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A note on the generalized fractal dimensions of a probability measure

We prove the following result on the generalized fractal dimensions D q Ϯ of a probability measure on R n . Let g be a complex-valued measurable function on R n satisfying the following conditions: ͑1͒ g is rapidly decreasing at infinity, ͑2͒ g is continuous and nonvanishing at ͑at least͒ one point, ͑3͒ ͐g 0. Define the partition function ⌳ a (,q)ϭa n(qϪ1) ʈg a* ʈ q q , where g a (x)ϭa Ϫn g(a Ϫ1 x) and * is the con- volution in R n . Then for all qϾ1 we have D q Ϯ ϭ1/(qϪ1)lim r→0 inf sup ϫ͓log ⌳ a (r,q)/ log r͔.

I. INTRODUCTION

Since the apparition of the fractal formalism in the late 1970s, there has been a huge amount of literature devoted to the different definitions of the fractal dimensions of probability measures ͑see, e.g., Refs. 1 and 2 for reviews͒. Roughly speaking, there are two types of fractal dimensions: the pointwise dimensions, which give essentially the local Ho ¨lder exponents of the measure, and the global ones, which can be seen as regularity indices in a scale of Besov spaces. Both families of dimensions are related to one another by the so-called multifractal formalism. The global dimensions were originally introduced by Renyi [START_REF] ´nyi | Probability Theory ͑North-Holland[END_REF] and rediscovered by Hentschel and Procaccia in their seminal paper; [START_REF] Hentschel | The infinite number of generalized dimensions of fractals and strange attractors[END_REF] they are a generalization of the usual fractal dimension or capacity, and are therefore called ''generalized fractal dimensions.'' They are obtained by a box-counting algorithm, which amounts to partitioning the space in elementary cells and suming up powers of the individual contributions to the measure into what is called a partition function. There are several variants of this definition, according to the kind of covering that is chosen ͑grids, balls, redundant, nonredundant, etc.͒ and the kind of partition function ͑discrete or continuous͒. First used in the context of chaos and dynamical systems, the generalized fractal dimensions have regained interest in the framework of quantum diffusion in the presence of fractal spectra. After the pioonering work of Guarneri 5 many relations were established between the diffusive behavior of quantum wave packets and the generalized fractal dimensions ͑see, e.g., Refs. 6 -9 for some recent results͒.

In order to simplify the numerous definitions and unify the results arising in dimension theory, it is important to find equivalences between the different approaches. This has been the aim of some recent works ͑e.g., Refs. 10-12, 2͒. In this short note we show that the generalized fractal dimensions can be obtained by replacing the boxes by arbitrary rapidly decaying complex-valued functions in the partition function, provided only these functions have nonzero mean.

II. THE GENERALIZED FRACTAL DIMENSIONS

Let be a probability Borel measure on R n and consider a partition of the space in a grid of cubes Q(x j ,r) of center x j and side 2r. For qу0, form the following partition function: a͒ Electronic mail: caguerin@loe.u-3mrs.fr ⌳ 1 ͑r,q͒ϭ ͚ j ͑Q͑x j ,r ͒͒ q .

͑2.1͒

The so-called Re ´nyi dimensions D q Ϯ ͑Ref. 4͒ of the measure are defined as the limiting exponents of the last function as r→0, precisely:

D q Ϯ ϭ q Ϯ qϪ1 , q 1 ͑2.2͒ with q Ϯ ϭ lim r→0 sup inf log ⌳ 1 ͑r,q͒ log r . ͑2.3͒
This normalization recasts the dimensions on the unit interval, 0рD q Ϯ р1, at least for qϾ1 ͑see

Ref. 12 for a detailed discussion͒. Note that ͑2.2͒ is not defined for qϭ1. Hentschel and Proccacia 4 have shown heuristically the existence of the limit q→1, thereby defining D 1 Ϯ by continuity. A rigorous analysis [START_REF] Barbaroux | Generalized fractal dimensions: Equivalences and basic properties[END_REF] however, shows that D q Ϯ are only left-and right-continuous about qϭ1, with a possible discontinuity. The dimension D 0 Ϯ is the usual fractal dimension or capacity. The dimension D 2 Ϯ is known as the correlation dimension. A continuous version 4,10 of the partition function ͑2.1͒ is

⌳ 2 ͑r,q͒ϭ ͵ R n ͑B͑x,r͒͒ qϪ1 d͑x ͒, ͑2.4͒
where B(x,r) is the ball of center x and radius r. The corresponding limiting exponents, defined after ͑2.2͒ and ͑2.3͒, are called generalized fractal dimensions. Note that the integration is performed against the measure , which is possibly singular. A more tractable definition consists in integrating versus the Lebesgue measure, by formally replacing d(x) by the absolutely continuous measure r Ϫn (B(x,r)):

⌳ 3 ͑r,q͒ϭr Ϫn ͵ R n ͑B͑x,r͒͒ q dx.

͑2.5͒

Although more convenient, this formula seems to be less popular in the literature. The equivalence of definitions ͑2.1͒ and ͑2.4͒ has been shown in Ref. 13 for qϾ1 ͑also rewritten in Ref. 2, p. 184͒, and the equivalence of ͑2.1͒ and ͑2.5͒ follows by an obvious adaptation of the proof. The equivalence for 0ϽqϽ1 has been proved more recently. [START_REF] Barbaroux | Generalized fractal dimensions: Equivalences and basic properties[END_REF] We thus have, for all qϾ0(q 1), three equivalent definitions of the generalized fractal dimensions:

D q Ϯ ϭ 1 qϪ1 lim r→0 sup inf log ⌳ j ͑ r,q ͒ log r , jϭ1,2,3. ͑2.6͒

III. MAIN RESULT

As we are going to show, the balls or boxes used to define the partition functions ⌳ j can be replaced by arbitrary measurable functions, provided the latter are rapidly decreasing. This is very natural for non-negative functions, which can be seen as smooth cutoff functions, but less obvious for complex or signed functions. For any measurable complex-valued function g on R n denote by g a (x)ϭa Ϫn g(a Ϫ1 x), aϾ0, its dilated version and define the partition function

⌳ a ͑ ,q͒ϭa n͑qϪ1 ͒ ʈg a* ʈ q q ϭa n͑qϪ1 ͒ ͵ db͉g a* ͑b͉͒ q ,
where the asterisk ͑ * ͒ stands for the convolution:

g a* ͑b͒ϭ ͵ g a ͑ bϪx ͒d͑ x ͒,
We start by recalling a useful rule of computation for the limiting exponents. A proof of this result can be found in Ref. 14 Proof: First note that we do not change the limit ͑3.1͒ on replacing g by a translated and rescaled version g(␣tϪ␤). Since g remains positive in some neighborhood of, say, t 0 , we can rescale g in such a way that chрgрCh, where h is some non-negative function with h(t)ϭ1 for t͓Ϫ1,1͔ and c,C are two positive constants. Hence it suffices to prove the lemma for such a function h. Let ⑀Ͼ0. For all aϾ0 small enough and bR we have

͉h a* ͑b͉͒ϭ ͵ h a ͑ t ͒d͑ bϪt ͒ у ͵ ͉t͉рa 1ϩ⑀ h a ͑ t ͒d͑ bϪt ͒ уa Ϫn min ͉t͉рa ⑀͕ h͑t ͖͒͑ B͑b,a 1ϩ⑀ ͒͒ уa Ϫn ͑B͑b,a 1ϩ⑀ ͒͒.
Integrating over b this yields to ʈh a* ʈ q q уa ͑ 1Ϫq ͒nϩ⑀n ⌳ 3 ͑a 1ϩ⑀ ,q ͒. ͑3.2͒

The reverse estimation is more touchy. For all ⑀Ͼ0 we have

͉h a* ͑b͉͒р ͵ ͉t͉рa 1Ϫ⑀ ͉h a ͑ t ͉͒d͑ bϪt ͒ϩ ͵ ͉t͉Ͼa 1Ϫ⑀ ͉h a ͑ t ͉͒d͑ bϪt ͒ рa Ϫn ʈgʈ ϱ ͑B͑b,a 1Ϫ⑀ ͒͒ϩ ͵ ͉t͉Ͼa 1Ϫ⑀ ͉h a ͑ t ͉͒d͑ bϪt ͒
and thus

ʈh a* ʈ q q рC q a ͑ 1Ϫq ͒nϪ⑀n ⌳ 3 ͑a 1Ϫ⑀ ,q ͒ϩC q ͵ db ͩ ͵ ͉bϪt͉Ͼa 1Ϫ⑀ h a ͑ bϪt ͒d͑ t ͒ ͪ q ͑3.3͒
for some constant C q . We have to show that the contribution of the second term is negligible. By Jensen's inequality, we have for all qϾ1,

ͩ ͵ ͉t͉Ͼa 1Ϫ⑀ h a ͑ t ͒d͑ bϪt ͒ ͪ q р ͩ ͵ ͉bϪt͉Ͼa 1Ϫ⑀ d͑t ͒ ͪ qϪ1 ͵ ͉bϪt͉Ͼa 1Ϫ⑀ h a q ͑ bϪt ͒d͑ t ͒.
Thus, calling I(a) the second term on the right-hand side of ͑3.3͒, we have

I͑a ͒рC q ͵ db ͵ ͉t͉Ͼa 1Ϫ⑀ h a q ͑ t ͒d͑ bϪt ͒ ϭC q ͵ ͉t͉Ͼa 1Ϫ⑀ h a q ͑ t ͒ ͵ d͑bϪt ͒ϭC q a ͑ 1Ϫq ͒n ͵ ͉t͉Ͼa Ϫ⑀ g q ͑ t ͒,
where we use the finiteness of to exchange the integrals. Now since g is rapidly decreasing at infinity, the tails of its integrals also and thus I(a)рO(a ϱ ),a→0. Since ͑3.2͒ and ͑3.3͒ hold for arbitrarily small ⑀, the conclusion follows from Lemma 3.1. ᮀ Note: A proof of this result in the case 0ϽqϽ1 has been given in Ref. 12, Theorem A.1. We now can state the main result: Theorem 3.3: Let g be a complex-valued measurable function on R n satisfying the following conditions:

(1) g is rapidly decreasing at infinity, (2) g is continuous and nonvanishing at (at least) one point, (3) ͐g 0.

Then for all qϾ1 we have

D q Ϯ ϭ 1 qϪ1 lim r→0 sup inf log ⌳ a ͑r,q͒ log r . ͑3.4͒
This will be an easy consequence of the following lemma. Lemma 3.4: Let g be a rapidly decreasing complex-valued measurable function such that ͐g 0. Then there exists a non-negative function in S(R n ) (the Schwartz space of infinitely differentiable rapidly decreasing functions) and a complex-valued function S(R n ) such that ϭg*.

Proof: Let g ˆbe the notation for the Fourier transform of a L 1 function g: g ˆ͑k ͒ϭ ͵ e Ϫikx g͑x ͒dx.

Without restriction we may suppose ͉͐g͉ϭ͉g ˆ(0)͉ϭ1. Since g ˆis a continuous function, we can find some neighborhood VϭB(0,⑀) about the origin in which ͉g ˆ͉Ͼ1/2 on V. Now take a smaller neighborhood VЈϭB(0,⑀/2) and some nonzero hC 0 ϱ (R n ) with support in VЈ. Define by its Fourier transform: ˆϭh * h ˜, where h ˜(x)ϭh ¯(Ϫx) and h ¯is the complex conjugate of h. Then support ( ˆ)ʚV and ϭ͉h ˆ͉2 is a non-negative function in S(R n ). It remains to construct . This can be done by setting ˆϭ ˆ/g ˆon V, ˆϭ0 elsewhere. The two functions then satisfy ϭg * and is in S(R n ) for ˆis in C 0 ϱ (R n ). ᮀ Proof (of Theorem 3.3): Take two functions and as in Lemma 3.4. Then for all qϾ1, we have by Young's inequality: ʈ * a ʈ q ϭʈ͑ * g a ͒ * a ʈ q рʈ * g a ʈ q ʈʈ 1 .

On the other hand, ʈ * g a ʈ q рʈ * ͉g a ͉ʈ q .

Both functions and ͉g͉ fulfill the hypothesis of Lemma 3.2. The partition functions a n(qϪ1) ʈ * a ʈ q and a n(qϪ1) ʈ * ͉g a ͉ʈ q therefore satisfy ͑2.6͒, and since they ''sandwich'' ⌳ a (,q), the conclusion follows.

ᮀ

  , for example.

	Lemma 3.1: Let s be a non-negative measurable function. Then
	lim inf t→0	log s͑t ͒ log t	ϭsup ͕␥:st͑t͒рO͑t ␥ ͒, t→0͖,
	lim sup t→0	log s͑t ͒ log t	ϭinf ͕␥:t ␥ рO͑s͑t ͒͒, t→0͖.
	Next we consider the case of non-negative functions.
	Lemma 3.2: Let g be a non-negative measurable function g on R n which is continuous and
	nonvanishing at (at least) one point and rapidly decreasing at infinity. Then for all qϾ1 we have
	D q Ϯ ϭ	1 qϪ1	lim r→0	sup inf	log ⌳ a ͑r,q͒ log r	.	͑3.1͒
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