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Abstract
For s urfaces generated by a class of asymptotically self-similar processes we define a
probability measure, supported by the surface. We show that the correlation dimension of
that surface measure is linked to the self-similarity exponent almost surely. This result is
applied to the Kirchhoff integral well known in scattering from rough surfaces. We show
that a certain average of the scattered intensity exhibits almost surely a scaling that allows
us to recover the self-similarity index of the surface in an experiment involving only one
sample of the surface.

1. Introduction

Random fractal models are often used to describe natural rough surfaces that exhibit structures
over a wide range of scales, such as sea surfaces, soils, mountains or rough deposits. A
powerful tool for the remote characterization of such media is wave scattering. This method
is now commonly used in various domains such as oceanography, geophysics or physics and
chemistry of solid surfaces. We refer to [1] for a general introduction to fractal geometry and
to [2] and [3] for some surveys on scattering from fractal surfaces. The wavenumber of the
interrogating wave is chosen in accordance with the spatial frequencies to be probed in the
material. The typical observation is a power-law dependence of the scattered intensity upon
the wavenumber, with a non-trivial exponent which is interpreted as a fractal dimension of the
surface. Such results can be well explained in the framework of the small-perturbation model,
i.e in a regime where the roughness is small with respect to the illuminating wavelength.

3 On leave from CNRS.
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Figure 1. Scattering geometry.

In that case, the scattered amplitude is a mere Fourier transform of the surface and the
mean scattered intensity yields directly its power spectrum. However, the interpretation of the
scattering data becomes problematic outside the perturbative regime. Very often, the scattering
amplitude is then approximated by an oscillatory integral of the following form:

A(k, q) =
∫

Rn

χ(r) ei(k·r+qh(r)) dr. (1.1)

Here h(r), r ∈ R
n is a continuous function representing the rough interface, χ is a cut-off

function that delimits the illuminated area, A is the scattered amplitude for a fixed source–
receiver geometry and (k, q) ∈ R

n × R are the horizontal and vertical frequency variables,
respectively. They are related to the components of the incoming and outcoming wave
vectors by k = kout − kin and q = qin + qout (see figure 1). For simplicity, χ will be
chosen as the (normalized) characteristic function of the unit sphere. We call an integral of
type (1.1) a ‘Kirchhoff integral’. This terminology originates from the so-called Kirchhoff
approximation [4], which leads to this expression for the scattering amplitude, apart from
trivial geometrical factors. The Kirchhoff approximation amounts to replacing the surface
by its local tangent plane in the calculation of the unknown field at the boundary. This
simplifying assumption is justified for smooth surfaces but is in principle incompatible with
fractal surfaces, where such a tangent plane does not even exist. Many authors have chosen
to work with band-limited fractal surfaces, but still the use of the Kirchhoff approximation is
questionable since the frequency domain where the method applies and the fractal frequency
regime do not necessarily overlap. A second instance where this integral appears is the case of
two homogeneous media separated by a rough interface h and illuminated from one side, say
the upper medium. In the limit of small contrast the scattering amplitude is accurately given
by the so-called Born approximation, which amounts to replacing the total field in the lower
medium by the incident field. The Born approximation in this context takes on the form of
a Kirchhoff integral. Scattering from fractal surfaces under the Kirchhoff approximation has
been extensively studied in the physical literature (e.g., [5–12]). Typically, the diffraction
diagram retains the fractal properties of the surface and a dependence of the scattered
intensity upon some fractal dimension is evidenced numerically or analytically in different
regimes.

The aim of this work is to establish a precise and quantitative link between the fractal
properties of h and the asymptotic behaviour of the Kirchhoff type oscillatory integral A as
(k, q) → ∞. As we want to show now, the theoretical results of this paper allow us to recover
the self-similarity exponent of an asymptotically self-similar random surface with probability
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one by a scattering experiment, where only the intensity is measured. This is important, since
it shows that only one sample of the surface is needed (instead of a characteristic ensemble).
The physical problem corresponds to n = 1 or n = 2, i.e. when h actually describes a profile
or a surface.

However, the results of this paper hold and will be presented in arbitrary dimension n � 1.
Note that A is the (n + 1)-dimensional Fourier transform of the measure

μ = χ(r)δ(z − h(r))

which is supported by the graph of h. Thus, at the mathematical level we are interested in how
the high-frequency behaviour of the Fourier transform of μ is related to small-scale properties
of h. The link will be established through the correlation dimension of the graph measure.
The main results will be exposed in detail in the following section.

2. Exposition of the main results

2.1. The graph measure

Consider the graph � ⊂ R
n+1 of a continuous real valued function z = h(r) defined on the unit

ball ‖r‖ � 1 in R
n, � = {(r, z)|z = h(r), ‖r‖ � 1}. A natural question is to understand how

fractal properties of h are mirrored in fractal properties of �. When h is fractional Brownian
motion (fBm) over R it is known that almost surely the Hausdorff–Besicovitch dimension
DHB of the graph is simply related to the Hurst exponent H by DHB = 2 − H [13].

In this paper we will prove a similar result for the correlation dimension of the measure
supported by � which is defined as follows. Consider the extension to all of R

n+1 of the
pullback of the Lebesgue measure to � under the projection

π : � → R
n (r, z) �→ r.

More precisely, for any Borel set B ∈ R
n+1 we set (with a normalization factor)

μ(B) = 1

Vn

|π(B ∩ �)|
where |·| denotes Lebesgue measure and Vn is the measure of the unit ball in R

n. Since h is
continuous, this defines a measure whose support is precisely �. Because of the normalization
it is a probability measure. Formally we can write

μ = χ(r)δ(z − h(r))

where Vnχ is the characteristic function of the unit ball in R
n. Note that this makes sense, if we

agree to integrate over z first. We can also view this measure as the push forward of Lebesgue
measure on R

n by the mapping r → (r, h(r)). Thus to draw a random point according to μ,
we pick a random point r uniformly in the unit ball in R

n and go to the graph above r.
The main theorem of the paper can be formulated as follows. For the precise definitions

of the employed terms see below.

Theorem 2.1. Let h be a version of (isotropic) fractional Brownian motion over R
n with

continuous trajectories. Let α be its self-similarity exponent. Let μ be the graph measure
associated with each trajectory. Then the upper and lower correlation dimensions of μ are
random variables which are constant almost surely with:

d±
c [μ] = n + 1 − α/2.

Actually we will show this theorem for a larger class of processes, which are only
asymptotically self-similar.

3



2.2. The correlation dimension

Here we want to recall the basic facts of correlation dimension. The correlation dimension
dc(μ) of a probability measure μ in R

m is defined in the following way [14]. Consider the
so-called correlation integral at scale ε:

X(ε) =
∫

dμ(R)μ(B(R, ε)) (2.2)

where B(R, ε) is the ball of radius ε around the point R. If a power-law behaviour is observed
at small scales,

X(ε) ∼ εdc ε → 0 (2.3)

then the corresponding exponent dc is termed the correlation dimension of the measure μ.
More precisely, the upper and lower correlation dimensions are defined as

d±
c [μ] = lim

ε→0

sup
inf

log X(ε)

log ε
ε → 0. (2.4)

Note that X(ε) is the probability that two points randomly chosen in R
m according to the

probability measure μ are within a mutual distance of ε, thereby justifying the denomination.
This becomes obvious on rewriting:

X(ε) =
∫

Rm×Rm

dμ(u) dμ(v)H(ε − ‖u − v‖) (2.5)

where H is the Heaviside function. The correlation dimension is related to the Hausdorff–
Besicovitch dimension DHB(�) of the support of μ by the general inequality:

d+
c [μ] � DHB(�). (2.6)

A useful property of the correlation dimension is its relation to the Fourier asymptotic of
the measure. Define the Fourier transform of μ by

μ̂(ξ) =
∫

Rm

dμ(R) e−iξ·R

and consider the Cesaro average:

C(K) = 1

Km

∫
‖ξ‖�K2

dξ|μ̂(ξ)|2. (2.7)

Then it was shown in [15] that the scaling of C(K) is governed by the correlation dimension
of μ in the sense that

lim
K→∞

sup
inf

log C(K)

log 1/K
= d±

c . (2.8)

In view of these results, theorem 2.1 can be given the following equivalent form. For a vector
(k, q) in R

n+1 and the graph measure μ we note that

μ̂(k, q) = A(k, q). (2.9)

Thus we have the immediate corollary:

Corollary 2.2. Under the conditions of theorem 2.1 we have

lim
K→∞

sup
inf

log
∫
‖k‖2+q2�K

dk dq|A(k, q)|2
log K

= α/2

for almost all realizations of h.
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2.3. The projected measure

Take a probability measure μ in R
m. For a fixed direction v ∈ R

m with ‖v‖ = 1 consider the
projection along v⊥ defined as follows:

L : R
m → R R �→ v · R.

The push forward of μ under L defines a positive measure on R, which we denote by μv .
More precisely, for any Borel set B ⊂ R denote by L−1B its pre-image under L. We then have

μv(B) = μ(L−1B).

Let �a ⊂ R
m, a ∈ R be the affine hyperplane defined by (v,R) = a. Then we can formally

write

μv(a) =
∫

�a

μ.

If now μ is the graph measure considered previously it seems clear that this measure again
should contain information about the fractality of h. However, as it turns out, it is hidden in a
more subtle way, since it has a trivial correlation dimension. We did not succeed in proving
a corresponding version of theorem 2.1 for the measure μv . However, we will prove the
following weaker result:

Theorem 2.3. Under the hypothesis of theorem 2.1, let μv be the projected graph measure
along direction v⊥. Then the upper and lower correlation dimensions of μv are trivial in the
sense that

Ed±
c [μv] = 1.

2.4. The wavelet correlation dimension

In the case that a probability measure ν in R
m has a square integrable density f the correlation

integral always exhibits a trivial scaling in the sense that dc[ν] = m, as follows from

ε−mX(ε) → Vn

∫
Rm

|f |2 =: Vm‖ν‖2
2 ε → 0. (2.10)

However, some sub-scaling may still reveal fractal properties of such a measure. The wavelet-
correlation dimensions d±

w are a natural generalization of the standard correlation dimension
[16, 17]. For this paper it is enough to give the following definition:

dw[ν]± = lim
ε→0

sup
inf

log
(
X(ε) − Vm‖ν‖2

2ε
m
)

log ε
.

This fractal exponent can again be seen in the Fourier domain

lim
K→∞

sup
inf

log‖ν‖2
2 − log C(K)

log 1/K
= lim

K→∞
sup
inf

log
∫
‖ξ‖>K

|ν̂(ξ)|2
log 1/K

= d±
w [ν]. (2.11)

For the projected measure μv we will show the following result.

Theorem 2.4. Under the conditions of theorem 2.3 let μv be the projected graph measure
along a direction v⊥. Then we have

lim
a→∞

sup
inf

E|μ̂v(a)|2
log(1/a)

= 2n/α.
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As a consequence, the projected measure has a non-trivial wavelet correlation dimension in
the sense that:

Ed±
w [μv] � n(2/α − 1).

This will be applied to the scattering problem in the following way. For any direction
v ∈ R

n+1, ‖v‖ = 1, the restriction of μ̂ to av, a ∈ R, can be interpreted as the one-dimensional
Fourier transform of the projected measure μv . Indeed for R ∈ �u we have av · R = au

and we can write upon splitting the integral

μ̂(av) =
∫

du

∫
�u

eiauμ =
∫

du eiauμv(u) = μ̂v(a).

Thus, the scattered amplitude in a fixed geometry (k, q) = av is simply linked to the Fourier
transform of the projected measure:

A(ak, aq) = μ̂v(a) (2.12)

with the following consequence:

Corollary 2.5. Under the conditions of theorem 2.3 we have for any vector (k, q) ∈ R
n+1

lim
a→∞

sup
inf

E|A(ak, aq)|2
log(1/a)

= 2n/α.

2.5. Application to Kirchhoff scattering

The theoretical results have obvious applications to Kirchhoff scattering as we shall make
explicit. We call a variable geometry scheme a configuration where the source and the receiver
are allowed to vary freely in space and a fixed geometry scheme a configuration where the
position of the latter is fixed but the frequency can vary. The former case corresponds to
(k, q) varying freely in R

n+1 while the latter case corresponds to a set (ak, aq), a ∈ R, for
a fixed direction v = (k, q). We call I (k, q) = |A(k, q)|2 the intensity. Note that no phase
information is needed for this quantity, which makes it easier to assess in experiments than
the full amplitude A. Moreover, we define the average intensity at maximum frequency K:

Ĩ (K) = 1

Kn+1

∫
k2+q2�K2

dk dqI (k, q). (2.13)

We then have the following results, which are immediate applications of the previous theorems.

Corollary 2.6. Let h(r) be a random fractal surface given by a fractional Brownian field with
self-similarity exponent α. Then α can be recovered almost surely from the scattered intensity
in the variable geometry scheme:

lim
K→∞

sup
inf

log Ĩ (K)

log 1/K
= n + 1 − α/2 a.s. (2.14)

In the fixed geometry scheme, α can be recovered from a characteristic set of surfaces through
the scaling behaviour of the average intensity:

lim
a→∞

sup
inf

log ẼI (ak, aq)

log 1/a
= 2n/α. (2.15)
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3. Proofs of the main theorems

3.1. Asymptotically self-similar Gaussian random surfaces

We will prove the main theorems for a class of Gaussian random surfaces which include the
fractional Brownian surfaces as particular case. Let Cα be the class of centred Gaussian fields
h(r) on R

n satisfying the following properties:

• The increments h(r1) − h(r2) are (wide sense) stationary and isotropic, with correlation

C(r1, r2) := Eh(r1)h(r2)

and structure function

S(r1, r2) =: S(‖r1 − r2‖) = E|h(r1) − h(r2)|2.
• The structure function is asymptotically self-similar at small scales, that is

S(‖r1 − r2‖) = 2σ 2‖r1 − r2‖αϕ(‖r1 − r2‖) (3.16)

for some constants 0 < α < 2 and σ > 0 and a continuous positive bounded function ϕ

such that ϕ(0) = 1.
• The first two derivatives of ϕ satisfy:

|ϕ′(r)| � const ×
∣∣∣∣ϕ(r)

r

∣∣∣∣ |ϕ′′(r)| � const ×
∣∣∣∣ϕ(r)

r2

∣∣∣∣ r > 0. (3.17)

The parameter σ in (3.16) is a vertical dilation parameter and the factor 2 is introduced for
convenience. A finite non-zero value for ϕ(0) expresses the asymptotic self-similarity of
the surface at small scales. Finally, the requirement (3.17) on the derivatives of ϕ is a non-
oscillating condition for the correlation function. Isotropic fractional Brownian motion (fBm)
on R

n is paradigmatic of the class Cα , and is obtained for ϕ = 1. Stationary processes with
covariance of the form,

C(r1, r2) = F(‖r1 − r2‖α)

where F is twice differentiable, are another instance of the class Cα (a usual example is the
Weilbulian covariance Eh(r1)h(r2) = exp(−‖r1 − r2‖α). Another example can be found
in the family of 1/f processes, i.e. stationary processes whose power spectrum �(ξ) has an
asymptotic power-law: �(ξ) ∼ ‖ξ‖−α−1, ‖ξ‖ → ∞.

3.2. The graph measure

Let again μ be the graph measure associated with a realization h of a process in class Cα . We
will prove the following theorem.

Theorem 3.1. Let h be a version of a process in class Cα over R
n with continuous trajectories.

Let μ be the graph measure associated with each trajectory. Then the upper and lower
correlation dimensions of μ are random variables, which almost surely are the following
constants:

d±
c [μ] = n + 1 − α/2.

Proof. Let X(ε) be the correlation integral (2.2) associated with μ. By definition of the
measure μ we have4

X(ε) =
∫

Rn×Rn

dr2χ(r1)χ(r2)H(ε2 − (‖r1 − r2‖2 + |h(r1) − h(r2)|2)) (3.18)

4 Here and everywhere we will use the short-hand notation drm := dr1..drm for a multiple integral.
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and thus

EX(ε) =
∫

Rn×Rn

dr2χ(r1)χ(r2) Proba[‖r1 − r2‖2 + |h(r1) − h(r2)|2 � ε2].

Now the increment h(r1) − h(r2) is a centred Gaussian process with p.d.f:

p(r1, r2; u) := p(‖r1 − r2‖; u) = 1√
2πS(‖r1 − r2‖)

exp

(
− u2

2S(‖r1 − r2‖)
)

(3.19)

and thus

EX(ε) =
∫

dr2H(ε − ‖r1 − r2‖)χ(r1)χ(r2)U(‖r1 − r2‖; ε) (3.20)

where we have introduced the kernel:

U(r; ε) = Erf

⎛⎝√
ε2 − r2

2S(r)

⎞⎠ (3.21)

and the error function:

Erf(r) := 2√
π

∫ r

0
dt e−t2

r � 0. (3.22)

In view of the inequality

χ(2(r1 − r2))χ(2(r1 + r2)) � χ(r1)χ(r2) � χ

(
r1 − r2

2

)
χ

(r1 + r2

2

)
(3.23)

this implies:

EX(ε) �
∫

dr2H(ε − ‖r1 − r2‖)χ(2(r1 − r2))χ(2(r1 + r2))U(‖r1 − r2‖; ε)

EX(ε) �
∫

dr2H(ε − ‖r1 − r2‖)χ
(

r1 − r2

2

)
χ

(r1 + r2

2

)
U(‖r1 − r2‖; ε).

With the change of variables (r1, r2) → (r1 − r2, r1 + r2) we obtain for ε < 1/2 (sn is the
surface of the unit sphere in R

n):

EX(ε) �
∫

drH(ε − ‖r‖)U(‖r‖; ε)χ(r/2) = snε
n

∫ 1

0
dr rn−1U(εr; ε)

= snε
n

∫ 1

0
dr rn−1 Erf

⎛⎝ε1−α/2

√
1 − r2

2rαϕ(εr)

⎞⎠
� snε

n

∫ 1

0
drrn−1 Erf

⎛⎝ε1−α/2

√
1 − r2

2ϕ1rα

⎞⎠
and similarly

EX(ε) � sn4−nεn

∫ 1

0
dr rn−1 Erf

⎛⎝ε1−α/2

√
1 − r2

2ϕ2rα

⎞⎠
where ϕ1 = min[0,1] ϕ(t) > 0 and ϕ2 = max[0,1] ϕ(t) > 0. From the global estimation
Erf(x) = 2/

√
π + O(x3) we obtain the asymptotic behaviour:

EX(ε) ∼ εn+1−α/2. (3.24)
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Next we show that the standard deviation decreases faster than the mean. From (3.18) we
have

(EX(ε))2 =
∫

dr4χ(r1)χ(r2)χ(r3)χ(r4)U(‖r1 − r2‖; ε)U(‖r3 − r4‖; ε)

EX2(ε) =
∫

dr4χ(r1)χ(r2)χ(r3)χ(r4)U(r1, r2, r3, r4; ε)

where we have introduced the kernel U(r1, r2, r3, r4; ε):

Proba[‖r1 − r2‖2 + |h(r1) − h(r2)|2 � ε2, ‖r3 − r4‖2 + |h(r3) − h(r4)|2 � ε2]. (3.25)

Note that the effective domain of integration in the above integrals is reduced to a region
‖r1 − r2‖ < ε, ‖r3 − r4‖ < ε, as follows clearly from the definition of the kernel U.

To estimate the kernel we need the p.d.f of the Gaussian vector (u = h(r1) − h(r2), u
′ =

h(r3) − h(r4)):

p(r1, r2, r3, r4; u, u′) = 1

2π
exp

(
− 1

22
(u2s ′2 + u′2s2 − 2ρss ′uu′)

)
with simplified notation:

s2 = S(‖r1 − r2‖) s ′2 = S(‖r3 − r4‖)
ss ′ρ = E[h(r1) − h(r2)][h(r3) − h(r4)] 2 = s2s ′2(1 − ρ2).

Then by definition of (3.25)

U(r1, r2, r3, r4; ε) =
∫ +

√
ε2−‖r1−r2‖2

−
√

ε2−‖r1−r2‖2
du

∫ +
√

ε2−‖r3−r4‖2

−
√

ε2−‖r3−r4‖2
du′p(r1, r2, r3, r4, u, u′).

Now the p.d.f can be factorized as

p(r1, r2, r3, r4; u, u′) = 1√
2π

s


p(r1, r2; u) exp

(
− 1

22
(su′ − ρs ′u)2

)
where p(r1, r2; u) is the p.d.f (3.19), so the kernel U(r1, r2, r3, r4; ε) may be rewritten as∫ +

√
ε2−‖r1−r2‖2

−
√

ε2−‖r1−r2‖2
du

1√
2π

s


p(‖r1 − r2‖; u)

∫ +
√

ε2−‖r3−r4‖2

−
√

ε2−‖r3−r4‖2
du′ exp

(
− 1

22
(su′ − ρs ′u)2

)
which in view of the inequality in lemma 4.2 yields

U(r1, r2, r3, r4; ε) � U(‖r1 − r2‖; ε)Ũ(r1, r2, r3, r4; ε)

with a modified kernel:

Ũ (r1, r2, r3, r4; ε) = Erf

(√
s2(ε2 − ‖r3 − r4‖2)

22

)
.

Since

Var X(ε) =
∫

dr4 [U(r1, r2, r3, r4; ε)

−U(‖r1 − r2‖; ε)U(‖r3 − r4‖; ε)] χ(r1)χ(r2)χ(r3)χ(r4)

we thus have

Var X(ε) �
∫

dr4U(‖r1 − r2‖; ε)U(‖r3 − r4‖; ε)

×U(r1, r2, r3, r4; ε)χ(r1)χ(r2)χ(r3)χ(r4)
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with

U(r1, r2, r3, r4; ε) = Ũ (r1, r2, r3, r4; ε) − U(‖r3 − r4‖; ε)

U(‖r3 − r4‖; ε)
.

To estimate this quantity we introduce the function:

f (τ) := Erf

(√
τ(ε2 − ‖r3 − r4‖2)

2

)
for which we observe that

f (s/) = Ũ (r1, r2, r3, r4; ε) � f (1/s ′) = U(r3, r4; ε).

Applying the mean value theorem to f and noting that it has a decreasing derivative we obtain
the following estimation:

U(r1, r2, r3, r4; ε) �
∣∣∣∣ ss ′


− 1

∣∣∣∣ sup
t>0

t e−t2

Erf(t)
� const × ρ

1 − ρ
.

Since ρ is not bounded away from 1 we have to distinguish two domains. For any 0 < β < 1
we define two complementary domains Dε and Dc

ε by

Dε = {(r1, r2, r3, r4) ∈ (Rn)4 : ‖r1 − r2‖ < ε, ‖r3 − r4‖ < ε, ‖r1 − r3‖ < εβ}
Dc

ε = {(r1, r2, r3, r4) ∈ (Rn)4 : ‖r1 − r2‖ < ε, ‖r3 − r4‖ < ε, ‖r1 − r3‖ > εβ}.
On the domain Dc

ε we have ‖r1−r2‖+‖r3−r4‖
‖r1−r3‖ � 2ε1−β < 1 for ε small enough, so we may apply

the lemma 4.1 in the appendix:

ρss ′ � const × ‖r1 − r2‖‖r3 − r4‖‖r1 − r3‖−(2−α)

which in particular implies

ρ � const × ε(2−α)(1−β)

with a positive exponent. On Dε we use the simple fact that U(‖r3 − r4‖)U(r1, r2,

r3, r4; ε) � Ũ (r1, r2, r3, r4; ε) � 1, together with the uniform estimation:∫
dr2H(ε − ‖r3 − r4‖)H(εβ − ‖r1 − r3‖)χ(r3)χ(r4) � const × εn(1+β).

Altogether this yields:

Var X(ε) � const × εn(1+β)
EX(ε) + const × ε(2−α)(1−β)

E
2X(ε) � const × εν

E
2X(ε) (3.26)

with ν = min{nβ + α/2 − 1, (2 − α)(1 − β)}. Now we can chose the optimal β. A direct
computation shows that the optimal exponent is

sup
0<β<1

ν = (2n − 2 + α)(1 − α/2)

n + 2 − α
> 0.

We conclude with a standard argument using Tchebyshev inequality and Borel–Cantelli lemma
that X(ε) ∼ EX(ε) a.s. as ε → 0. In view of (3.24) this completes the proof. �

3.3. The projected measure

Let us now prove theorem 2.3 for asymptotically self-similar processes.

Theorem 3.2. Let h be a version of a process in class Cα over R
n with continuous trajectories.

For fixed v(k, q) ∈ R
n+1 let μv be the projection of the graph measure along v⊥ associated

with each trajectory. Then we have

Ed±
c [μv] = 1.
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Proof. The proof is very similar to that of theorem 3.1 so we will make it short. Let X(ε) be
the correlation integral (2.2) associated with μv . To pick a point uniformly according to the
measure μv , we pick a point r uniformly on the unit ball of R

n and form k · r + qh(r). We
thus have

X(ε) =
∫

Rn×Rn

dr2χ(r1)χ(r2)H(ε − |k · (r1 − r2) + q(h(r1) − h(r2))|). (3.27)

Similar calculations as previously yield

EX(ε) =
∫

dr2χ(r1)χ(r2)

[
Erf

(
ε − k · (r1 − r2)√

2S(r1 − r2)

)
− Erf

(−ε − k · (r1 − r2)√
2S(r1 − r2)

)]
.

It is easy to check that the above function is differentiable with respect to ε > 0, with a finite
derivative in zero. This shows that

EX(ε) ∼ ε ε → 0. (3.28)

Now from Jensen’s inequality we have

log EX(ε) � E log X(ε)

which, combined with (3.28), implies Ed±
c [μv] � 1. Since 1 is the maximum reachable value

for a one-dimensional probability measure, this implies the stated result. �

Remark. A correlation integral similar to (3.27) has been considered in [18] for R
d -valued

(d � 1) random processes over R and for k = 0. Specializing the results of this paper to
d = 1 and to fractional Brownian motion one obtains dc = 1 almost surely.

Theorem 3.3. Under the same conditions as theorem 2.3 let μv be the projection of the graph
measure perpendicular to a direction v = (k, q). Then we have

lim
a→∞

sup
inf

E|μ̂v(a)|2
log(1/a)

= 2n/α. (3.29)

As a consequence, the projected measure has a non-trivial wavelet correlation dimension in
the sense that:

Ed±
w [μv] � n(2/α − 1).

Proof. To establish the result we will use the relation μ̂v(a) = A(ak, aq). Let us estimate
EI (ak, aq) with

I (k, q) := |A(k, q)|2 =
∫

Rn×Rn

dr2χ(r1)χ(r2) eik · (r1−r2)+iq(h(r1)−h(r2)).

The mathematical expectation can be expressed using the characteristic function of the
increments:

E exp(iq[h(r1) − h(r2)]) = exp

(
−q2

2
S(r1 − r2)

)
leading to

EI (ak, aq) =
∫

Rn×Rn

dr2 eiak · (r1−r2) exp

(
−a2q2

2
S(r1 − r2)

)
χ(r1)χ(r2).

Let us decompose this expression in

EI (ak, aq) = EI (0, aq) +
∫

Rn×Rn

dr2(eiak · (r1−r2) − 1)

× exp

(
−a2q2

2
S(r1 − r2)

)
χ(r1)χ(r2)
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and start with the evaluation of the first term on the right-hand side. Using (3.23) again and
performing the change of variables (r1, r2) → (r1 − r2, r1 + r2) we obtain

4−n

∫
Rn

dr exp

(
−a2q2

2
S(r)

)
χ(2r) � EI (0, aq) �

∫
Rn

dr exp

(
−a2q2

2
S(r)

)
χ(r/2).

The above integrands are radial functions and thus we also have

4−nsn

∫ ∞

0
rn−1 exp

(
−a2q2

2
S(r)

)
χ(2r) � EI (0, aq)

� sn

∫ ∞

0
rn−1 exp

(
−a2q2

2
S(r)

)
χ(r/2)

where sn is the surface of the unit sphere in R
n. Using the asymptotic behaviour S(r) ∼ rα

we obtain after straightforward calculations:

EI (0, aq) ∼ a−2n/α.

The contribution of the remaining term can be estimated with the same change of variables as
previously, leading to

a2n/α|EI (ak, aq) − EI (0, aq)| � a1−2/α a → ∞.

Since 2/α > 1, this shows (3.29). The second part of theorem is a consequence of
definition (2.11) and Jensen’s inequality log E

∫
I (ak, aq) � E log

∫
I (ak, aq). �

Appendix. Technical lemmas

Lemma A.1. Let h be a process in the classCα and 0 < θ < 1. Then for ‖r1−r2‖+‖r3−r4‖ �
θ‖r1 − r3‖ we have

|E(h(r1) − h(r2))(h(r3) − h(r4))| � const × ‖r1 − r2‖‖r3 − r4‖‖r1 − r3‖α−2.

Proof. Introducing the correlation function we can write:

E(h(r1) − h(r2))(h(r3) − h(r4)) = C(r1, r3) + C(r2, r4) − C(r1, r4) − C(r2, r3)

=
∫ ‖r2−r1‖

0
du

∫ ‖r3−r4‖

0
dv ∂u∂vC(r1 + ua, r3 + vb)

with

a = r2 − r1

‖r2 − r1‖ b = r3 − r4

‖r3 − r4‖ .

Now

∂u∂vC(r1 + ua, r3 + vb) = ∂u∂vS(R(u, v)) = (∂u∂vR)S ′(R) + (∂uR∂vR)S ′′(R)

with R(u, v) = ‖r1 − r3 + ua − vb‖, and a straightforward calculation shows that

R

∣∣∣∣∂u

∂v

R(u, v)

∣∣∣∣ � |u| + |v| + ‖r1 − r3‖ R|∂u∂vR(u, v)| � 1 +
|u| + |v| + ‖r1 − r3‖

R2(u, v)
.

By hypothesis ‖ua − vb‖ � |u| + |v| � θ‖r1 − r3‖ which entails

R ∼ ‖r1 − r3‖ ∂uR ∼ 1 ∂vR ∼ 1 ∂u∂vR ∼ 1/‖r1 − r3‖.
On the other hand it follows from (3.17) that

|S ′(r)| � const × rα−1 |S ′′(r)| � const × rα−2

12



and thus

|∂u∂vC(r1 + ua, r3 + vb)| � const × ‖r1 − r3‖α−2.

The conclusion follows from the mean value theorem. �

Lemma A.2. For all a > 0 and b in R the following inequality is satisfied:

F(a, b) := 2√
π

∫ a

−a

exp(−(t − b)2) dt � 2 Erf(a) := 4√
π

∫ a

0
exp(−t2) dt.

Proof. Consider two cases. First suppose |b| < a. Then by a simple change of variables:

F(a, b) = Erf(a − b) + Erf(a + b) � 2 Erf(a)

where the concavity of the error function on R
+ has been invoked for the last inequality. In

the alternative case |b| � a we have

F(a, b) = Erf(|b| + a) − Erf(|b| − a).

Now the function x �→ fa(x) = Erf(x + a)−Erf(x − a) has a negative derivative on [a, +∞)

and therefore reaches its maximum at x = a. Thus

sup
|b|�a

F (a, b) = Erf(2a) � 2 Erf(a).

This proves the lemma. �
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