgμ(t, q,m) ≤ O(tγ), t → 0, for some γ. Then by

(11.6.10), we have

Γhμ(t, q,m) ≤ O(tγ)

∫ ∞

0

da

a
H(1/a)aγ ≤ O(tγ), t → 0.

Since g and h can be exchanged in (11.6.10), it follows that, for all γ

Γhμ(t, q,m) ≤ O(tγ) ⇔ Γgμ(t, q,m) ≤ O(tγ), t → 0. (11.6.11)

Conversely, suppose that Γgμ(t, q,m) ≥ Ctγ , 0 < t < 1 for some con-

stant C > 0. Things are here slightly more complicated. Pick some ε,

0 < ε < 1, and keep it fixed. For 0 < t < 1 we split the integral of

(11.6.10) into three parts

Γhμ(t, q,m) =

{∫ t1+ε

0

+

∫ t1−ε

t1+ε

+

∫ ∞

t1−ε

}
da

a
H(t/a) Γgμ(a, q,m) = X1+X2+X3

In the last term we may estimate Γgμ(t, q,m) ≤ O(1) and thus

X3 ≤ O(1)

∫ ∞

1/tε

da

a
H(1/a)

Since H(t) is arbitrarily well polynomially localized it follows that X3 =

O(tn) for all n > 0.

InX1 we may estimate Γgμ(t, q,m) ≤ t−p for some p because Γgμ(t, q,m)

is rapidly decreasing in t+ 1/t and thus

X1 ≤ O(1) t−p

∫ tε

0

da

a
H(1/a) a−p.

Since H is arbitrary well polynomially localized the integral is rapidly

decaying and thus again X1 = O(tn) for all n > 0.

The remaining contribution is the middle term X2. If Γgμ(t, q,m) is

non decreasing, then

X2 =
∫ t−ε

tε
da
a Γgμ(at, q,m)H(1/a)

≥
∫ 1

tε
da
a H(1/a)Γgμ(at, q,m)

≥ Γgμ(t
1+ε, q,m)

∫ 1

t1+ε
da
a H(1/a)

≥ Γgμ(t
1+ε, q,m)

∫ 1

0
da
a H(1/a)

≥ C ′ tγ(1+ε).
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If Γgμ(t, q,m)t) is non increasing, then

X2 ≥
∫ t−ε

1
da
a H(1/a)Γgμ(at, q,m)

≥ Γgμ(t
1+ε, q,m)

∫ t−ε

1
da
a H(1/a)

≥ Γgμ(t
1+ε, q,m)

∫∞

1
da
a H(1/a)

≥ C ′ tγ(1+ε).

Thus, we have for all γ and all ε > 0

C tγ ≤ Γgμ(t, q,m) ⇒ tγ+ε ≤ C ′ Γhμ(t, q,m), (11.6.12)

and also, since g and h can be interchanged

C tγ ≤ Γhμ(t, q,m) ⇒ tγ+ε ≤ C ′ Γgμ(t, q,m), (11.6.13)

Once we have proven (11.6.11), (11.6.12) and (11.6.13), the conclusion

follows from lemma (11.6.1).

Proof of theorem 11.5.1 Take some wavelet g ∈ S+(IR) such that ĝ

is compactly supported. Again we may suppose in addition that μ̂(ω) =

O(ωm) for all m, whence Wgμ is rapidly decaying at large scale. A direct

application of Parsevals equation gives∫ +∞

−∞

db |Wgμ(b, a)|
2
=

∫ ∞

0

dω |ĝ(aω)|
2
|μ̂(ω)|

2
, (11.6.14)

and thus, by a simple exchange of integration∫
IH

da

a
db a−m |Wgμ(b, a)|

2
=

∫ ∞

0

da

a
a−m |ĝ(a)|

2
∫ ∞

0

dω ωm |μ̂(ω)|
2
.

The first integral on the right-hand side is a finite constant, due to the

high localization of ĝ. The second integral may be finite or not. First

suppose it is infinite. Then we have

Γgμ(T
−1, 2,−m) =

∫ ∞

T−1

da

a
a−m

∫ +∞

−∞

db |Wgμ(b, a)|
2
.

By equation (11.6.14), this can be rewritten as

Γgμ(T
−1, 2,−m) =

∫ ∞

0

dω ωmH(ω/T ) |μ̂(ω)|
2
,

with

H(t) =

∫ ∞

t

da

a
a−m |ĝ(a)|

2
.
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Since H is non negative and of compact support (since ĝ is), we can find

numbers λ > 0 and Λ > 0 such that

λχ[0,λ](ω) ≤ H(ω) ≤ Λχ[0,Λ](ω)

where χI is the characteristic function of I. Therefore

λ

∫ λT

0

dω ωm |μ̂(ω)|
2
≤ Γgμ(T

−1, 2,−m) ≤ Λ

∫ ΛT

0

dω ωm |μ̂(ω)|
2
,

and it follows that

d+m[|μ̂|
2
] = lim sup

T→∞

log
(∫ λT

0
dω ωm |μ̂(ω)|

2
)

log T

= lim sup
T→∞

log Γgμ(T
−1, 2,−m)

log T

= −κ−
2,−m[μ],

and

d−m[|μ̂|
2
] = lim inf

T→∞

log
(∫ λT

0
dω ωm |μ̂(ω)|

2
)

log T

= lim inf
T→∞

log Γgμ(T
−1, 2,−m)

log T

= −κ+
2,−m[μ],

The proof for the case∫
dω ωm |μ̂(ω)|

2
< ∞

is similar, we only have to use

Γg(T
−1, 2,−m) =

∫ T−1

0

da

a
a−m

∫ +∞

−∞

db |Wgμ(b, a)|
2

and to adapt the limits of integration accordingly. This concludes the

proof.

Some useful inequalities As usual Lp(IR) is the space of measurable

functions f for which

‖f‖p =

(∫
dt |f(t)|

p

) 1
p

< ∞.
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Hölder’s inequality. If f ∈ Lp(IR) and g ∈ Lq(IR) with 1/p+1/q = 1/r,

then we have

‖fg‖r ≤ ‖f‖p ‖g‖q .

Minkowsky’s inequality. For any p ≥ 1 we have

‖f + g‖p ≤ ‖f‖p + ‖g‖p .

Integral Minkowsky’s inequality. If f(x, y) ∈ Lp(IR)×Lp(IR) with p ≥ 1,{∫
dy

(∣∣∣∣∫ dx f(x, y)

∣∣∣∣p)}1/p

≤

∫
dx

(∫
dy |f(x, y)|

p

)1/p

.

Young’s inequality. If f ∈ Lp(IR) and g ∈ Lq(IR) with 1/p + 1/q =

1 + 1/r, then

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q .

Jensen’s inequality. If μ is a probability measure and ϕ a convex func-

tion, then we have

ϕ

(∫
dμ(t) f(t)

)
≤

∫
dμ(t) ϕ ◦ f(t).
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