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Abstract: Defining, in the framework of quantum field theory, their maggenstates through their ma-
tricial propagator, we show why the mixing matrices of n@generate coupled systems should not be
parametrized as unitary. This is how, for leptonic binargtegns, two-angles solutions with discrete
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more naturally endowed with unitary Cabibbo-like mixingtnies, involving a single unconstrained
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the symmetry by exchange of families.
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1 Introduction

The observed large mixing angles in the neutrino sector hbeady long been a matter of surprise and
questioning [[1][2]. Symmetried][3] have been invoked, wahstiould be approximate since the mixing
is only close to maximal, various “textures” of mass masibave been proposeld [4]] [5] which are not
fully satisfying either, and furthermore unstable by unjitiansformations on flavour eigenstatgs [6].

In the while, theC P violating parameters;, andeg of the physical neutral kaons;, and Ks have been
shown [¥][8], using the propagator formalism of quantumdfitieory, not to be rigorously identical.
This amounts to a tiny lack of unitarity in the mixing matigdanking “in” (or “out”) mass eigenstates to
the orthonormal basis of flavour eigenstates. Phrased ihanway, mixing matrices of physical kaons
cannot be parametrized with a single mixing angle. It was al®own that systems of this type should
not be described by a single constant mass matrix and thiatntfass eigenstates cannot be correctly
determined by a bi-unitary transformation.

In this note we establish a link between these two pecuéardnd show they are among general proper-
ties of non-degenerate coupled systems of particles.

2 General framework

2.1 Flavour and mass eigenstates

Since their couplings to the Higgs boson are not flavor-diagjanassive fermions in the standard model
form coupled systems (like neutral kaons). The usual agpréa such systems makes use of a mass
matrix (see appendik]A). It was however shown[ih [[7][8] thtasian inadequate procedure: indeed, a
(constant) mass matrix can only be introduced as a lineaoa&jpation to the inverse propagator in the
vicinity of each of its poles, such that, in the case undeaiystas many mass matrices as there are poles
should be considered. This is why we stick below to basiagplas of quantum field theory, which state
in particular that the physical masses of particles, bosoifisrmions, can only be the poles of their full
propagator. The corresponding eigenstates — the propggstites — are the mass / spin eigenstates of
the Lorentz-Poincaré group.
Two bases play a fundamental role, in particular in the edeaak physics of leptons: th ; flavour
eigenstates (ej?,M]?, Ve,f>Vy,f - --) Which, by convention, couple to weak vector bosons, andthe
propagating eigenstates, [, /i,,, Ve,m, Vu,m - - -)» Which are also the mass eigenstates. At the classical
level only left-handed flavour fermions weakly couple, thé situation changes when quantum correc-
tions are included.
The physical masses; = m? satisfy by definition the gauge invariant pole equation ftagable > is
used forg?)

det A™Y(2) = 0, for z = z;, 1)

whereA(z) is the full (renormalized®n s x 2ny matrix propagator in momentum space. The solutions
of (fl) are independent of the renormalization procedure @iopagating (mass) eigenstajés are the
corresponding eigenvectors with vanishing eigenvalues

A7z = zi)pp, = 0. 2)

It is also convenient to introduc&—!(z) = L(?)(z) as the renormalized quadratic Lagrangian operator.
() then reads
det L?) (z) = 0, (3)

and the mass eigenstates satisfy the equation (equival@pt

LP(z = z)pl =0. (4)

5 denotes here the number of families.



The situation is accordingly that of adependen®n; x 2n; matrix L®?)(z), the 2ny eigenvalues
Aj(2),j = 1...2ny of which are supposed non-degenerate and satisfy, by defirof the polesz;

of A(z), A\i(z;) = 0. Atany z it has2n eigenvectors)’ (z),j = 1...2ns. Whenz — z;, ¢¥'(2) — ¢},
andy’(z),j # i — wi So, among then; eigenvectors of.(?)(z;) lies the mass eigenstaié,, cor-
responding to the vanishing eigenvalue ang — 1 other eigenstates{#, that we call spurioug [7]8],
and which correspond to non-vanishing eigenvaldgs;),j # i. They just represent off-mass-shell
states. The case of two flavors(= 1) is depicted on Fig. 1 below.

Mixing matrices link flavour ¥ ;) to mass ¥,,) eigenstates: simplifying ta, = 2 (4 flavors)

Ve7f Ve,m
Yu,f Vp,m Ky
Up=JU,, Ty=| ", @,=| "1, J= = | ()
e; em ¢
o Pom

where we have split evedn s x 2n; matrix into fourny x n; sub-blocks. The entries df,, are the
¢,'s of (B) and [).

The (renormalized) quadratic Lagrangian densitg® (v) = VL) (2)¥ .

Fermions are usually considered as bi-spinors (of Dirac ajok&na types) built from two Weyl spinors
of different chiralities which are also orthogonal to eathen. Two sets of different mixing matrices
therefore generally occur, respectively for left and riginors (see also appendik Ay, and K, in (8)
must then be also attributed a subsciipdr R depending on which chirality is considered. In order not
to overload the notations, these subscripts will be undedsin the following.

2.2 Mixing matricesfor mass-split on-shell fermionsare not unitary

As already mentioned if][][8], the connection between flaveigenstates and non-degenerate mass
eigenstates is not a unitary transformation. Indeed:

in flavour spaceL(?)(z) being, at each, a hermitian2ny x 2n; operator (matrix), it2n s eigenstates
form an orthonormal basi$ (z) (because it is in particular normal, left and right eigetestacoincide).
Atz =z =m2, < ¢l | pl, >=1and< ¢!, |w!,j #i>=0. Thus, atthen; valuesz = z;, 2n;
different orthonormal bases (@ eigenstates) occur. Since two non-degenerate mass eitgEnst,
andy” belong to two different orthonormal bases, they are in gemest orthogonal:

<k >£0, i#£k (6)

This being true in the neutral and charged sectors, Bptland K, which connect the flavour basis to a
non-orthonormal one, have no reasons to be unitary

K/Ki#1, KK, #1, qed. 7)

The non-unitarity of mixing matrices does not however jedjze the unitarity of the theory (see ap-
pendix[B). It simply states that, at a givef, all physical states cannot be simultaneously on-sheliwhe
they are non-degenerate.

It may happen, for example to describe unstable partidkesifeutral kaons), that one is led to introduce
an (effective) Hamiltonian, or Lagrangian, which is nonrhitian, and even non-normal. Then, at each
z, the set of eigenstates/ (») do not form any more an orthonormal basis. Spurious statbactom-
pany the mass eigenstatezat z;. Different mass eigenstates, corresponding to diffetgat have no
reason either in this case to form an orthonormal basis, @icitly checked in [].

The simplest case of two flavours ( = 1) is depicted on Fig. 1 which represents either the neutral
kaon system, or, in the cases of two lepton families, therimeusector or the charged lepton sector. The



z-independent flavour basis), 1, (for example(k°, K°) for neutral kaons) has been represented by
the two horizontal lower lines.

v @ M) =0 W)

W,

z, z Z
Fig. 1: Eigenstates of a binary coupled system

The two eigenstates of the hermitian (normal) renormaligempagatory!(z) and?(z) form a z-
dependent orthonormal basis. Whemaries, this builds up an infinite set of orthonormal base&kwh
is depicted by the two (parallel) curved lines. At a givent® brthonormal basig)! (z2),1?%(2)) is
connected to the orthonormal flavour basis by a unitary rgixmatrix with anglef(z). At z = z1, L,
andw% form an orthonormal basis, and so dozat z9, <p3n andw;. They are respectively related to the
basis of flavour eigenstates by two different unitary masjavith respective anglés andfs. ¢! and
©2, do not form in general an orthonormal basis, and it intulyiappears on the picture that the mixing
matrix connecting them to the flavour basis cannot be pararadtwith a single angle (both anglés
andé, obviously play a role).

2.3 Thecase of quarks

() applies to states for which the full propagator has paesesponding to physical (“on-shell”) prop-
agating states which can be identified with particles. Intreat, quarks are never produced on shell:
the poles of their full propagator are ill-defined and so aaedingly their “physical” masses and mass
splittings. The only unambiguous orthonormal basis whiwmtoccurs in.() (supposed to be hermi-
tian) is thez dependent basig’ (). At eachz are associated two unitary;dependent mixing matrices
K. (2) andK4(z). Their unitary produck (z) = K3\(z)K4(z) we propose to consider as the equivalent
of the renormalized unitary Cabibbo-Kobayashi-MaskawKNIE matrix of the standard approach, in
which the complex mass matric@$, and M, generated by the couplings of quarks to the Higgs boson
are diagonalized by bi-unitary transformations (see gtgeadix[4).

3 Leptonic weak currents

3.1 Fermion coupling to weak gauge bosons

In the flavour basi@ ;, the weak Lagrangian reads

3



1—75

Lovear, = T 7" [WjT* +W T + Wf;Tﬂ U,
1 1
T+,7T3 form a representation of th6U (2) group of weak interactions[T+,T~] = T3, etc. In the

orthonormal basi@ (z) one finds anotheSU (2) representatiofil™* (z), 7~ (z)] = T3(z):

_ 1—~9° ~ ~ ~
Loveak = \I/(z)’y“Tfy [WjTﬂz) + W, T (2) + WST?’(Z)} U(z),

P ‘ Ki(z)Kg(z) = ‘ ,f?’ _ 1 . ©)
| K (2)K,(2) | -1

In the non-orthonormal basib,,, of mass eigenstateg] (8) becomes

_ 1—45
ﬁweak = \I/m’Y'u 1

+a+ - 373 T i
W W Wi, T = T,

Tt = KIK, T = T3 = KIK, | (10)
B T\ KK, T | KK,

and, because of](7), th&/(2) commutation relations are not systematically satisfiedhey3ts (and
U, does not simply decompose into tw@/ (2) doublets).

K, is related toK, (z1) and K, (z2) by

P 1 Dy (21) Ky (22) Du(22)Kppg(21)
Y Koy (21) K1) (22) — Kopz) (1) Ky (22) \ Dy (21) Koy (22)  Dul22)Kypy(21) )
D,(z) =det K, (2), z1 = m,2/6m, 29 = mlz,#m. (11)

The following exact relations

< |01 >= Kpyy(21), < @2, |1 >= Koy (22), < ¢, | 2 >= Kpayy(21), < @i | th2 >= K[ag)(22),
(12)
also hold, which become compatible with the approximatmitda

K~ Ku[n}(zl) Ky[12](z2) (13)
Ku[m}(zl) Ku[22](z2)

when one neglects the scalar products) | 2, > supposed to be small. Whep — z;, (12) and [(AB)
give back a unitary mixing matri¥X_, (z;) = lim,, .., K,. This shows the role of the non-degeneracy
in the non-unitarity of<,,.

3.2 Weak currents

It is remarkable, but often unnoticed that, in the quarkareat the standard model, with unita#y, and
K42, the built-in characteristic of the weak Lagrangian that¢buplings of flavour fermions to gauge
bosons are symmetric by the exchange of families, trarssiate a similar property for mass states,
without any constraint on the (then unigue) mixing angle.e Same holds concerning the absence of
flavour changing neutral currents.

2K, and K, are the mixing matrices respectively fottype andd-type quarks.
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The situation becomes different for mass-split physicatest Considering the case of two families,
when a single mixing angle is not enough to describe the systee symmetry by exchange of families
for mass states (that we call universality for mass stated)the absence of “mass changing neutral
currents” (MCNC's) are no longer automatically achievedhey instead require well defined relations
between mixing angles. We demonstrate below that, withih 2 2 subspace of given electric charge,
they constrain the two mixing angles to be: eithg2 mod =, or 7/4 mod 7/2. In the first case the
family indices of flavour and mass states are either iddnticerossed. The last case corresponds to the
“maximal mixing” (approximately) observed for neutrinasdafor neutral kaons. Mass eigenstates are
then symmetric or antisymmetric by family exchange (fomegte so are thé>C eigenstated® + K0).
Maximal mixing accordingly realizes universality in botheees of flavour and mass eigenstates.

3.2.1 Neutral weak currents of mass eigenstates

We deal with weak currents of mass eigenstates and invesstigaproperty that MCNC'’s are very small
and that their diagonal counterparts are quasi-univefsiwing a lack of unitarity [[7), we parametrize,
with transparent notations (preserving a unit norm fortalles and discarding irrelevant global phases)

K= e o) g o[ e ) (14)
—esy eley —e'Xsy eey
Note that{K,, K] # 0: K, andK, are not normal.[(34) entails
KK, = ci + 53 1516107 — ¢y 50t (=F)
v c131€i(0‘_5) — czgzei(ﬁ—ﬂ 5% —i—c% )
KTKZ = C?)’ + 8421 633367;((76) — C4$4ei(wfx) .
14 038361(070 _ C43462(X*‘U) S% 4 C?l

The two requests of (quasi) universality and absence of MENsguivalent toK K, ~ 1 ~ KgKg,
translate into, respectively, the identity of diagonahetats and the vanishing of non-diagonal elements.
The conditionKiK,, = 1, in the simple case where the phases, v, § are vanishing, can be visualized
on Fig. 2, which is drawn in the orthonormal flavour basis:

- the two unit vectorge;, s1) and(—ss, c2) are the two dotted vectors;

- the mass eigenstates proportiona(dg —s;) and(se, ¢1) are the two green vectors;

- all vectors are uniguely determined By and 65; the condition under scrutiny is that of finding
these two angles such that the red and blue vedtars-s2) and (s1,c2) (or, equivalently, the mass
eigenstates) beconmethonormal

]

%

Fig. 2: graphical representation of the two conditions ofuarsality and absence of MCNC's;
on the right is a “Cabibbo-like” solutiorfy = 6;.



The discussions for neutrinos and for charged leptons tsinijar, we proceed with the former.
e Quasi-universality is satisfied fef + s3 = c3 + s? < ¢ = c3 which requireds ~ +6; + kr (a).
e The quasi-absence of MCNC's requires

x either:ci sy = casy (fy) andei(@=9) = ¢i(B=7) (1)),

% OF €151 = —C89 (g,) ande’(@=9) = —¢iB=7) (g,).
(f) requires eithef, ~ 6, +nx (b), orfy ~ —6,+7/2+nm (c), while (q) requires eithefy = —0;+nm
(d) orf = 6, + w/2 + nm (e). The different cases to consider are accordingly(&) U (f,), (&) U (c)
U (f), (@)U (d) U (g,) and (a)u (e) U (a,).

The solutions of (a) (b) U (f,) and (a)u (d) U (g,) are
(a)U(b)U(fz) : 92:61+/<:7r0r{01:(/<:—n) ,62:(k+n)g:—91+kﬂ'},
(@ U(d)U(g) : 0r=—0,+kror{f =(n— k)g,@ = (n+ k)g —6,+kr}.  (15)

The solutions of (a) (c) U (f,) and (a)u (e) U (g,) are

@U@U(F)  {fi=7+m—k)g.00= 7 +n+k)T =0 +kr),
(@)U (e)U(g,) {912—%+(/€— )2,92=%+(k+n)g:—91+kw}. (16)

There exist accordingly two sets of solutions:

x Cabibbo-like solutiong, = +6; + k= for which the equations for universality and for the absence

of MCNC's coincide: the(61, 62) surfaces defined bzyrf = c% andcis; = cys9 intersect along a line,
which yields a one parameter solution (with a single, untaimed, mixing angle).

x Cases for which the two equations are independent: the trfacss (one of which can be checked

to always present a saddle point in the vicinity of the irdeti®ns) intersect at discrete points.

B2

Fig. 3: graphical solution of the two conditions of univelisaand absence of MCNC

The set of all solutions is depicted on Fig. 3 (in which theditians () or (g,) are supposed to be

realized). It is made of the entire red and blue liresll black and white dots. The blue and red lines
correspond respectively th = 6, + kw andfy, = —6; + kx (conditions (a), (b) or (d)). They represent

the Cabibbo-like situations. They cross (white dots) atdiserete values /2 + kx of 6; andf,. The



brown and green lines correspond respectivelysto= 7/2 + 61 + kn (c) andfy = 7/2 — 61 + kn
(e). Their intersections (black dots) with the blue or reed (on which in particular condition (a) holds)
provide the maximal mixing solutionsr /4 + nw /2.

Note thatf; » ~ 0, 7 are allowed for physical non-degenerate particles. Theas0 means that mass
and flavour eigenstates are exactly aligned (which is usaabumed for charged leptons).

Though discrete solutions are also located on red or bles liliey should not be mixed up with Cabibbo-
like solutions: the former are one-parameter solutionslesthe latter depend on two parameters.

Both types, when exact, can be shrunk, by rephasing the desnito a single mixing angle which is
unconstrained for Cabibbo-like cases and has fixed valuestiiers. We give below a Cabibbo-like

example® . Forfy, = 0, + 7 ande®=®) = ¢/(v=F) = ¢ (j.e. for conditions (b)J (f,)), or 6, = —6;
ande!(0—9) = (=0 = ¢ (j.e. for conditions (d)U (gy)), one has
e_' Vem | _ C?s(—ﬂl) sin(—#6,) Vef . 17)
e Bvm —sin(—61) cos(—6) —e®u,

So doing, for allexactsolutions,kK,, becomes unitary.

However, exact solutions are purely academic since, fanela the absence of MCNC'’s is expected to
be only approximaté . As for exact universality (a), it is by itself not enough tavie a unique mixing
angle since, in particular, Jjfor (g,) may not be satisfied. Moreover, (a) may be only approximatel
realized. So, in the vicinity of the solutions above, a @nglixing angle is not enough to describe the
system.

Another characteristic of the discrete solutions is thmir $ensitivity to small translations in ttiés, 6;)
plane. If one varies, for exampl,, by e close to a specific point, the I.h.s.’s of the universalitpdition,
(c3 + %) — (¢ + s3) = 0, and of the condition for the absence of MCNGsss + c151 = 0, vary
respectively by-4e cyso ande(c2 — s2). Hence:

- at the discrete valuesiw /2 + n, the universality condition is satisfied @(¢2) while the MCNC
condition is only satisfied & (¢). Referring to Fig. 2, this means that, if one varies:iye angle (which
is then a right angle) between the two white dotted vectbies(tight) angle between the blue and red
vectors (and the one between the green mass eigenstaespaatsby e, while their (unit) lengths are
only altered at(e?);

- at the “maximal mixing” values, the reverse holds: the abseof MCNC'’s is specially enforced; by
the same variation as above, it is now the angle between thane blue vectors (and the one between
the mass eigenstates) which only varies-hywhile their lengths are altered @X(¢);

- outside the set of discrete solutions, in particular fobiBho-like solutions, both variations are
insteadO((e).

The absence of MCNC's is thus specially enforced at maximzaing, while universality is at angles
mm /2 + nm.

As seen on Fig. 1, Cabibbo-like systems, characterized mgéesunconstrained mixing angle, can only
be:

- degenerate particles = 2, (in which casev? = ¢2 andwi = ¢! such that(y), , ¢2,) form an
orthonormal basis);

- “off shell” systems(w'!(z), %?(z)) evaluated at a common scale= ¢2, like quarks, for which the
mixing angle i (z);

- very special systems like the ones satisfying eqs. (81 ){BH].
Physical non-degenerate mesonic systemsiRe- K0 correspond to the other category (non Cabibbo-
like): whenC'P (or exact family symmetry) holds, mixing angles are ideadtand maximum, but when
CP is broken, two angles occur, as shown fjh [7], which are onbselto maximum. Such systems

3Since they lie on the trajectories of Cabibbo-like solusiathis is also a general property of all exact discrete &wiat
“Note that (b)U (f,) or (c) U (g,), which entail the exact absence of MCNC, is enough to hawegiesmixing angle, since
they also entail exact universality (a).



are expected to lie inside the small (2-dimensional) aredhe vicinity of the discrete solutions (the
extended dots of Fig. 3), and not inside 1-dimensional deftions of exact Cabibbo-like systems, that
stay on the red or blue lines.

3.2.2 Charged weak currentsof mass eigenstates. Short comments on oscillations.

Charged weak currents are coupled thromlg}f(g, the so-called PMNS matrif][9]. Since charged lep-
tons are non-degenerate coupled fermions too, we expketpiieviously obtained for neutrinos, the
occurrence of a discrete set of mixing angte’d mod /2 and7/2 mod 7. Ky, like K, lies accord-
ingly close to one of the “academic” unitary matrices evolabdve, such thaK,TKg should also be
close to a unitary matrix with a mixing angle in the same selisfrete values . Several cases arise,
the relevance of which with respect to oscillations we wdikiel to briefly discuss:

« if one amongK, and Ky is close to “maximal” and the other close to a multiplerg®, the PMNS
matrix is close to “maximal”;

« if both K, and K, are close to “maximal” with respective mixing angl@ + 1)7/4 and(2n+1)7/4,
the PMNS matrix is close to a matrix with mixing angle—n)7 /2; this includes the diagonal unit matrix
(up to an irrelevant sign) and the antidiagonal unit matrix;

« If both mixing angles ofK;, and K, are close to a multiple of /2, the same result holds.

Let us first stress that, while neutrino oscillations aredained byK,, alone, the detection of neutrinos
on earth always goes through their coupling to charged hesptarhich involves the PMNS matrix. We
will consider two configurations for the latter which bothese able to reproduce the observed solar
electron neutrino deficit on earth.

“Measuring” a PMNS matrix close to maximal for two generaicfavors the first possibility. One
among the two set§/,, v,) and(e™, ™) of leptons has then a maximal mixing, while the mixing angle
of the second is a multiple of /2 (in which case only simple mass-flavour alignment or neaelfqrt
“crossing” can occur). The following picture may then be ceimed. Let us suppose that the flux of
neutrinos stays unperturbed during its travel from theareoitthe sun to the surface of the earth, where
it is detected. This can for example happen if the MikheymirBov-Wolfenstein (MSW) effect{11]
does not operate inside the sun and if, then, vacuum osmillatilo not modify the neutrino spectrum.
Its detection through the charged currents (and, so, tihradlig maximal PMNS matrix) introduces a
coefficient~ +1/1/2, which yields a factoil /2 in the square of the corresponding amplitudel /&
“deficit” occurs though, in reality, no oscillation took pka

Mass-flavour alignment for one fermion species, which isa@frtbe two alternatives leading to this first
possibility, rules out the corresponding oscillationds Ihatural to assume this property for charged lep-
tons (as usually done), since such oscillations cannot@myie observed as soon as one measures their
energy with a precision much higher than their mass-smiitfild]. The emerging picture may appear
coherent, though the asymmetry arising between the twaespetleptons raises questions concerning
the role of the electric charge. Another possible weaknésisi®point of view lies in the importance
acquired by the measuring process through which, furthegntbe determination of the PMNS matrix
cannot be truly asserted.

Now, we would like to point out that the following scenariojtiva PMNS matrix~ diag(1,1), is
possible as well. This belongs to the second possibilithadriginal list, and accordingly provides
a symmetric treatment of neutral and charged leptons, wihith have maximal mixing. In this case,
we are led instead to consider that neutrinos do oscillatbeir travel from the core of the sun to the
earth. So, with respect to what is expected from solar modetsodified flux ofv.,,, reaches the earth,
which can for example be altered by a factor-1/1/2. These neutrinos then diagonally couple, in the
detector, to charged leptons with the coefficiemtccurring now in the PMNS matrix, such that a global
factor1/2 again occurs in the (amplitude)t can rightly be interpreted as “neutrino oscillations”.

SAfter convenient rephasing of the fermions (SE (7)), béthand K, become close to unitary matrices with respective
mixing angled), andé, ; the PMNS matrix is then close to a unitary matrix with an@e— 6.).
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This treatment avoids the slightly opportunistic evictmfrelectron-muon oscillations that occurred be-
fore, and which is not mandatory: it indeed undoubtedly $emdpotential such oscillations, which can
appear problematic, but can be argued away, as alreadyiregaccording to[[10]. Charged currents
now differ from those in the quark sector by a stronger suggiom of their off-diagonal components as
compared with the ones obtained from the CKM matrix.

The two scenarii just described, which differ, seem needetts to lead to the same conclusipe, the
observed depletion of electronic solar neutrinos on edbiscriminating between them (and others ?)
needs a more careful investigation which lies beyond thpesob this work.

As for the third possibility, it can easily be shown neverdad to any neutrino deficit. Thus, the maximal
character ofK,, which is common to the first two cases, appears as the essigiedient for the
occurrence of this phenomenon.

4 Neutral mesons

Neutral kaons are composite states, and any Lagrangialintiatto their description can only be effec-
tive. A similar propagator formalism can nevertheless tygiag [11[8].

The second order electroweak transitions, which coufleto K°, are family changing transitions in
whichd ands quarks get swapped. WhéhP is conserved, th&) and K9 mass eigenstates, respectively
symmetric and antisymmetric with respectdo— s family exchange, correspond to exact maximal
mixing. They form an orthonormal basis and no spurious steters.C' P violation alters this situation:
the C P violating parameters;, andeg for K, and Kg mass eigenstates slightly differ due to their mass
splitting and the Hamiltonian is no longer normal. Insidetea or out space mass eigenstates no longer
form orthonormal basis whil@ andout mass eigenstates, which differ, form a bi-orthogonal basis

The striking similarity between the latter and neutrinoggasts that the symmetry by exchange of fam-
ilies (universality) plays an important role in the natufgbysical states.

Composite states (mesons) are however more complex thdafental particles. Indeed, while the
underlying electroweak theory for quarks does satisfy titerea of universality and absence of flavour
/ mass changing neutral currents, the corresponding twestgpconditions are not directly available in
an effective theory for neutral kaons alone. Whether or imey tould be implemented in a larger frame
of an effective theory for all scalar and pseudoscalar mmsarnwhich a general mass matrix in flavour
space should be diagonalized (see for exanjple [12]), isthdmming matter of investigation.

5 Conclusion

In this short note, we have proposed an enlargement of thimgnscheme between mass and flavour
eigenstates, which incorporates the peculiarity of bothtnmes and neutral kaons that their mixing
angles are close to maximal. In continuation [3f [[7][8] we éxahown that, in quantum field theory,
the mixing matrices of on-shell coupled mass-split ferrsishould not be parametrized as unitary. The
physics of two massive neutrinos is then not that of a singléng angle, but of two. A new family
of discrete mixing angles then springs out, among whichthesquasi-maximal mixing observed for
neutrinos and neutral kaons. When two different mixing esgire concerned, the naife — 6,
(“Cabibbo”) limit does not exist, which explains how disi&eolutions can easily be overlooked.

The role of family exchange symmetry has been emphasizesl g&heralization of this simple exercise
to more than two flavours will be the subject of a subsequemkwOther aspects of coupled fermionic
systems will also appear if [13].
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Appendix

A Themassmatrix in electroweak physics

The Yukawa couplings between fermions and$ti&2) Higgs doublet yield mass terms which write (we
take the example ai-type quarks)wu—fLMuwufR, to which are always added their complex conjugate
MMMWL (in order to make the corresponding operator in the Lageangermitian) ., ;;, denotes
the vector(uyr, cyr, th)T of left-handed flavour eigenstates, s its right counterpart.

The usual way to make the CKM matrix appear in the weak bargdragan is to diagonalize the
complex and potentially non-hermitiail,, by a bi-unitary transformatio’; AZ,V,, = D,,. One ac-
cordingly definesquark masses as the square roots of the (real positive)vaiges of the hermi-
tian M, M, and M;}M,. They accordingly differ from the eigenvalues af, or M, and they are
real positive (thus presumably not suitable to describdaltes fermions). The CKM matrix, which
acts on left-handed quarks, Is = Uiu, (the d subscript is attached td-like quarks). The mix-
ing matricesV,, and V; for right-handed quarks do not appear in the bare electlovi@grangian
(right handed quarks do not couple to weak gauge bosons airdvttorial couplings to other gauge
fields are, like their kinetic terms, invariant by any unjtéransformation). Both initial mass term and
its complex conjugate are diagonalized by the same bitynitansformation, and they rewrité)(,
being real)(Uivu ) Du(Vilusr) + (Vatbusr) Du(Udtbusr). Two different mass bases then oceur,
YumL = Ugwqu for left fermions andyymr = VJ%fR for right fermions, in terms of which the mass
term finally takes the following form .. Dy XumRk + XemrDPuwW¥umi, Which is that of a set of Dirac

fermions built from the two sets of Weyl fermions,,,,;, andx..»r. Kinetic terms can also be rewritten
as the ones of these Dirac fermions.

Another (equivalent) argument uses fgwar decomposition theoregtating that any complex matrix can
always be written as the product of an hermitian matrix timesitary matrix\M,, = H,WW,. One then
absorbs the unitary matri®’, into the right-handed fermionéufR = Wy rr, arguing again that they
do not couple to the weak gauge bosons, and one is left withnaitien mass matri{[3417,, which can

be diagonalized with a single unitary matfi% . The mass term then becon(eléizpqu)Du(UMufR).
As already mentioned, the kinetic terms for right-handethfens, which are insensitive to any unitary
transformation, are in particular unaffected by their fadigon. Like before, the mass bases for right-
and left-handed fermions differ.

Thus, when the mass matrix is non-hermitian, two types ofigiratrices have to be introduced for left
and right fermions. The flavour content of the two spinors imgkip mass eigenstates is then different,
unlike what occurs (by convention) for bispinor flavour @igites. If one rather sticks to identical
transformations for left and right fermions, the mass t€nm; M, u i + $urr M, 1 generated by
the coupling to the Higgs doublet includesaterm proportional ta\/,, — M, which must be taken into
account. A certain type of left-right symmetry is thus seehbé broken.

The necessary transformation of right fermions plays a ablhe quantum level (in the renormalized
Lagrangian) because they do couple to weak gauge bosonsnatiiative corrections are included (at

orderg?) [f§].

B Unitarity for an effective C P-violating theory of neutral kaons [[7]

The following simple exercise can be done for neutral kaatéch proves that thé&'; — K, transition
amplitude stays unaltered by off-diagonal transitionsthechon-orthogonality of mass eigenstates. This
happens, as proved ifi [7], when their téi@ violation parameters are differeat # es.
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Consider first the simplest possible theory of an (uncoypleitjue generic kaolk'; the only possible
transition is that ofK" into itself, with, of course, probability. The propagaton of K is that of a free
field.

Consider now the effective theory for the coupl§ — K0 system withC' P violation like in [4]- Onone
side, since(;, and K g are mass-split and no particle can carry away the missingemea kK; — Kg
on-shell decay, the only open channel for the evolutio& gfis itself. On the other side, the Lagrangian
includes aK;, — Kg operator[|K5 >in out < Kp| — | KL >in out< K5|} with a coefficientl’(z) given

in eq. (114) of [¥], andk;, and K5 are not orthogonal,: < Ks | Kz >in = —out < K1, | Kg >in =

H(E-8)—vroas— e

Arr, and Ay g (see Fig. 4) are the V-resummed diagohgl — K; and mixedK; — Kg propagators;
A = A <1+V%A2) andA;s = A (%)1 whereA ~ A; ~ Ag is the “average” neutral kaon
propagator.

The non-orthogonality of(;, and K g entails that any ingoing or outgoing;, has a non-zerds com-
ponent, andrice versa This brings additional corrections #y,;, andAjg, such that thé({; — K and
K — Kg full propagators are finally given b, and Bys (we limited the expansion &b (v?) for

Brr).

K, Koo K, Ks K, K Kg K, K, Kq Ke K,
Bu = X + ——x + —X  * —8—X
=L L 0] =U
Fig. 4. K — K transitions

In the expression of (z) (eq. (114) in [J]):

- b(2) andc(z), which describef® — K0 transitions, are of second ordgr*) in the weak interactions;

- eive(z) & emiap(z) (the corrections due tG'P violation are proportional Qe + i) (e™b(2) +

e c(2)));

-D(2) =14+ 0O(?), a(z) = ﬁ;

- the coefficient which factorizes(z) is the same&u as above.

Sincea(z) in the diagonal part of the inverse propagai¢s) ~ ﬁ and since one can approximate

V(z) ~ ﬁv, one getsd;;, ~ A <ﬁ) andArs ~ —A ( 7%z ); likewise, one findsiss ~ Ay,
and Ags;, ~ —Apg, which finally givesBy; ~ A: it is the “free” kaon propagator, like in a theory
where none of the intricacies due to mass splitting @fél violation (in particular the non-unitarity of
the mixing matrix) occurs. The transition probability fel;, — K, thus stays also unchanged and equal
to 1: no violation of unitarity occurs. If neutral kaons are giveomplex(mass)? to account for their
instability, the probability is no longer conserved, busthkiolation of unitarity is unrelated with the

peculiarities of the mixing matrix.

5No confusion should arise with asymptotic states of the ®iman andout states denote here the right and left eigenvec-
tors of the kaon propagator, which is non-normal wki&R is broken.
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