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Wavelet Analysis and Covariance 
Structure of some Classes of 

Non-Stationary Processes 

Charles-Antoine Guerin 

Communicated by C. Houdre 

ABSTRACT. Processes with stationary n-increments are known to be characterized by the stationarity of 

their continuous wavelet coefficients. We extend this result to the case of processes with stationary fractional 

increments and locally stationary processes. Then we give two applications of these properties. First, we 

derive the explicit covariance structure of processes with stationary n-increments. Second, for fractional 

Brownian motion, the stationarity of the fractional increments of order greater than the Hurst exponent is 

recovered. 

1. Introduction 

The aim of this paper is to present a unified approach to the wavelet analysis of some classes 
of non-stationary stochastic processes: processes with stationary n-increments, processes with sta­
tionary fractional increments, and locally stationary processes. We will give a characterization of 
each class in terms of continuous wavelet transform and then use this to derive some non-trivial 
second-order properties of these processes. 

The wavelet analysis of stochastic processes has been developed in the last decade, mainly 
in connection with self-similar processes like fractional Brownian motion: e.g., [10], [35], [24] 
for the continuous wavelet analysis, and [1], [40], [7], [8], [11], [25], [39], [42], [6], [20], [2] for 
the discrete wavelet transform. Recently, many correspondences have been established between 
the second-order [19], [5] and distributional properties [3] of a process and its continuous wavelet 
transform. In particular, a convenient characterization of processes with stationary nth-increments 
has been given: a process has stationary nth-increments if and only if its wavelet transform is 
stationary for a wavelet with n vanishing moments. We will extend these results to the processes 
with stationary fractional increments and locally stationary processes. 

The results of the present work can be summarized in the following way. A process has 
stationary fractional increments if and only if its wavelet transform is stationary (Theorem 4); a 
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process is locally stationary if and only if its wavelet transform is locally stationary (Theorem 6), 
where the analyzing wavelet has to be adapted to every case. As an application, we derive the explicit 
covariance structure of stationary nth increments (Theorem 3) and show that fractional Brownian 
motion with Hurst parameter H has stationary a-increments for a > H (Theorem 5). We have 
chosen to detail all the proofs which follow a logical order in the body of the paper and relegate all 
technical independent results to the appendices. 

Before entering the core of the paper, we give a brief overview of the different classes of 
processes we want to consider. 

Processes with Stationary n-Increments. Processes with stationary n-increments are perhaps the 
simplest class of processes with non-trivial non-stationarity and are often used for modelization in 
physics. Let X(t) be a complex-valued random process on JR. For any r E IR, we define the shift 
operator B, by 

B,X(t) = X(t- r) 

and the discrete differentiation operator A, by A, = 1 - B,. The nth difference operator A~ can 
be simply expressed by means of the Binomial coefficients 

(1.1) 

A process X(t) is said to have stationary nth increments ifforalls, t, r, r' the expectations IEA~X(s) 
and IEA~X(s)A~,X(s + t) exist1 and do not depend on s. As can be easily checked, this amounts 
to the following definition. 

Definition 1. A process X is said to have stationary nth increments if A~X is (wide sense) 
stationary for all r E JR. 

The main results for this class of processes were derived in the 1950s: Yaglom and Pinsker [ 43], 
[45], [44], [34], [33] established a spectral representation based on Khinchine theorem, while 
Gel'fand [15], [13] obtained an analogous result in the framework of generalized random pro­
cesses, using the spectral representation of conditionally positive definite generalized functions. 
Since then, the only extensions we are aware of are re-formulations of the spectral representation 
in the framework oflinear filtering theory [32] and semi-martingale representation [41]. A process 
with stationary nth increments can be written as 

I ( . ('~t)n-1) 
X(t) = e'~ 1 - 1- i~t · · ·- (~ _ 

1
)! df(~) + Yo + Y1t + .. Yntn , (1.2) 

where the Yj are random variables and Y is a process with orthogonal increments such that 

I ~2n 

1 + ~ 2n lE ldY(nl
2 

< oo. (1.3) 

To find the correlation IEX(s)X(t) we need to compute the integral 

I ( . ('~ )n-1) e* - 1 - i ~ s .. · - _z_s __ 
(n- 1)! 

. (i~t)n-l 
e1 ~1 - 1 - i~t · · · - lE ldY(~)I 2 

. 
(n- 1)! 

1 The symbol X stands for the complex conjugation. 



It is a convergent sum of divergent integrals, which makes it difficult to develop and reorder into 
different integrals. Furthermore, the interdependence of the 1 i and the spectral measure is not 
known. Therefore, it seems to us that the spectral representation is not very satisfactory, since it 
does not reveal the explicit structure of the covariance function and hence poorly describes the non­
stationarity. To circumvent the difficulty, we propose use of the wavelet characterization of such 
processes. Roughly speaking, the processes with stationary n-increments can have a polynomially 
diverging spectral density at zero [see formula (1.3)]. The wavelet analysis is a good tool to study 
such processes, since the wavelet transform removes the low-frequency content of a signal. This 
idea was used in [10] for a rigorous definition of a spectrum of fractional Brownian motion. 

Pro~esses with Stationary Fra~tional In~rements. Fractionally differentiated processes were 
introduced in [16] and [17] to construct the class of fractional ARIMA processes, which are a 
generalization of the classical ARIMA model with a fractional degree of differentiation and can 
exhibit long range correlations. Following [4], we define for any real number -1 < ot f{. N the 
fractional difference operator t.~ by 

00 

t.~ = (1- Br)a = I>J Bf, 
j=O 

where 

a a ru- ot) n k- 1- ot . 
rr0 = 1, rr1 = = , 1 = 1, 2 ... , 

f(j + l)r(-ot) 0 k . k 
< :;!;} 

and r is the Gamma function: 

r(x) =I 
fooo tx-Ie-'dt, 

00, 

x-1r(l +x), 

X> 0, 

X =0, 
X< 0. 

(1.4) 

The at-increments of a process X(t) are defined by t.~X(t), whenever this series makes sense. To 
motivate the study of the fractional increments, it is important to replace them in the context of 
times series. We can make time series out of X (t) and t.~ X by considering Xn = X (t = n) and 
t.a Xn = (t.~=l X)(t = n). A time series Xn is said to be ARIMA(O, ot, 0) if 

t.aXn = Zn, (1.5) 

where Zn is a white noise. Given Zn and lot! < 0.5, it is known [4] that there exists a unique stationary 
solution Xn to (1.5). A natural question might be whether there exists non-stationary solutions. This 
raises the problem of determining those non-stationary processes, discrete or continuous, which 
become stationary after fractional differentiation. This yields to the following definition. 

Definition 2. A process X has stationary at-increments if t.~X is (wide sense) stationary for all 
r eR 

Again the wavelet analysis will turn out to be a very efficient tool to characterize such processes. 

Lo~ally Stationary Pro~esses. Locally stationary processes were introduced by Silverman in [38] 
to describe physical systems whose statistical characteristics change slowly in time. A process is 
(wide sense) locally stationary if its covariance C(s, t) can be written in the form 

(s+t) (s-t) C(s,t)=m ..j2 y ..j2 , 



where y is a stationary covariance function (the factor 1/...ti is not in the original definition but we 
put it in for convenience, see Section 5). Note that the condition C(s, s) :::: 0 forces the function 
m to be non-negative. Furthermore, we can always assume that the covariance term is normalized, 
i.e., y(O) = 1. Locally stationary processes are very convenient to model non-stationarity because 
many properties of stationary processes can be translated to them [28], [26], [27]. This is why they 
can be successively characterized with the help of the wavelet transform by adapting the method 
developed for stationary processes. Note that recently a different and less restrictive notion of local 
stationarity has been introduced by means of orthogonal wavelets (see, e.g., [22] and references 
therein). However, we will restrict ourselves to the definition of Silverman, which is more tractable 
in the context of continuous wavelet analysis. 

2. Hypothesis and Definitions 

Hypothesis on the Processes. We consider a complex-valued measurable random process (X(t), 
t e IR) on some probability space (0, :F, P). The dependence on w e n will always be implicit 
and the stationarity throughout will be understood in the wide sense. Further, the process will be 
mean-square continuous (m.s continuous), which, as it is well known, is equivalent to assuming the 
continuity of the covariance function in its two variables. We will denote by M(t) and C(s, t) the 
mean and covariance of the process, respectively, 

M(t) - IEX(t), 

C(s, t) - IEX(s)X(t)- IEX(s)JEX(t). 

To be able to define the wavelet transform, we will assume the following growth restriction on the 
second moment function: 

This implies in particular that the variance and the mean are polynomially bounded. Note that this 
condition is automatically satisfied if the process has nth stationary increments, as can easily be 
shown. 

Some Functional Spaces. Following the usual convention, we denote V(!Rn) the space of complex­
valued C00 functions on !Rn with compact support and S(!Rn) the space ofSchwartz functions on !Rn, 
that is the C00 functions </J which are, together with their derivatives, rapidly decreasing at infinity: 

sup lx!la' .. lxnla" lvf' .. D~•</J (XJ, . . xn)l < oo for all t¥j, ~i EN. 
(xt, .. x0 )eR.• 

We will use the notation D for the distributional derivative on lR and Ds and D1 for the partial 
distributional derivatives on JR2 . The dual V' (!Rn) is the space of generalized functions and S' (!Rn) 
the space of tempered distributions on !Rn. Under our assumptions, the covariance function C(s, t) 
can be considered as a distribution inS' (IR2). We use the notation 4J for the Fourier transform of a 
function </J in S(lRn), 

:j;(;I, ... ;n) = (2n)-n/2 f e-i(~txt+--~nxnlcj>(XI, .. ,Xn)dxt .. dXn' 

and the same notation for the Fourier transform of tempered distributions,/1(</J) = J.L(4J), the distinc­
tion being clear from the context. The term "measure" will always refer to Borel measures on !Rn 
assuming finite mass on compact sets, which can be identified with distributions of order 0 in V' (!Rn). 



IfameasureJ.L is of tempered growth, i.e., j(I + llxll1)-1d IJ.Ll < ooforsome/ > 0, then it can also 
be identified with a distribution of orderO in S'(IR), that is such that IJ.L(cp )I :=: K 11 (l + llx 11

1)cp(x) IL"' 
for all cp E S(IR). In the following, we will frequently make use of approximate identities, whose 
definition we recall hereafter. 

Definition 3. An approximate identity in S'(IRn) is a family of functions c/Ja(x) = a-1cp(a-1x) 
with cp E S(IRn) and J cp = I. If in addition cp E V(IRn) and cp > 0, then c/Ja is an approximate 
identity in V' (IRn). 

If c/Ja is an approximate identity in S'(IRn), it is well known (see, e.g., [12]) that for any 
Y, E S(IRn) and F E S'(IRn), c/Ja * Y, ~ Y, in S(!Rn), and c/Ja * F ~ Fin S'(IRn). If c/Ja is 
an approximate identity in V' (IRn), the analogous statement holds in the topologies of V(IRn) and 
V' (IRn). If Y, is only a continuous tempered function and cp is either in S(IRn) or V(!Rn), then we 
have rl>a * Y, ~ Y, for the pointwise convergence. 

Wavelet Transform of Random Processes. For all (b, a) E !Rn x JR+, we will adopt the following 
notation for the symmetric, resp. dilated, resp. dilated and translated version, of a function g on !Rn: 

_ 1 (x) 1 (x-b) g(x) = g(-x), ga(x) = -g - , gb,a(x) = -g -- . 
an a an a 

For all g E S(IR) and (b, a) E lR x JR+, the process "ib,a(t)X(t) is measurable with 

J lE l"ib,a(t)X(t)l dt < 00. 

It follows (see, e.g., [9]) that almost surely the sample functions ofgb,a(t)X(t) are Lebesgue inte­
grable and we may define the integral: 

WgX(b, a)= f ~g c ab) X(t)dt = (.ga * X)(b), 

which we call the wavelet transform of X with respect to the wavelet g (even if g is not truly a 
wavelet in the sense that f g = 0). For fixed a, the wavelet transform defines a random process 
WgX(·, a) on IR, which we refer to as the "wavelet process." Its mean Ma and covariance Ca(s, t) 
are given by 

Ma(t) - lEWgX(t, a) 

- f ~ g ('' ; t) M (t') dt' 

- ga * M(t), (2.1) 

Ca(s,t) - lEWgX(s, a)WgX(t, a) -lEWgX(s, a)lEWgX(t, a) 

- J ~gC' as) ~gC' a t)c(s',t')ds'dt' 

- (Ga *c) (s, t), (2.2) 

where the last convolution acts in the plane and G(s, t) = g(s)g(t). The exchange of expectation 
and integration in both formula is justified by Fubini's theorem, since the integrals are absolutely 
convergent. Thus, mean and covariance of the process in the wavelet plane are merely smooth 
versions of the original mean and covariance. They can also be seen as the one- and two-dimensional 
wavelet transforms of these latter with respect to the wavelet g and G. We will often consider 
Equations (2.1) and (2.2) on the Fourier side; that is, 

Ma(~) - g(a~)M(~), (2.3) 

Ca(t 1/) = g(aUg(-arj)C(~, 71). (2.4) 



Some Classes of Wavelets. The wavelet to be chosen for the wavelet analysis will depend on the 
process under consideration. Let us introduce the following classes of wavelets. 

Wavelets with no Vanishing Moments. We say that a "wavelet" g E S(JR.) is in the class So(JR.) 

if J g =1= 0. We say that g is a Gaussian "wavelet" if g(x) = ae-Px
2 

for some complex numbers a 
and {3 with lJt{J > 0, where lltz denotes the real part of c a complex number z. 

Wavelets with n Vanishing Moments. For any integer n ~ 1, we say that a wavelet g E S(IR) is 
in the class S>n (IR) if it has at least n vanishing moments or, what amounts to the same, if its Fourier 
transform has a zero of order at least n at the origin: 

We say that a wavelet g E S(IR) is in the class S=n (IR) if it has exactly n vanishing moments or, what 
amounts to the same, if its Fourier transform has a zero of order n at the origin,2 

J xmg(x)dx = 0, m= 0, 1, .. , n- 1, and J xng(x)dx =I= 0 <=> g(~) "'~n. ~--+ 0. 

Wavelets with Fractional Number of Vanishing Moments. For any real a ~ 0, we say that a 
wavelet g is in the "fractional moment" space F~a(IR) ifgcan be written as 

g(~) = ei¥-sign(;) I~ la X(~) 

for some function X E S(IR). We say g is in F=a(IR) if X E So(IR). 
As we will see, wavelets in So(IR), S=n(IR), and F=a(IR) will, respectively, characterize sta­

tionary processes, processes with stationary nth increments, and processes with stationary fractional 
increments. The Gaussian wavelets will characterize locally stationary processes. 

Note that F~a(IR) and F=a(IR) reduce to the spaces S~n(IR) and S=n(IR) when a = n is an 
integer. The reason for this intricate definition will become clear in Section 4. The wavelets in 
F~a(IR) and F=a(IR) are not in the Schwartz space when a is non-integer. However, they have all 
the needed properties for our purposes. 

3. Processes with Stationary n-lncrements 

Stationary processes constitute the reference processes for all the following and therefore it is 
natural to start with them. It is clear from (2.1) and (2.2) that the wavelet process is stationary as 
soon as the original process is itself stationary. The converse is also true, as was shown in [5]. 

Theorem 1. 
Let X be an m.s continuous process on lR satisfying H. 
i)/fX is stationary, thenforallg E S(IR), WgX(·,a) isstationaryforalla > 0. 
ii) Conversely, if for some g E So(IR), WgX(·, a) is stationary for all a > 0, then X is 

stationary. 
iii) Under the strongerassumptiong(~) =I= Oforall ~.it is enough that WgX(·, a) be stationary 

for some arbitrary a > 0, for X to be stationary. 

2 Here and everywhere, the symbol ~ refers to the equivalence of two functions: f ~ g if q :::; fIg :::: c2 for some 
constants 0 < c 1 :5 c2. 



A similar result holds for processes with stationary n-increments, provided the wavelet has n 
vanishing moments. This is not surprising, since such a wavelet performs a smooth differentiation 
of the process. 

Theorem2. 
Let X be an m.s continuous process on lR satisfying H. 
i) If X has stationary nth increments, then the wavelet process W 8 X(·, a) is stationary for all 

wavelet g in S~n (IR) and for all a > 0. 
ii) Conversely, if for some wavelet g in S=n (IR), WgX (·,a) is stationary for all a > 0, then X 

has stationary nth increments. 
iii) Under the stronger assumption g(~) ":/:: 0 for all~ f:: 0, it is enough that W 8 X(·, a) be 

stationary for some arbitrary a > 0, for X to have stationary nth increments. 

Proof. Also [5]. D 

We will now use the above wavelet characterizations to derive the explicit covariance structure 
of processes with stationary nth increments. We start by the following lemma. 

Lemma I. 
If X is an m.s continuous process with stationary nth increments, then its covariance satisfies 

(3.1) 

for some positive tempered measure J.l such that 

(3.2) 

Here and everywhere, a(~+ 17)dJ.J,(~) is the symbolic notation for the measure m on IR2 given 
by m(<l>) = J dJ.J,(~)<l>(~. -~). 
Proof. Denote g(~) = ~n e-~2 • Since g is in S=n (IR), Theorem 2 implies that the wavelet process 
W8 X(·, a) is stationary and thus its covariance satisfies 

(3.3) 

for some finite positive measure d J.la. It follows from (2.4) that 

~ 2n.-. 2c2 2 2 
(-l)n~n 71nq~, 1'1) _ (-1)na- Ca(~, 7])ea s ea 11 

- a-2n e2a2 ~ 2 a(~ + Tl)dJ.J,a (~) . 

The above equality holds a priori in V' (JR2). However, the left-hand side is a tempered distribution, 
and does not depend on a. Thus, the right-hand side is also a tempered distribution in S'(IR2), 

independent of a: 

(3.4) 

where, by Lemma 5 i), J.l is a tempered measure on JR. It remains to prove (3.2). For this, it suffices 
to show that J ~-2n[l - x<nx<-~)]dJ.J,(~) < oo, where x is a cut-off function in Ccf(IR) such 

that x(~) = 1 for I~ I ~ 1 and 0 ~ x ~ 1. Now let <l>(s, t) = 2-1 exp(-(s2 + t 2)/4). Since 
4>(~. 71) = exp(-~ 2 -7]2) we have 



the above limit being finite or not. On the other hand, <I> a is an approximate identity inS' (JR2), and 
thus by (3.4), 

lima-+0 j ~-Zn[l- X(~)x(-~)]~(~. -~)dt-L(~) - lima-+0 C (~(1- X® X)) 

- lima-+0 c (~) - c (~x ® x) 
- lima-o c (<I> a)- c (<I> a *ex® x)) 
- C(O,O)- C(f®f) 

which shows that the above limit is finite. This concludes the proof of Lemma 1. 0 

Recall that a function or distribution u is said to be conditionally definite positive [ 13] on some 
space of functions C if u (f * j) 2: 0 whenever f E C. We are now able to state the following result. 

Theorem 3. 
An m.s continuous process X on lR has stationary nth increments if and only if its covariance 

has the form 

where 

n-l 

C(s, t) = r(s- t) + L:sir1(t) + tir1(s), 
}=0 

(3.5) 

i) r is a symmetric continuous function, conditionally positive definite on DnS(lR) := {Dn,p I 
<PE S(JR)} and of growth Jr(x)l < 0(1 + JxJ 2n) 

ii) the r1 are continuous polynomially bounded functions such that ffi (:Ej;;;~ tir1(t)) 2: 0. 

Proof. Suppose C(s, t) has the form (3.5) and let the wavelet g be in S~n (lR). Then the wavelet 
covariance 

~ f 1 (s'-s) 1 (t'-t) Ca(s,t)=Ga*C(s,t)=. ~g -a- ~g -a- r(s'-t')ds'dt' 

is stationary since the contribution of the functions r 1 is cancelled by then vanishing moments of g. It 
follows from Theorem 2 that X has stationary nth increments. Conversely, suppose X has stationary 
nth increments. We generalize here a method that was first used in [35] to obtain a characterization 
of fractional Brownian motion by means of its wavelet transform. By Lemma 1 we have 

for some positive tempered measure 1-L with j(1 + ~ 2n)- 1 dt-L(~) < oo. Under inverse Fourier 
transformation we obtain 

D; D~C(s, t) = F(s, t) (3.6) 

for some F E S' (JR2). Now let y E S' (JR) be the Fourier transform of the positive tempered measure 
1-L· By the Bochner-Schwartz theorem [37], y is a positive definite distribution [i.e., y(l{l * tp') 2: 0 

for all 1{1 E S(JR)] so it can be written as y = (1 - ~: lu for some integer k and some continuous 
positive definite function u. Now take U a primitive of order 2n of u that we can choose to be 

symmetric [it suffices to set u i+l (x) = 2- 1 (j; u j(t)dt + f~x "iij(t)dt) for j = 0, .. 2n - 1 with 

uo = u and U = Uznl and definer = (-l)n(l - ~:)kU. Then r is a primitive of order 2n 

of (-l)ny and is symmetric [that is, r((/>) = r(</J) for all <P E S(JR)], because the derivation 
of even order preserves the parity. Moreover, r is by construction conditionally positive definite 
on DnS(JR.) since r(Dn,p * on,p) = (-l)nD2nr(</J * (/>) = y(</J * (/>) 2: 0. Let us derive some 



regularity properties of r. Let x E C0(JR.) be a positive cut-off function such that X 2:: 0 and 
X = 1 on [-1, +1] and denote f.L = Xf.L and f.L+ = (1- X)J.L. Then both f.L- and ~-2nf.L+ are 
finite measures. Now let the distributions Y- and Y+ be the Fourier transforms of f.L- and f.L+• 
respectively, and r_ and r+ primitives of order 2n of (-1)ny_ and (-l)ny+, respectively, that is 
D2n r ± = ( -l)n Y±. On one hand y _, being the Fourier transform of a finite positive measure, is 
continuous and bounded and thus r _is a continuous function of growth lr _(x)l ::: O(lx2n j). On the 
other hand, f+(~) = ( -l)n~-2n f.L+(~) and thus r +is the Fourier transform of a finite measure, and 
hence continuous and bounded. Since D2nr = ( -l)ny = ( -l)n(Y- + Y+), we haver = r _ + r + 
modulo a polynomial of degree 2n, which implies that r is continuous with lr(x)l ::: 0(1 + lx2nj). 
Now define R(s, t) = r(s- t). Then for all t/J, 1{r E S(IR) we have 

v; D~ R(t/> ® l{r) - R (Dnt/> ® Dnl{r) = (-l)nr ( D2n (t!> * t)) 
- y ( t/> * ~ = f dJ.L(04J(~)~( -~) 
- ~®l{r), 

and thus, by density of S(IR) ® S(IR) in S(JR2), v; D~ R =F. To sum up, we have proven that 

v: D~C(s, t) = v: D~ R(s, t), 

in S'(JR2) for a distribution R with symmetric continuous kernel r(s- t). Integrating once with 
respect each variable yields to 

v:-l D~- 1 C(s, t)- v:-1 D~- 1 R(s, t) = p(t) + a(s) , 

for some distributions p and a in S' (JR). Since the left-hand side is a Hermitian distribution [i.e., 
I:(t, s) = I:(s, t)] we must have a= p. Iterating this procedure, we obtain 

n-1 

C(s, t) = r(s- t) + L si rj(t) + ti rj(S) , 

i=O 

for some tempered distributions r i. The continuity of the functions r i follows from Lemma 6 in 

Appendix A. The condition !R (L:j:;:btirj(t)) 2:: 0 is forced by C(t, t) 2:: 0. This concludes the 

proof of Theorem 3. D 

Example 1. A well-known non-trivial example of process with stationary increments is fractional 
Brownian motion [23], fBm for short. For a given H E (0, 1) (Hurst parameter), this is the unique 
zero-mean Gaussian process with covariance: 

In this example clearly r(x) = -ro(x) = -;2 
lxl28 . Note thatr is, as expected, conditionally 

positive definite on DS(JR) since for all cp E S(JR): 

with C2H :50 (see Appendix B). 



4. Processes with Stationary Fractional Increments 

Wavelet Characterization. The results of Section 3 can be transferred to the fractional increments, 
provided the wavelet is taken in the spaces of the corresponding fractional moments. Any wavelet 
h in the space F;::aOR) is a C00 function with the growth restriction: 

Jh(t)J :5 0 ( 1 + Jt~a+l-f) , (4.1) 

for € > 0 arbitrarily small (this will be proven in Theorem 4). It follows that we will be able to 
define the wavelet transform of a process X(t) with respect to a wavelet in F;::a(IR), provided the 
second moment satisfies 

for some fJ < et. But first, we have to determine under which assumption the fractionally differen­
tiated process is well defined. 

Proposition 1. 
Let X (t) be a process on lR satisfying H,11. Then for all et > fJ and all t E lR, the series 

00 

t:.~X(t) := L1r}X(t- jr:) (4.2) 

i=O 

is mean square convergent and the process t:.~ X (t) satisfies again HtJ. 

Proof. Let us check the Cauchy criterium for quadratic convergence. By hypothesis we have 

Hence, for all integers p :5 q, 

lE 
1
Lj=p Jrj X(t _ jr:)r _ L:h=p JrjJr:lE ( X(t _ jr:)X(t _ kr:)) 

< L:j,k=p IJriJrk I (lE IX(t- jr:)J2JE IX(t- kr:)l2)1/2 

- (L:j=p IJril (lE IX(t- jr:)l2)1/2f 

o (1 + Jti2,8) (L:j=p IJril (1 + Jji).B)2 < 

Now Stirling's formula f'(x) ""$e-x+l(x- ox-l/2 as X -+ +oo. shows that IJril ""ra-I 

as j -+ +oo and thus L j1r} I (1 + Jj J).B < oo. It follows that the above partial sum vanishes as 

p-+ oo. This proves the mean square convergence of the series (4.2). Similarly, we obtain 

lE ( t:.~X(s)t:.~X(t)) :5 0 ((1 + lsi.B) (1 + iti.B)) 

and thus t:.~ X satisfies again H,11. D 

Next, we want to estimate the wavelet transform of t:.~X. 

Lemma2. 
Let X be a process satisfying H,B. Then for et > fJ and all g E S(IR) we have 

(Wgt:.~X) (b, a)= (r:fa)a (Wh1, 1•1X) (b, a) a.s, (4.3) 



where the wavelet h[-r]. defined by 

satisfies 

00 

h[-rJ(t) = t'-a L nj g(t - t'j) , 
j=O 

sup lh1-r1(t) I :5 0 ( 
1 

+I ) , 
T>0 1 + itia -E 

for all € > 0, and 

Proof. First we state 

00 J 8ba(t)tl.~X(t)dt = ~nj J 8ba(t)B{X(t)dt a.s. 
J=O 

Indeed, by Fatou 's lemma and the majorizations of the previous lemma, 

lE IJ 8ba(t)tl.~X(t)dt- L~onj J 8ba(t)B{X(t)dtl 

- IEliminfp-+oo jJ 8ba(t)6~X(t)dt- 'Lj=On} J 8ba(t)B{X(t)dtj 

- IEliminfp-+oo IJ 8ba(t) [ tl.~X(t)- "L.j=0 nj B{X(t)] dtl 

< lim infp-+oo lE IJ 8ba(t) [ tl.~X(t)- L~=O nj B{ X(t) J dtl 

< liminfp-+oo J i8ba(t)ilE ~tl.~X(t)- "L.f=0 nj B{X(t)l dt 

< liminfp-+oo J i8ba(t)i (1 +it if.!) dt L~p+Inj(l + IJI)f.! = 0. 

Since by a simple change of variables we have 

( W8 Bf X) (b, a) = (W8_i•ta.t X) (b, a) , 

where 8-J-rfa.l (t) = g(t + jt"ja), it follows that 

00 

(W8 tl.~X) (b, a) = L nj (W8_i<ta.t X) (b, a) a.s. 
j=O 

The form of the right-hand side suggests the introduction of the function 

8}. being the delta function centered at>... Its Fourier transform is given by 

(4.4) 

(4.5) 

(4.6) 

(4.7) 



Now consider the function ofthe complex variable z 

(1 _ )a ._ { exp(a log(l - z)) if lzl :::;: 1, z ¥: 1 , 
z .- 0 if z = 1' 

where log z is the principal branch of the complex logarithm, i.e., log(pei9 ) = log p + i8, -Jr < 
e < Jr, p ¥: 0. This function is analytic in the disk lzl < 1 and for lzl :::;: 1 one can show that 

00 

(1 - z)a = L Jrj zi . 

i=O 

It follows that 

(4.8) 

The factor (1 - e-ir~)a is a continuous function (in fact C00 except at the points 2Jrk/r, k E N, 
where it is only Lipschitz of order a), with the following behavior at the origin: 

Moreover, 

(4.9) 

for E arbitrarily small. This last estimation is technical and has been relegated to Appendix A 
(Lemma 8). Note that, in spite of its asymptotics, h[rl is not in :F~aOR) because of the singularities 
of the function (1- e-ir~)a. To conclude the proof, we only need to show that 

00 

L 1rj (Wg_jr/a.l X) (b, a)= (rfa)aWh[rfaJX(b, a) a.s. 
i=O 

The problem is to permute summation and wavelet transform. For this, let 

for which 

00 
hfr1(t) = r-a L 1rj g(t- jr) , 

i=p+l 

with E arbitrarily small (see Lemma 8). Then by Fatou's lemma we again have 

lE ~L~o 1rj (Wg_jrfa,l X) (b, a)- (r/a)aWh[r/alX(b, a)l 

- IEliminfp-+oo j:L:~=0 1rj (Wg_jrfa, 1X) (b,a)- (rja)aWh1, 1a1X(b,a)l 

- (r/a)alEliminfp-+00 i(whp x) (b,a)l 
[</a] 

< (r/a)a lim infp-+oo lE J ~ ~h~fa] {'~b)jiE IX(t)l dt . 

(4.10) 

(4.11) 



Now for fixed t, h~fal(t) --+ 0 asp --+ oo. On the other hand, the integrand is uniformly bounded 
by an integrable function in view of (4.11) and Hp. Hence, the Lebesgue dominated convergence 
theorem applies and the above limit is zero. Equation (4.3) follows by combining (4.7) and (4.10). 
0 

Now we can state the following result. 

Theorem 4. 
Let X be an m.s continuous process on lR satisfying Hp and let a > {3. Then the wavelet 

transform WhX (·,a) iswelldefinedforallwavelet h inF~a(lR) and we have the following properties: 
i) If X has stationary ath increments, then the wavelet process WhX(·, a) is stationary for all 

wavelet h in F~a (lR) and for all a > 0. 
ii) Conversely, if for some wavelet h in F=a(lR), WhX(·, a) is stationary for all a > 0, then 

X has stationary ath increments. 
iii) If furthermore h(;) ::f. Ofor; ::f. 0, then it is enough that WhX(·, a) be stationary for some 

a > 0, for X to have stationary ath increments. 

Proof. i) Let h E F~a(lR) be given by 

(4.12) 

for some g E S(lR) and h[rl defined by (4.8). Then it is easy to verify that llliirJ - 7111 1 --+ 0 as 

r --+ 0, and hence llh[r]- h lloo --+ 0 as r --+ 0. It follows from (4.9) that 

lh(t)l :S 0 ( 1 + it~a+l-l) ' (4.13) 

for E arbitrary small, and thus under condition Hp the wavelet transform is well defined. Now let 

Ca(s, t) - lEWhX(s, a)WhX(t, a) -lEWhX(s, a)lEWhX(t, a), 
~--=-=-=--:-

c~ (s, t) - lEWh1, 1X(s, a)Wh1,1X(t, a) -lEWh1, 1X(s, a)lEWh1, 1X(t, a), 

be the wavelet covariances computed w.r.t h and h[r]• respectively. Since supr>O lh[rJ(t}l :::: 

0 (1 + ltla+1-Ef
1

, we may apply Lebesgue dominated convergence theorem to prove that, for 
all fixed s and t, 

limC~(s,t) -
T-+0 

. J 1- (SI - S) 1 ((
1 
- f) ( 1 1) 1 1 hm -h[r] -- -h[r] -- C s , t ds dt 

t-+0 a a a a 

- J ~h C' ~ s) ~h ('' ~ 1) C (s', t') ds' dt' 

- Ca(s, t). 

Now by Lemma 2, wh[T) X (b, a) = ea (Wg ~~T X}(b, a}, which is stationary by Theorem 1. There­
fore, all the covariances c: (s, t) are stationary. But then the limit Ca(s, t) must also be stationary. 
The same reasoning applies to the mean, proving the first statement. 

ii)+iii) Now suppose the function gin (4.12) is in So(lR) (which is equivalent to h being in 
F=a(JR)). For the proof, we will need some auxiliary functions. Let x be a function in So(lR) such 
that x(;) t- o for an ; , o :::: (/) :::: 1 another function in ego (R) such that qJ(;) = 1 for 1; I :::: 1/2 and 
qJ(;) = 0 for 1; I ;::: 1, and qJ).. = A.(1 - f{J) + qJ. Finally, for all 0 < A. < I, and for some fixed r > 0 
define 

(4.14) 



Note that the term [ ]a is well defined since I rp>..l ~ 1. Now let us rewrite 

with 

For 1; I > 1, the function 'ii is clearly C00
, rapidly decreasing and non-vanishing. For 1; I ~ 1, 

the only possible singularity might be at zero. Now using (i;)a = 1;1a ei~sign(~) we observe that 

which in the neighborhood of the origin is a smooth function bounded away from zero [since 

IE~2 H)t' I ~ lexp 1;1- 11 < 1 whenever 1;1 ~ 1/2]. Altogether this shows that </J is a well­

defined function in S(lR.) such that 'ii never vanishes. Now by Theorem 1 i), WhX(·, a) =ha* X 
stationary for all (some) a > 0 implies Wx,*hX(·, a)= (fr)a *(ha* X) stationary for all (some) 
a > 0, that is Wtf>,*sp,,,1X(·, a) is stationary for all (some) a > 0. Since f.r never vanishes, this 
entails (Theorem 1 iii) that Ws[k,<JX(-, a) is stationary for all (some) a > 0. Now we have the point-

wise convergence S[>..;rJ(;}-+ h[rJ(;), ). -+ 1 [because llsp .. ,r]- h[rJIIoo ~ lliM- h(;JII 1 -+ 0] 
and the S[>..,rJ are uniformly bounded (w.r.t ).) by (2/"C)a llgli 1. Hence, we may apply the Lebesgue 
dominated convergence theorem to conclude, as before, that the wavelet covariance computed w.r.t 
the wavelet S[>.., r] converge to the one computed w.r.t the wavelet h[rJ as ). -+ 1. The same holds 
for the mean. Therefore, we have shown that Whl,1X(·, a) is stationary for all (some) a > 0, when­
ever WhX(·, a) is stationary for all (some) a > 0. Applying this to "Cja rather than "C, we obtain 
(Lemma 2) that Wg~~X is stationary for all (some) a > 0, which by Theorem 1 ii (iii ifg =I= 0) 
implies that ~~X is stationary. This concludes the proof. 0 

Remark. A result analogous to the statement i) of Theorem 4 has already been given for the discrete 
wavelet coefficients of a multiresolution analysis [20] and wavelet packets decomposition [30]. 

Application to Fractional Brownian Motion. The previous theorem leads to a direct proof of the 
stationarity of the fractional increments of ffim (a result that was first proved in [29], [31 ]). 

Theorem 5. 
Fractional Brownian motion with Hurst exponent H has a-stationary increments for any 

a >H. 

Proof. Recall that the covariance of ffim is given by 

The hi-dimensional Fourier transform of this equation is 



where the definition of the distribution l~r 1-2H is recalled in Appendix B, and C2H is a negative 
constant. Now let g be a wavelet in F=a(lR) for some a > H. Then 

E;;c~. 17) - g(aHg(-a17)C(~. 17) 

- - ~2 c2Hi(a~)g(-a'1) ( -l~l-l-2H 8('7) -1'71-l-2H o(~) + ~~~-l-2H o(~ + '7)) 

Since li(~)l "' I~ la, ~ -+ 0, the first two terms on the right-hand side vanish and it remains 

--.. a2 
Ca(~, '1) = -ZC2H \g(a~)i2 1~1-l-2H o(~ + 17)) =: dJ.La(~)o(~ + '1). 

Now lg(a~)i 2 1~1-l-2H = rp(~) 1~12a-l-2H with rp(n = lg(a~)l2 1~1-2a E S(lR) and 2a- 1-
2H > -1. Thus, the measure J.La is positive and finite. It follows from Lemma 4 that Ca is a 
stationary covariance. But in view of Theorem 4 this in turn implies that the process has stationary 
a-increments. D 

5. Locally Stationary Processes 

In this section, we will abandon hypothesis Hand instead require that the process X(t) be 
harmonizable. Recall that a process is strongly harmonizable or harmonizable in the sense of 
Loeve [21] if there is a random process Y(~) with a covariance of bounded variation such that 
X (t) = f eit~ dY (~) a.s., which is equivalent to the existence of a complex Borel measure M on JR2 

such that 

C(s, t) =I e-i(s~-t'll)dM(~. 17). (5.1) 

Such covariances are also said to be (strongly) harmonizable. To put it differently, a process is 
strongly harmonizable if and only if its covariance is the Fourier transform of a measure of bounded 
variations on JR2. This implies in particular that the covariance is continuous and bounded. Hence, 
the strong harmonizability condition supplements and strengthens condition H. Recall also that a 
process is weakly harmonizable or harmonizable in the sense of Rozanov [36] if (5.1) holds only 
for a complex hi-measure on JR2 (i.e., separately a-additive on the Cartesian product B(lR) x B(lR) 
of the Borel algebras.) We refer to [18] for further details on the different notions of harmonizabil­
ity and other spectral properties. The wavelet transform is known to preserve weak- and strong­
harmonizability [5]. However, we will restrict ourselves to the latter property and harmonizability 
will be understood throughout in the strong sense. 

A covariance C (s, t) is locally stationary if it can be written 

(s + t) (s- t) C(s, t) =m ,J2 y ,J2 , 

for some positive function m and some covariance function y. As was shown in [27], a locally 
stationary process is harmonizable if and only if y is the Fourier transform of a probability measure 
and m is the Fourier transform of a finite complex measure. This can be seen as a generalization of 
Khintchine theorem. Simple examples of harmonizable locally stationary covariances are given by 
the following family of functions. 

Example 2. Any function of the form C(s, t) = exp(-a(s +t)2)c(s- t) exp(-a(s -t)2) where 
a > 0 and where c is a stationary covariance is a harmonizable locally stationary covariance. D 



Proof. The locally stationary structure is plain. Moreover, C(s, t) is positive definite since for 
all functions ({J E S(JR) we have 

j C(s, t)({J(S)({J(t)dsdt = j c(s- t)({J(s) exp ( -2as2) ({J(t) exp ( -2ar2) dsdt :=: 0. 

Finally C(s, t) is harmonizable since m(t) = exp(-at2) is the Fourier transform of a Gaussian 
function (hence a finite measure) while y(t) = c(t) exp( -at2) is the Fourier transform of the 
positive finite measure JL * x, where /i = c and x is a Gaussian function. D 

The form of the covariance suggests the introduction of the following new notation. We define 
the "square product"~ of two functions in S(JR) by 

(«f> ~ 1/l)(s, t) = «1> c ~~)1ft c J2t) . 

The square product is a bilinear operation from S(JR) x S(JR) to S(JR2) possessing the following 
elementary properties with respect to the Fourier transform and the tensor product: 

~ - ;p~~. 

(«1>~1/l)c~t· sJ2t) - («1>®1/l)(s,t). 

We define the square product of two tempered measures JL and v of S' (lR) by duality: 

(JL ~ v)(<I>) = J dJL(~)dv(71)<I> ( ~ ~ 71
, ~ J2 71

) . 

(5.2) 

(5.3) 

In general, the wavelet transform of locally stationary processes is no longer locally stationary. 
However, there exists a class of filters, namely the Gaussian filters, for which the local stationarity 

is conserved. Indeed, any function of the form g(x) = ae-Px
2 

has the property that 

(s+t) (s-t) g(s)g(t) = g J2 g J2 . (5.4) 

If X is a process with covariance C(s, t) = m(s + t)y(s- t), then a straightforward calculation 
using (5.4) shows that 

Ca(S, t) = 8a *m c~t) 8a *Y CJ2t) 
and thus the wavelet process for the Gaussian wavelets is locally stationary as soon as the process 
itself is locally stationary. 

The converse is also true. To show it, we need the following lemma. 

Lemma3. 
i) /fC(s, t) is a locally stationary harmonizable covariancefunction, then its Fourier transform 

has the form C = JL ~ v for some finite complex, resp. positive, measures JL and v. 
ii) Conversely, if C(s, t) is a polynomially bounded continuous covariance function with a 

Fourier transform of the above form, where JL and v are a priori only tempered measures and v 
positive, then C(s, t) is locally stationary. 

Proof. i) Suppose C = m ~ y is a locally stationary harmonizable covariance and let JL and v be 
the Fourier transforms of the functions m and y. By hypothesis, v is a finite positive measure and JL 
is a finite complex measure. Now if <I> is a test function in S(JR2), then 

C(~) - J m ( s;J) y ( 7z) <I>( -s, -t)dsdt 

- f m(u)y(v)I.JI( -u, -v)dudv 

- (JL ® v) ($) ' 



where we have performed the bijective change of variables u = (s + t) 1 ,Ji, v = (s - t) I ,Ji, and 
set \ll(s,t) = <I>(J=i. 7i>· Now W(~. 17) = ~<~..({. f:;?) and thus C(~} = (/L ~ v)(~). which 
proves i). 

ii) Assume C has the form C = Jl ~ v with Jl and v a priori only tempered measures and v 
positive and let the distributions m and y be their respective Fourier transforms. For any ljJ, 1/1 in 
S(IR) we have 

C (~) = J dJL(~)dv(T/)~ (ijf.iJ¥-) 
= IL (~V (t) = m(rjJ)y(l/1) . 

Now take an approximate identity rPa in S' (IR). Then 

lima-+0 C (l/1~1/1) - lima-+0 J C(s, t)(l/Jba ~ 1/f)( -s, -t)dsdt 

- lima-+0 J C ( J=i, 7z) l/Jba( -s)l/1( -t)dsdt 

_ f C ( -~t, -~t) 1/1( -t)dt =: Cb(l/1). 

~-On the other hand, since C(r/Jba ~ 1/1) = m(l/Jba)Y(l/1), this shows, first, that the limit Ab = lima-+0 
m(l/Jba) exists and, second, that y(l/1) = A;1cb(l/l}, which implies that y is a continuous function. 
We need only to verify that Ab -::/= 0 for at least one b. Now since m(l/Jba) --+ m(b +·)in S'(IR), 
Ab= 0 for all b would imply m= 0 and C(s, t) = 0, in which case the lemma is trivially satisfied. 
Exchanging the functions l/Jba and 1/1, we can show in the same way that m is a continuous function. 
Now for any b, b' we have 

- lima-+0 J C ( sj;, :;; ) l/Jba(s)rPb'a)(t)dsdt 

- lima-+0 J C(s, t) (l/Jba ~ rPb'a) (s, t)dsdt 

- lima-+0 m (l/Jba) Y (l/Jb'a) 
- m(b)y(b') , 

which shows that C = m ~ y. It remains to show that y is a stationary covariance. For this, it is 
enough to show that v is a finite positive measure. Now take an approximate identity l/Ja in S(IR). 
Then <iia = (ii(a·) --+ 1 uniformly on every compact. Since the limit limR-+oo ~H~,R dv(~) exists, 
be it finite or infinite, we have 

f dv(n = lim v (<iia) = lim y (~) = y(O} , 
a-+0 a-+0 

which shows that v is finite. This concludes the proof of the lemma. 0 

Now we can prove the following result. 

Theorem 6. 
Let X be an m.s continuous process satisfying Hand g(x) = et exp(- f3x 2) a Gaussianfunction. 
i) If X is locally stationary, then WgX (·,b) is locally stationary for all a > 0. 
ii) Conversely, ifWgX(·, a) is locally stationary and harmonizablefor some a > 0, then X is 

locally stationary. 

Proof. Only ii) is to be proved. If the wavelet process is locally stationary and harmonizable, 
then - ~ .-.. -Ca(~. 17) = g(ang(-aT})C(~. TJ) = dJLa(~ + T})dva(~- T/), 

for some finite complex, resp. positive, measures /La and V a. Thus 



The above equality holds a priori in V' (IR2). However, the left-hand side is a tempered distribution 
and thus the right-hand side is a tempered measure on JR2• By Lemma 5 ii), this implies that a a and 
8a are themselves tempered measures on IR, with 6a positive. The conclusion follows from Lemma 3. 
D 

Remark: The family of Gaussian wavelets is in fact the only one which can characterize locally 
stationary processes since it was shown in [28] that the only smooth filters on the spectral measure 
preserving local stationarity are the Gaussian filters. 

6. Conclusion 

We have seen that the continuous wavelet transform is an appropriate tool to characterize 
a large class of non-stationary processes, provided the analyzing wavelet is suitably chosen. Two 
applications have been proposed: the derivation of the covariance structure of processes with station­
ary nth increments and the stationarity of the fractional increments of fractional Brownian motion. 
However, some questions remain open, such as how to choose a priori the functions r and r i in (3.5) 
to form a covariance function or if there is an analogous version of Theorem 3 for the stationary 
fractional increments. 
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7. Appendix A 

Here we collect some technical lemma. 

Lemma4. 
A function C (s, t) is a stationary covariance function if and only if its Fourier transform has 

the form C(~. 17) = 8(~ + TJ)dJ.L(~)for some finite positive measure dJ.L. 

Proof. This is a well-known result so we omit the proof. D 

LemmaS. 
i)Leta beameasureonR Then a E S'(lR) ifandonlyifi:.(~. 17) = da(~)o(~+TJ) E S'(IR2). 

ii) Let J.L and v be measures on R Then J.L and v are tempered on lR if and only if J.L 181 v is 
tempered on R2• 

Proof. Standard exercise of functional analysis. 0 

Lemma 6. 

If 
Let I; be a polynomially bounded continuous function on R2 and pi be distributions inS' (IR). 

n-i 

:E(s, t) =I: si Pj(t) + ti Pj(s), 
j=O 

then all the pi are continuous functions. 



Proof. If c/Ja is an approximate identity in S' (lR) and 1/1 a wavelet in S=n (JR) we have 

~(0, ·}(1/1) - lima..-.0 ~ (c/Ja ® 1/1) 

= lima..-.0 L,'j:,~ J si c/Ja (s )ds pi ( 1/1) 

= Po(l/1) . 

Every function in S=n (lR) is the nth derivative of a function in So(lR}, which is dense in S(JR). This 
means that Dnpo = vn~(O, ·)and thus ~(0, ·)and p0 differ only by a polynomial ofordern, which 
implies that Po is continuous. Now suppose 1/1 e S=n-1 (JR). Then for all b, 

~(b, ·)(1/1} - lima..-.0 ~ (c/Jba ® 1/1) 

- Iima..-.0 L,'j:,~ J sicfJba(s)ds Pi(l/1) + J tn- 11/l(t}dt Pn-1 (c/Jba) 

- L,'j:,~ bi Pj(l/1) + J tn- 11/l(t)dt lima..-.0 Pn-dc/Jba) · 

Now Pn-1(c/Jba) = Pn-1 * fpa(b)--+ Pn-1(b) in S'(lR) and thus we have the following identity in 
S'(JR): 

n-1 
~(b, ·}(1/1)- I>j Pj(l/1) = J tn- 11/l(t)dt Pn-1(b). 

j=O 

Since the left-hand side is a continuous function of b, this shows that Pn-1 is continuous. To prove 
the continuity of Pn-2. we take a wavelet 1/1 in S=n-2(JR), and proceed as above. 0 

Lemma 7. 
Let a > 0 and n the unique integer such that n ::: a < n + 1. Then for all integer 0 :S k :S n 

we have 

L 

L /T(j :S 0 ( L -(a-k)) , L --+ +oo , 
j=O 

where the T(j are the generalized Binomial coefficients defined in (1.4). 

First note that L.~o T(j = 0. Since IT(j I ""'ra-1' it follows that 

L 

"" a -L...JT(j -
j=O 

00 

L T(j :S 0 (L-a) , L --+ +oo . 
j=L+1 

(7.1) 

(7.2) 

Now using the recurrence relation f' (x + 1) = x f' (x) for the Gamma function and the definition ( 1.4) 
of the binomial coefficients, a straightforward computation gives 

L L-k 
"" . . . a f'(k -a) "" a-k 
L...Jl(J-l) ... (J-k+1)1'(i = f'(-a) L...JT(i , 
j=O i=O 

for all 0::: k ::: n. Applying (7.2) to a- k, it follows that 

L 

L j (j - 1) ... (j - k + l)'J'(j :S 0 ( L -(a-k)), L --+ +oo, 
j=O 

(7.3) 

for all 0 ::: k ::: n. Now we can write/ = j (j - 1) ... (j - k + 1) + Pk-1 (j), where Pk-1 is a 
polynomial of degree at most k- 1. By induction starting from k = 2, this proves (7.2). 



LemmaS. 
Let a > 0 and n the unique integer such that n ::: a < n + 1. Let the function g be at least n + 1 

times continuously differentiable and, together with its n + 1 first derivatives, rapidly decreasing at 
infinity. Then for the function 

00 

Pr(t) = t"-a Lir}g(t- t"j), 

i=O 

we have the uniform estimation 

(7.4) 

for € arbitrarily small. For the function 

00 

p~bs (t) = t"-a L IIrj llg(t- t"j)l 

j=O 

we have only 

abs t < C I I 1 
Pr ( ) - r,f 1 + ltla+l-f (7.5) 

for some constant Cr,e depending on-rand €. 

Proof. Let € > 0. First consider t ~ 0. The above sum can be split into three terms: 

Pr(t) - t"-a I L + L + L } Irjg(t- t"j) 
rj<t-t• lt-rjl9' rj>t+t• 

- At +A2+A3. 

Let us estimate each term separately. By Taylor's formula with Lagrange remainder at order n we 
have 

n ( 'i ( ·)n+l 
g(t- t"j) ="" -t"j g(k)(t) + -t") g(n+l) (t ·) 

~ k! (n + 1)! TJ ' 

where trj is some point in the interval [t - t" j, t] and g(k) stands for the kth derivative of the function 
g. Hence, 

n ( -t")k ( -l)n+l 
_ t"-a ""g(k)(t) "" /1rf! + t"n+l-a "" jn+IIrf!g(n+l) (t ·) 

~ k' ~ 1 (n + 1)' ~ J TJ 
k=O . Tj<t-t• • Tj<t-t< 

- A~+ A'{. 

In view of Lemma 7 we have ILrj<t-t• /1rj I :S O(t j-r)k-a for all 0 :S k :S n. Using the rapid 

decay of g(k), this implies 

lA~ I :S 0(1) 1 +:a+ I . 

To estimate the term A1, note that trj lies in the interval [tE, t] whenever -rj < t - te. Since g<n+I) 

is rapidly decreasing, we have the uniform estimation lg<n+ll(trj)l :S 0( 1],1.) :S 0( 1+:2+n) for 



some llarge enough. Using lrrj I "'j-a-1 it comes 

< 

< 

0 (rn+1-a) 1 ~ ·n-a 
1 + t2+n ~ 1 

i-::J/1: 

1 ( )n+l-a 0 (rn+1-a) ~ 
1 + t2+n r 

0(1 
1 

) 1 + ra+1 

For the second term A2 we use simply the boundedness of g: 

< ·-a-1 1 
lt-rjl-g• 

< O(r)t-a-1r-1t£ 

< 0(1) 1 
1 + ra+l-€ 

For the last term we use again the rapid decay of g together with the asymptotic form of lrrj I· 
IA31 < r-a L ra-1ig(t- tj)l 

rj>t+t• 

< O(r-a) (1; t€Y L ra-1 
rj>t+t• 

< 

< 

< 

O(r-a) 1: t L ra-1 
rj>t+t' 

O(r-a)_1_ (1 +t)-a 
1 + t r 
1 

0(1) 1 + ra+1 . 

Fort < 0, the method is analogous but one has to consider the cases rj < ltl£ and rj > ltl£ instead. 
The proof of (7 .5) is in the same spirit and we omit it. 0 

8. Appendix B 

Here we recall some properties of homogeneous distributions. For any real a, let 

Ka (x) = { X a if X > 0 , a ( ) _ { lx la if X < 0 , 
+ 0 else ' K_ x - 0 else 

Clearly, for a > -1, K1, define tempered distributions. Whenever a < -1 is not a negative integer, 
K1, can still be extended to distributions in S'(IR) (a complete study of these functions can be found 
in [ 14]) by setting 

K~(~) = L+oo x• [~(±x)- ~(0)- ±x~'(O)- ... - (±1)"-1 (=(~-:>(a-1)(0)] dx, 



where -n - 1 < !Jta < -n. Their Fourier transform is given by 

/4 = if(a + 1) (eianj2K±a-l _ e-ian/2K;a-l) 

In particular, the Fourier transform of the function lxla := K+(x) + K~(x) is Cal~l-a-l, with 
Ca = -2r(a + 1) sin(arr /2). 
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