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Determination of the phase of the diffracted field
in the optical domain
Application to the reconstruction of surface profiles

Nathalie Destouches, Charles-Antoine Guérin, Michel Lequime,
Hugues Giovannini

1. Introduction

Diffraction is known to be a powerful method
for the non-destructive and remote characterisa-
tion of targets. Indeed, measuring both amplitude
and phase of the field diffracted by an object, gives
precious information on its optogeometrical pa-
rameters such as its permittivity distribution or its
shape. This technique is used, for example, in the
radiofrequency domain to solve deterministic prob-
lems like the reconstruction of surface profiles or
embedded objects [1]. In principle this method can
be applied to any range of frequencies, depending

on the size of the target. However, as an inter-
ferometric apparatus is required, determining the
phase of the field in the optical domain is a difficult
task. For this reason, most efforts have been de-
voted to the study of the diffracted intensity pat-
tern. Although this information gives access to
the second order (spectral density) statistical prop-
erties of the diffracting structure [2], the inverse
deterministic problem when not using an optimi-
sation method [3,4] requires phase measurements
of the diffracted field.

The problem of detecting the phase of the field
diffracted by an object has been addressed for dif-
ferent kind of applications. For example for chemi-
cal sensing applications that require the detection
of small variations of permittivity, interferome-
tric configurations have been proposed in order
to measure the phase of the reflected beam near
the electromagnetic resonances [5,6]. To separate



surface contribution and volume contribution to
electromagnetic scattering, angle-resolved ellipso-
metric scatterometers have been developed [7,8]. In
this case the polarimetric phase of the scattered
field is measured. An experimental configuration
[9] has recently been proposed to directly measure
both amplitude and phase in a scanning near-field
optical microscope [10]. The underlying principle is
interference between a probe beam and a reference
beam. However, extending this technique to far-
field measurements is not straightforward. Indeed,
in this case, accurate thermal and mechanical sta-
bilisation is needed.

In this paper we present an experimental set-up
which gives access, within the validity of Kirchhoff
approximation, to the phase of the diffracted field
in the incidence plane. The crucial advantage of
our solution is its insensitivity to mechanical drifts
or thermal fluctuations. We show that our tech-
nique can be used for reconstructing profiles of
rough surfaces with a straight inversion of the ex-
perimental data i.e. without using any optimisation
method. We illustrate this result by considering the
particular case of periodic surfaces.

2. Principle of measurement

The principle of phase measurement of the field
diffracted from a rough interface between two
homogeneous media lies in the coherent mixing of
two beams coming from the same laser source
which overlap on the sample surface. The inci-
dence angles of the two beams can be chosen in-
dependently as well as the observation direction of
the scattered field. In a given direction, this scat-
tered field results from the interference between the
speckle patterns produced by the two incident
beams. The phase information is measured by
means of a synthetic heterodyne detection scheme.
A photodetector rotating around the sample per-
mits one to record the angular variations of the
phase in the incidence plane. The phase is mea-
sured with respect to a reference signal given by
a fixed detector. Light from a helium-neon laser
(4 =633 nm) is divided into two beams with the
use of a beam splitter. The beams form the two
arms of the interferometer (see Fig. 1). Light in
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Fig. 1. Schematic of the experimental set-up. The detectors, the
optical fibre and the grating can rotate around the same vertical
axis.
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one arm is coupled in a polarisation-maintain-
ing optical fibre. The end of the fibre can rotate
around the sample and the collimated output beam
illuminates the sample. The other beam, which lies
in the same plane as the former, passes through an
electro-optic phase modulator (EOPM). The two
beams of the interferometer are superimposed on
the surface of the sample. Introducing an optical
path delay allows one to set the optical path dif-
ference between the two arms of the interferometer
to a value which is smaller than the coherence
length of the source. The direction of polarisation
of the incident light can be switched from TE to
TM by rotating simultaneously the polariser, the
EOPM and the optical axis of the fibre. An optical
density is used to vary the intensity balance be-
tween the two beams overlapping on the sample
surface. Rotating the sample around a vertical axis
can vary the incidence angles of the two incident
beams.

A saw-tooth voltage modulation whose ampli-
tude corresponds to a 27 phase shift is applied
to the EOPM. Thus the interference signals ob-
tained in all directions of space have a sine shape in
time. In direction 0 the scattered intensity can be
written as:



1(0) = [0, 1)) + L(0,15) + 2/1,(0,i))1(0, i)
x cos[p(0,i1) — @(0,ir) + ¢o(t) +AL], (1)

where i; and i, are the incidence angles of beams 1
and 2, respectively. ¢(0,i;) and ¢(0,i,) are the
phase shifts of the respective beams resulting from
scattering from the surface sample in direction 6.
¢o(¢) is the saw-tooth signal generated by the
EOPM. The optical density is chosen in order to
maximise the modulation amplitude of the inter-
ference signal recorded on the reference detector.
Phase difference A¢ corresponds to the phase delay
between the two incident beams, accumulated
from the beam splitter to the sample surface. Ob-
viously, any mechanical drift and any thermal
fluctuation in the set-up, which affects the optical
path delays of the two incident beams, causes A¢
to vary, making the measurement of 7/(#) highly
unstable. In order to avoid any complex stabili-
sation procedure, we propose a configuration with
two measurement channels. The two outputs are
processed to form a signal which is independent of
A&

The two photodetectors placed in scattering
directions 6 and ¢, are connected to a lock-in
amplifier working in the phase detection mode.
The measured phase ¢ is given by:

d=00,i1) —0,i) —,i)) + o0 ,i)  (2)

which is independent of A¢ and thereby insensitive
to instabilities in the set-up. Away from plasmon
anomalies [11], when working at nearly normal
incidence, for small emergence angles and within
the domain of application of Kirchhoff approxi-
mation (for theoretical developments see Section
3) ¢ can be written as follows (¢ can be written a
function of ¢, ¢, 0, and o,):

¢ =¢(c—01) —¢(cd—02) —¢p(d' — 1) + ¢(d' — 02),
3)
where ¢ = (2n/2)sinf, ¢’ = (2n/2)sin6, ¢, = (2n/
A)sini; and o, = (2%/2) sin i,.
For ¢’ fixed and varying angle 0, if i; and i, are
such as g, — o; = Ao the term ¢, given by:

b, = p(nAa) — ¢[(n — 1)Ad] — ¢(CAog)
+¢[(C = 1Ad], 4)

where C is such as ¢ — o, =CAo, 0y — 0, =
Ac and ¢ — 6; = nAo, can be calculated for all
n € [-N/2;N/2]. The discrete integration of phase
terms ¢, permits one to determine the phase shift
¢, = ¢(nAc) corresponding to a scattering angle
0, = arcsin((1/2n)nAc), to within a linear drift.
However, as we will see, this drift has no influence
on the reconstruction. Thus we can obtain the
phase of the diffracted field at angles 0,, the an-
gular sampling rate being arbitrarily small.

When the sample is illuminated by only one
incident beam, the set-up is equivalent to a clas-
sical angle-resolved scatterometer. For a fixed
angle of incidence i}, the intensity can be measured
as a function of 6 (of ¢) and the complex ampli-
tudes of the optical waves scattered in the inci-
dence plane can be determined.

3. Profile reconstruction

Our set-up gives access to the value of the
complex amplitude of the diffracted field in the
incidence plane. We have applied our method of
measurement to the problem of profile recon-
struction. For the sake of simplicity, experiments
have been performed with two metallic gratings.
The samples are aluminium ruled gratings with
150 grooves/mm by Jobin-Yvon and with a grating
height # < 200 nm. With these characteristics the
grooves are shallow enough to ensure the validity
of Kirchhoff approximation. Notice that, in nor-
mal incidence, 21 orders are diffracted from the
gratings at wavelength A = 0.633 pum. Detectors
are silicon photodiodes working in photovoltaic
regime placed in order to intercept the diffracted
orders of interest. Measurements have been made
by varying 0 (and then o) in all diffracted orders
with Ag = (2n)/d (see Eq. (4)) where d is the
grating period. Incidence angles i, and i, angles are
chosen in order to avoid plasmon resonances that
can occur with metallic surfaces illuminated in TM
polarisation. This can be checked by measuring
beforehand the reflectivity of the grating as a
function of the angle of incidence.

For the reconstruction of the profile from the
scattered field, the physical optics (Kirchhoff) ap-
proximation has been used. The latter is known to



be valid at non-grazing incidences for surfaces that
are “smooth” on the scale of the wavelength. This
goes for surfaces whose radius of curvature is
much greater than the wavelength (see e.g. Ref.
[12] for a thorough discussion). For 1D perfectly
conducting surfaces, if 0 designates the scattering
angle and i designates the incidence angle, the
scattered amplitude in the Kirchhoff approxima-
tion can be written as:

S(0,7, ) = Ao (0, ) % / expl—i(o — o)
—J(B = B)f (x)]dx, (5)

where f = (2n/4)cos 0, f; = (2n/A) cosi and 4, is
an optical factor depending on the polarisation.

Note that in the case of an echelette grating, the
Kirchhoff approximation is not valid near the
edges. However, since the grating period is much
greater than the wavelength, we will neglect the
edge diffraction. We will also assume the grooves
to be too shallow to cause multiscattering phe-
nomena. These two assumptions ensure the va-
lidity of the Kirchhoff approximation. Working at
normal incidence and small emergence angles, one
has cosi~cosf =~ 1, so that the Kirchhoff ap-
proximation is reduced to the Fourier transform of
the exponentiated profile (Fraunhofer approxi-
mation):

S(0,1) % /exp [—j(a —o)x— j47nf(x) dr.

Then

exp | i ()| = Is(0.0) )

Thus, the profile inversion is obtained from a
bare inverse Fourier transform of the diffracted far
field. Note that Eq. (7) shows that the modulus of
the inverse Fourier transform of S(6,i) is equal
to 1. This can be used to verify the accuracy of
the experimental results. In principle there exist a
more accurate procedure for profile retrieval for
the Kirchhoff approximation [13], but we found it
hardly tractable at the experimental level since it
requires simultaneous variations of the incidence
and emergence angles.

4. Numerical study
4.1. Validity of the approximation used

In order to check numerically the validity of
the approximation used, we have compared dif-
ferent initial profiles to those reconstructed from
Eq. (7). For the comparison, the complex ampli-
tudes S(0,7) have been calculated with a rigorous
method based on the differential formalism [14,15].
The comparison has been drawn for an echelette
profile and for a sinusoidal one. For the echelette
profile the blaze angle « was chosen as o = 3° and
the depth as # = 348 nm. The depth of the sinu-
soidal profile is # = 300 nm. Fig. 2(a) shows the
results obtained for these two particular cases. One
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Fig. 2. (a) Comparison between the grating profiles and the
reconstructed profiles: # =300 nm for the sine profile and
h =348 nm and o = 3° for the echelette profile, d = 6.67 um
(150 grooves/mm), normal incidence. For the numerical calcu-
lations of the amplitudes of the diffracted orders, the refractive
index of the grating was set to n = 1.2 + 4.5j which is close to
that of aluminium. (b) Modulus of the Fourier transform as a
function of the same abscissa x.
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Fig. 3. Numerical simulation: root mean square distance be-
tween the grating profile and the reconstructed profile as a
function of grating’s depth /. Note that for the echelette grating
the apex angle remains equal to 90° and the blaze angle in-
creases with the grating’s depth.

can see that with this value of & both profiles
can be determined accurately. Nevertheless, as ex-
pected (see Section 3), a slight disagreement is
obtained near the edges of the echelette profile.
One can notice (Fig. 2(b)) that a disagreement
between the reconstructed profile and the initial
one leads the modulus of the inverse Fourier
transform to be different from unity. Thus, study-
ing this modulus gives precious information about
the accuracy of the result. Fig. 3 gives the mean
distance ((1/N) > |Aini(x;) — hrec(x:)|) between the
initial profile (echelette or sinusoidal) and the one
determined from Eq. (7), as a function of the
grating’s depth. One can see that an error less than
3 nm is obtained for values of 4 < 300 nm.

4.2. Influence of the errors of measurement

We have also checked the stability of the re-
construction method of the inversion in relation to
the experimental noise. We have successively in-
troduced, on the numerical data, a 5° phase ran-
dom noise and a 5% random noise on the modulus
of S(6,i). Fig. 4 shows the root mean square dif-
ference between the initial profile (echelette or si-
nusoidal) and the one determined from Eq. (7).
One can see that such noises lead to a mean error
smaller than 2 nm on the surface profile. This re-
sult shows the robustness of the inversion method
used.
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Fig. 4. Influence of the errors of measurement: The parame-
ters of the gratings and the values of S(6,i) determined by
a rigorous method of computation are the same as those of
Fig. 6.

5. Experimental results

The arrangement of the optical experiment is
shown in Fig. 5. Fig. 6 gives the comparison of the
profiles as measured by atomic force microscopy
(AFM) and the profiles obtained after reconstruc-
tion. AFM measurements of the surfaces have been
performed with a contact tip on a 50 um? area,
with a sampling interval of 166 nm. The AFM
curves drawn in Fig. 6 are the mean profiles along
the invariance direction. In the optical experiment
the beam size was 6 mm?. For both gratings the

Incident
beam 1

Incident
beam 2

I
Grating

Fig. 5. Experimental arrangement: DR is the (fixed) reference
detector (0 = 24.02°). The second detector (DM) is rotated in
order to intercept the diffracted orders of interest. Incidence
angles i/; and i, are chosen so that orders diffracted by the
grating are superimposed (i = 1.57°, i = 7.02°). For conve-
nience we do not represent all diffracted orders.
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Fig. 6. Experimental results: profile of the diffraction grating
along two periods. The results obtained from phase measure-
ments (circles) are compared to those given by AFM mea-
surement (cross). Dotted line is the result of the reconstruction
when the phase of S(0,1) is set to a random value. (a) Echelette
grating and (b) sinusoidal grating.

optical experiment was performed by rotating one
detector in order to successively intercept all the
diffracted orders. This means that n € [—10, 10] (see
Eq. (4)). The grating’s height is about 200 nm for
the echelette grating and the defects of ruling are
clearly visible. The mean distance between the re-
sult obtained by AFM and the reconstructed pro-
file is less than 7 nm. The height of the sinusoidal
profile is about 60 nm and the mean distance be-
tween curves is 2.5 nm. In the reconstruction pro-
cedure the gratings’ profiles are assumed to be
invariant within the beam area. The discrepancy
between the AFM data and the reconstructed
profiles can be attributed to the partial validity of
this assumption. Note that the same results are
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Fig. 7. Modulus of the Fourier transform of S(0,i) experi-
mentally obtained: Squares are relative to echelette profile and
triangles are relative to sinusoidal profile.

obtained for TE and TM polarisations. This con-
firms the validity of the scalar approximation used.

To show the necessity of measuring the phase in
reconstruction problems, the inversion has been
performed by replacing the measured phases with
a random phase (dotted lines in Fig. 6(a) and (b)).
The profiles obtained this way do not have the
same shape as the AFM-measured profiles. The
necessity of measuring the phase is more clear in
the case of a sinusoidal profile. For the echelette
profile the reconstructed profile resembles how-
ever to an echelette profile, which is a generic
phenomenon when efficiency in one order is very
strong. Indeed, this implies a quasi-linear phase for
the exponentiated profile. Fig. 7 gives the modulus
of the Fourier transform (see Eq. (7)) of the ex-
perimental values of S(0,i). Following the remark
of Section 4 these results confirm the accuracy of
the experimental data.

6. Conclusion

We have shown the possibility of measuring
the phase of the diffracted field with an interfero-
metric set-up insensitive to instabilities. The an-
gular phase information, which is obtained from
a small number of measurements, can be used for
reconstructing grating profiles. The inversion
method described can be generalised to the case of
rough surfaces whose optogeometrical parameters
are so that Kirchhoff approximation can be used.
Dielectric surfaces may also be studied with a suit-
able theory.



References

[1] S. Bonnard, M. Saillard, P. Vincent, J. Opt. A 1 (1999) 566.

[2] J.M. Elson, J.P. Rahn, J.M. Bennet, Appl. Opt. 19 (1980)
669.

[3] A. Roger, D. Maystre, J. Opt. Soc. Am. 70 (12) (1980)
1483.

[4] A. Roger, M. Breidne, Opt. Commun. 35 (3) (1980) 299.

[5] S.G. Nelson, K.S. Johnston, S.S. Yee, Sensors Actuators B
35-36 (1996) 187.

[6] P.I. Nikitin, A.A. Beloglazov, V.E. Kocherin, M.V. Vale-
iko, T.I. Ksenevich, Sensors Actuators B 54 (1999) 43.

[7] C. Deumié, H. Giovannini, C. Amra, Appl. Opt. 35 (28)
(1996) 5600.

[8] T.A. Germer, Phys. Rev. Lett. 85 (2000) 349.
[9] P.L. Phillips, J.C. Knight, J.M. Pottage, G. Kakarantzas,
P.St.J. Russell, Appl. Phys. Lett. 76 (5) (2000) 541.
[10] D.W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44 (1984)
651.
[11] M.C. Hutley, D. Maystre, Opt. Commun. 19 (3) (1976)
431.
[12] J.A. Ogilvy, Theory of Wave Scattering from Random
Rough Surfaces, Adam Hilger, Boston, MA, 1991.
[13] R.J. Wombell, J.A. DeSanto, J. Opt. Soc. Am. A 8 (12)
(1991) 1892.
[14] F. Montiel, M. Neviere, J. Opt. Soc. Am. A 11 (1991)
3241.
[15] L. Li, J. Opt. Soc. Am. A 13 (1991) 1024.





