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1 Introduction

The observed large mixing angles in the neutrino sector havealready long been a matter of surprise and
questioning [1][2]. Symmetries [3] have been invoked, which should be approximate since the mixing
is only close to maximal, various “textures” of mass matrices have been proposed [4], [5] which are not
fully satisfying either, and furthermore unstable by unitary transformations on flavour eigenstates [6].

In the while, theCP violating parametersǫL andǫS of the physical neutral kaonsKL andKS have been
shown [7][8], using the propagator formalism of quantum field theory, not to be rigorously identical.
This amounts to a tiny lack of unitarity in the mixing matrices linking “in” (or “out”) mass eigenstates to
the orthonormal basis of flavour eigenstates. Phrased in another way, mixing matrices of physical kaons
cannot be parametrized with a single mixing angle. It was also shown that systems of this type should
not be described by a single constant mass matrix and that their mass eigenstates cannot be correctly
determined by a bi-unitary transformation.

In this note we establish a link between these two peculiarities and show they are among general proper-
ties of non-degenerate coupled systems of particles.

2 General framework

2.1 Flavour and mass eigenstates

Since their couplings to the Higgs boson are not flavor-diagonal, massive fermions in the standard model
form coupled systems (like neutral kaons). The usual approach to such systems makes use of a mass
matrix (see appendix A). It was however shown in [7][8] that it is an inadequate procedure: indeed, a
(constant) mass matrix can only be introduced as a linear approximation to the inverse propagator in the
vicinity of each of its poles, such that, in the case under study, as many mass matrices as there are poles
should be considered. This is why we stick below to basic principles of quantum field theory, which state
in particular that the physical masses of particles, bosonsor fermions, can only be the poles of their full
propagator. The corresponding eigenstates – the propagating states – are the mass / spin eigenstates of
the Lorentz-Poincaré group.

Two bases play a fundamental role, in particular in the electroweak physics of leptons: the2nf flavour
eigenstates1 (e−f , µ

−
f , νe,f , νµ,f . . .) which, by convention, couple to weak vector bosons, and the2nf

propagating eigenstates (e−m, µ
−
m, νe,m, νµ,m . . .), which are also the mass eigenstates. At the classical

level only left-handed flavour fermions weakly couple, but the situation changes when quantum correc-
tions are included.

Thephysical masseszi = m2
i satisfy by definition the gauge invariant pole equation (thevariablez is

used forq2)
det∆−1(z) = 0, for z = zi, (1)

where∆(z) is the full (renormalized)2nf × 2nf matrix propagator in momentum space. The solutions
of (1) are independent of the renormalization procedure. The propagating (mass) eigenstatesϕi

m are the
corresponding eigenvectors with vanishing eigenvalues

∆−1(z = zi)ϕ
i
m = 0. (2)

It is also convenient to introduce∆−1(z) = L(2)(z) as the renormalized quadratic Lagrangian operator.
(1) then reads

detL(2)(z) = 0, (3)

and the mass eigenstates satisfy the equation (equivalent to (2))

L(2)(z = zi)ϕ
i
m = 0. (4)

1
nf denotes here the number of families.
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The situation is accordingly that of az dependent2nf × 2nf matrix L(2)(z), the 2nf eigenvalues
λj(z), j = 1 . . . 2nf of which are supposed non-degenerate and satisfy, by definition of the poleszi
of ∆(z), λi(zi) = 0. At anyz it has2nf eigenvectorsψj(z), j = 1 . . . 2nf . Whenz → zi, ψi(z) → ϕi

m

andψj(z), j 6= i → ωj
i . So, among the2nf eigenvectors ofL(2)(zi) lies the mass eigenstateϕi

m cor-
responding to the vanishing eigenvalue and2nf − 1 other eigenstatesωj

i6=j, that we call spurious [7][8],
and which correspond to non-vanishing eigenvaluesλj(zi), j 6= i. They just represent off-mass-shell
states. The case of two flavors (nf = 1) is depicted on Fig. 1 below.

Mixing matrices link flavour (Ψf ) to mass (Ψm) eigenstates: simplifying tonf = 2 (4 flavors)

Ψf = JΨm, Ψf =





νe,f

νµ,f

e−f
µ−f




, Ψm =





νe,m

νµ,m

e−m
µ−m




, J =

(
Kν

Kℓ

)

, (5)

where we have split every2nf × 2nf matrix into fournf × nf sub-blocks. The entries ofΨm are the
ϕi

m’s of (2) and (4).

The (renormalized) quadratic Lagrangian density isL(2)(x) = ΨfL
(2)(x)Ψf .

Fermions are usually considered as bi-spinors (of Dirac or Majorana types) built from two Weyl spinors
of different chiralities which are also orthogonal to each other. Two sets of different mixing matrices
therefore generally occur, respectively for left and rightspinors (see also appendix A).Kν andKℓ in (5)
must then be also attributed a subscriptL orR depending on which chirality is considered. In order not
to overload the notations, these subscripts will be understood in the following.

2.2 Mixing matrices for mass-split on-shell fermions are not unitary

As already mentioned in [7][8], the connection between flavour eigenstates and non-degenerate mass
eigenstates is not a unitary transformation. Indeed:
in flavour space,L(2)(z) being, at eachz, a hermitian2nf × 2nf operator (matrix), its2nf eigenstates
form an orthonormal basisΨ(z) (because it is in particular normal, left and right eigenstates coincide).
At z = zi = m2

i , < ϕi
m | ϕi

m >= 1 and< ϕi
m | ωj

i , j 6= i >= 0. Thus, at the2nf valuesz = zi, 2nf

different orthonormal bases (of2nf eigenstates) occur. Since two non-degenerate mass eigenstatesϕi
m

andϕk
m belong to two different orthonormal bases, they are in general not orthogonal:

< ϕi
m | ϕk

m > 6= 0, i 6= k. (6)

This being true in the neutral and charged sectors, bothKν andKℓ, which connect the flavour basis to a
non-orthonormal one, have no reasons to be unitary

K†
ℓKℓ 6= 1, K†

νKν 6= 1, q.e.d. (7)

The non-unitarity of mixing matrices does not however jeopardize the unitarity of the theory (see ap-
pendix B). It simply states that, at a givenq2, all physical states cannot be simultaneously on-shell when
they are non-degenerate.

It may happen, for example to describe unstable particles (like neutral kaons), that one is led to introduce
an (effective) Hamiltonian, or Lagrangian, which is non-hermitian, and even non-normal. Then, at each
z, the set of eigenstatesψj(z) do not form any more an orthonormal basis. Spurious states still accom-
pany the mass eigenstate atz = zi. Different mass eigenstates, corresponding to differentzi’s, have no
reason either in this case to form an orthonormal basis, as explicitly checked in [7].

The simplest case of two flavours (nf = 1) is depicted on Fig. 1 which represents either the neutral
kaon system, or, in the cases of two lepton families, the neutrino sector or the charged lepton sector. The
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z-independent flavour basis(ψ1, ψ2) (for example(K0,K0) for neutral kaons) has been represented by
the two horizontal lower lines.

θ1

ψ2

z1
z2

λ2
(z)

λ 2
(z1)

λ1(z2)

λ2 (z2) =0

ω
1
2

φm
1

φ
m
2

1
2

ω

ψ
1

θ(z)

λ1 (z)

θ2

λ1
(z1 ) =0 ψ (z)

1

ψ (z)2

z

ψ

Fig. 1: Eigenstates of a binary coupled system

The two eigenstates of the hermitian (normal) renormalizedpropagatorψ1(z) andψ2(z) form a z-
dependent orthonormal basis. Whenz varies, this builds up an infinite set of orthonormal bases which
is depicted by the two (parallel) curved lines. At a given z, the orthonormal basis(ψ1(z), ψ2(z)) is
connected to the orthonormal flavour basis by a unitary mixing matrix with angleθ(z). At z = z1, ϕ1

m

andω2
1 form an orthonormal basis, and so do, atz = z2, ϕ2

m andω1
2 . They are respectively related to the

basis of flavour eigenstates by two different unitary matrices, with respective anglesθ1 andθ2. ϕ1
m and

ϕ2
m do not form in general an orthonormal basis, and it intuitively appears on the picture that the mixing

matrix connecting them to the flavour basis cannot be parametrized with a single angle (both anglesθ1
andθ2 obviously play a role).

2.3 The case of quarks

(7) applies to states for which the full propagator has poles, corresponding to physical (“on-shell”) prop-
agating states which can be identified with particles. In contrast, quarks are never produced on shell:
the poles of their full propagator are ill-defined and so are accordingly their “physical” masses and mass
splittings. The only unambiguous orthonormal basis which then occurs inL(2) (supposed to be hermi-
tian) is thez dependent basisψj(z). At eachz are associated two unitary,z-dependent mixing matrices
Ku(z) andKd(z). Their unitary productK(z) = K†

u(z)Kd(z) we propose to consider as the equivalent
of the renormalized unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix of the standard approach, in
which the complex mass matricesMu andMd generated by the couplings of quarks to the Higgs boson
are diagonalized by bi-unitary transformations (see also appendix A).

3 Leptonic weak currents

3.1 Fermion coupling to weak gauge bosons

In the flavour basisΨf , the weak Lagrangian reads

3



Lweak = Ψfγ
µ 1 − γ5

2

[
W+

µ T
+ +W−

µ T
− +W 3

µT
3
]
Ψf ,

T+ =

(
1
)

, T− =

(

1

)

, T 3 =

(
1

−1

)

. (8)

T±, T 3 form a representation of theSU(2) group of weak interactions:[T+, T−] = T 3, etc. In the
orthonormal basisΨ(z) one finds anotherSU(2) representation[T̂+(z), T̂−(z)] = T̂ 3(z):

Lweak = Ψ(z)γµ 1 − γ5

2

[
W+

µ T̂
+(z) +W−

µ T̂
−(z) +W 3

µ T̂
3(z)

]
Ψ(z),

T̂+ =

(
K†

ν(z)Kℓ(z)
)
, T̂− =

(

K†
ℓ (z)Kν(z)

)
, T̂ 3 =

(
1

−1

)
. (9)

In the non-orthonormal basisΨm of mass eigenstates, (8) becomes

Lweak = Ψmγ
µ 1 − γ5

2

[
W+

µ T
+ +W−

µ T
− +W 3

µT
3
]
Ψm, T

i = J†T iJ,

T
+ =

(
K†

νKℓ

)
,T− =

(

K†
ℓKν

)
,T3 =

(
K†

νKν

−K†
ℓKℓ

)
(10)

and, because of (7), theSU(2) commutation relations are not systematically satisfied by the T’s (and
Ψm does not simply decompose into twoSU(2) doublets).

Kν is related toKν(z1) andKν(z2) by

Kν =
1

Kν[22](z1)Kν[11](z2) −Kν[12](z1)Kν[21](z2)

(
Dν(z1)Kν[11](z2) Dν(z2)Kν[12](z1)

Dν(z1)Kν[21](z2) Dν(z2)Kν[22](z1)

)
,

Dν(z) = detKν(z), z1 = m2
νem

, z2 = m2
νµm

. (11)

The following exact relations

< ϕ1
m |ψ1 >= K[11](z1), < ϕ2

m |ψ1 >= K[12](z2), < ϕ1
m |ψ2 >= K[21](z1), < ϕ2

m |ψ2 >= K[22](z2),
(12)

also hold, which become compatible with the approximate formula

Kν ≃
(
Kν[11](z1) Kν[12](z2)

Kν[21](z1) Kν[22](z2)

)

(13)

when one neglects the scalar products< ϕ1
m | ϕ2

m > supposed to be small. Whenz2 → z1, (12) and (13)
give back a unitary mixing matrixKν(z1) ≡ limz2→z1

Kν . This shows the role of the non-degeneracy
in the non-unitarity ofKν .

3.2 Weak currents

It is remarkable, but often unnoticed that, in the quark sector of the standard model, with unitaryKu and
Kd

2 , the built-in characteristic of the weak Lagrangian that the couplings of flavour fermions to gauge
bosons are symmetric by the exchange of families, translates into a similar property for mass states,
without any constraint on the (then unique) mixing angle. The same holds concerning the absence of
flavour changing neutral currents.

2
Ku andKd are the mixing matrices respectively foru-type andd-type quarks.
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The situation becomes different for mass-split physical states. Considering the case of two families,
when a single mixing angle is not enough to describe the system, the symmetry by exchange of families
for mass states (that we call universality for mass states) and the absence of “mass changing neutral
currents” (MCNC’s) are no longer automatically achieved. They instead require well defined relations
between mixing angles. We demonstrate below that, within each2× 2 subspace of given electric charge,
they constrain the two mixing angles to be: eitherπ/2 mod π, or π/4 mod π/2. In the first case the
family indices of flavour and mass states are either identical or crossed. The last case corresponds to the
“maximal mixing” (approximately) observed for neutrinos and for neutral kaons. Mass eigenstates are
then symmetric or antisymmetric by family exchange (for example so are thePC eigenstatesK0±K0).
Maximal mixing accordingly realizes universality in both spaces of flavour and mass eigenstates.

3.2.1 Neutral weak currents of mass eigenstates

We deal with weak currents of mass eigenstates and investigate the property that MCNC’s are very small
and that their diagonal counterparts are quasi-universal.Allowing a lack of unitarity (7), we parametrize,
with transparent notations (preserving a unit norm for all states and discarding irrelevant global phases)

Kν =

(
eiαc1 eiδs1

−eiβs2 eiγc2

)
, Kℓ =

(
eiθc3 eiζs3

−eiχs4 eiωc4

)
. (14)

Note that[Kν ,K
†
ν ] 6= 0: Kν andKℓ are not normal. (14) entails

K†
νKν =

(
c21 + s22 c1s1e

i(δ−α) − c2s2e
i(γ−β)

c1s1e
i(α−δ) − c2s2e

i(β−γ) s21 + c22

)
,

K†
ℓKℓ =

(
c23 + s24 c3s3e

i(ζ−θ) − c4s4e
i(ω−χ)

c3s3e
i(θ−ζ) − c4s4e

i(χ−ω) s23 + c24

)
.

The two requests of (quasi) universality and absence of MCNC’s, equivalent toK†
νKν ≈ 1 ≈ K†

ℓKℓ,
translate into, respectively, the identity of diagonal elements and the vanishing of non-diagonal elements.
The conditionK†

νKν = 1, in the simple case where the phasesα, β, γ, δ are vanishing, can be visualized
on Fig. 2, which is drawn in the orthonormal flavour basis:

- the two unit vectors(c1, s1) and(−s2, c2) are the two dotted vectors;
- the mass eigenstates proportional to(c2,−s1) and(s2, c1) are the two green vectors;
- all vectors are uniquely determined byθ1 and θ2; the condition under scrutiny is that of finding

these two angles such that the red and blue vectors(c1,−s2) and (s1, c2) (or, equivalently, the mass
eigenstates) becomeorthonormal.

1
m

φ

φ2
m

θ

θ

2

1

φ2
m

1
m

φ

θ1

θ1

Fig. 2: graphical representation of the two conditions of universality and absence of MCNC’s;
on the right is a “Cabibbo-like” solutionθ2 = θ1.
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The discussions for neutrinos and for charged leptons beingsimilar, we proceed with the former.

• Quasi-universality is satisfied forc21 + s22 = c22 + s21 ⇔ c21 = c22 which requiresθ2 ≈ ±θ1 + kπ (a).

• The quasi-absence of MCNC’s requires

∗ either:c1s1 = c2s2 (f1) andei(α−δ) = ei(β−γ) (f2),
∗ or: c1s1 = −c2s2 (g1) andei(α−δ) = −ei(β−γ) (g2).

(f1) requires eitherθ2 ≈ θ1+nπ (b), orθ2 ≈ −θ1+π/2+nπ (c), while (g1) requires eitherθ2 = −θ1+nπ
(d) or θ2 = θ1 + π/2 + nπ (e). The different cases to consider are accordingly (a)∪ (b) ∪ (f2), (a)∪ (c)
∪ (f2), (a)∪ (d)∪ (g2) and (a)∪ (e)∪ (g2).
The solutions of (a)∪ (b) ∪ (f2) and (a)∪ (d) ∪ (g2) are

(a) ∪ (b) ∪ (f 2) : θ2 = θ1 + kπ or
{
θ1 = (k − n)

π

2
, θ2 = (k + n)

π

2
= −θ1 + kπ

}
,

(a) ∪ (d) ∪ (g2) : θ2 = −θ1 + kπ or
{
θ1 = (n− k)

π

2
, θ2 = (n+ k)

π

2
= θ1 + kπ

}
. (15)

The solutions of (a)∪ (c)∪ (f2) and (a)∪ (e)∪ (g2) are

(a) ∪ (c) ∪ (f 2) :
{
θ1 =

π

4
+ (n− k)

π

2
, θ2 =

π

4
+ (n + k)

π

2
= θ1 + kπ

}
,

(a) ∪ (e) ∪ (g2) :
{
θ1 = −π

4
+ (k − n)

π

2
, θ2 =

π

4
+ (k + n)

π

2
= −θ1 + kπ

}
. (16)

There exist accordingly two sets of solutions:

∗ Cabibbo-like solutionsθ2 = ±θ1 + kπ for which the equations for universality and for the absence
of MCNC’s coincide: the(θ1, θ2) surfaces defined byc21 = c22 andc1s1 = c2s2 intersect along a line,
which yields a one parameter solution (with a single, unconstrained, mixing angle).

∗ Cases for which the two equations are independent: the two surfaces (one of which can be checked
to always present a saddle point in the vicinity of the intersections) intersect at discrete points.
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π 2π0

π

2π

θ

θ

2

1

Fig. 3: graphical solution of the two conditions of universality and absence of MCNC

The set of all solutions is depicted on Fig. 3 (in which the conditions (f2) or (g2) are supposed to be
realized). It is made of the entire red and blue lines+ all black and white dots. The blue and red lines
correspond respectively toθ2 = θ1 + kπ andθ2 = −θ1 + kπ (conditions (a), (b) or (d)). They represent
the Cabibbo-like situations. They cross (white dots) at thediscrete valuesπ/2 + kπ of θ1 andθ2. The
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brown and green lines correspond respectively toθ2 = π/2 + θ1 + kπ (c) andθ2 = π/2 − θ1 + kπ
(e). Their intersections (black dots) with the blue or red lines (on which in particular condition (a) holds)
provide the maximal mixing solutions±π/4 + nπ/2.
Note thatθ1,2 ≈ 0, π are allowed for physical non-degenerate particles. The case θ = 0 means that mass
and flavour eigenstates are exactly aligned (which is usually assumed for charged leptons).

Though discrete solutions are also located on red or blue lines, they should not be mixed up with Cabibbo-
like solutions: the former are one-parameter solutions, while the latter depend on two parameters.

Both types, when exact, can be shrunk, by rephasing the fermions, to a single mixing angle which is
unconstrained for Cabibbo-like cases and has fixed values for others. We give below a Cabibbo-like
example3 . For θ2 = θ1 + π andei(δ−α) = ei(γ−β) = eiξ (i.e. for conditions (b)∪ (f2)), or θ2 = −θ1
andei(δ−α) = −ei(γ−β) = eiξ (i.e. for conditions (d)∪ (g2)), one has

(
e−iανem

e−iβνµm

)
=

(
cos(−θ1) sin(−θ1)

− sin(−θ1) cos(−θ1)

)(
νef

−eiξνµf

)
. (17)

So doing, for allexactsolutions,Kν becomes unitary.

However, exact solutions are purely academic since, for example, the absence of MCNC’s is expected to
be only approximate4 . As for exact universality (a), it is by itself not enough to have a unique mixing
angle since, in particular, (f2) or (g2) may not be satisfied. Moreover, (a) may be only approximately
realized. So, in the vicinity of the solutions above, a single mixing angle is not enough to describe the
system.

Another characteristic of the discrete solutions is their low sensitivity to small translations in the(θ2, θ1)
plane. If one varies, for example,θ2, by ǫ close to a specific point, the l.h.s.’s of the universality condition,
(c22 + s21) − (c21 + s22) = 0, and of the condition for the absence of MCNC’s,c2s2 ± c1s1 = 0, vary
respectively by−4ǫ c2s2 andǫ(c22 − s22). Hence:

- at the discrete valuesmπ/2 + nπ, the universality condition is satisfied atO(ǫ2) while the MCNC
condition is only satisfied atO(ǫ). Referring to Fig. 2, this means that, if one varies byǫ the angle (which
is then a right angle) between the two white dotted vectors, the (right) angle between the blue and red
vectors (and the one between the green mass eigenstates) also vary byǫ, while their (unit) lengths are
only altered atO(ǫ2);

- at the “maximal mixing” values, the reverse holds: the absence of MCNC’s is specially enforced; by
the same variation as above, it is now the angle between the red and blue vectors (and the one between
the mass eigenstates) which only varies byǫ2, while their lengths are altered atO(ǫ);

- outside the set of discrete solutions, in particular for Cabibbo-like solutions, both variations are
insteadO(ǫ).
The absence of MCNC’s is thus specially enforced at maximal mixing, while universality is at angles
mπ/2 + nπ.

As seen on Fig. 1, Cabibbo-like systems, characterized by a single unconstrained mixing angle, can only
be:

- degenerate particlesz1 = z2 (in which caseω2
1 = ϕ2

m andω1
2 = ϕ1

m such that(ϕ1
m, ϕ

2
m) form an

orthonormal basis);
- “off shell” systems(ψ1(z), ψ2(z)) evaluated at a common scalez = q2, like quarks, for which the

mixing angle isθ(z);
- very special systems like the ones satisfying eqs. (81)(82) of [7].

Physical non-degenerate mesonic systems likeK0 −K0 correspond to the other category (non Cabibbo-
like): whenCP (or exact family symmetry) holds, mixing angles are identical and maximum, but when
CP is broken, two angles occur, as shown in [7], which are only close to maximum. Such systems

3Since they lie on the trajectories of Cabibbo-like solutions, this is also a general property of all exact discrete solutions.
4Note that (b)∪ (f2) or (c)∪ (g2), which entail the exact absence of MCNC, is enough to have a single mixing angle, since

they also entail exact universality (a).
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are expected to lie inside the small (2-dimensional) areas in the vicinity of the discrete solutions (the
extended dots of Fig. 3), and not inside 1-dimensional deformations of exact Cabibbo-like systems, that
stay on the red or blue lines.

3.2.2 Charged weak currents of mass eigenstates. Short comments on oscillations.

Charged weak currents are coupled throughK†
νKℓ, the so-called PMNS matrix [9]. Since charged lep-

tons are non-degenerate coupled fermions too, we expect, like previously obtained for neutrinos, the
occurrence of a discrete set of mixing anglesπ/4 modπ/2 andπ/2 modπ. Kℓ, like Kν , lies accord-
ingly close to one of the “academic” unitary matrices evokedabove, such thatK†

νKℓ should also be
close to a unitary matrix with a mixing angle in the same set ofdiscrete values5 . Several cases arise,
the relevance of which with respect to oscillations we wouldlike to briefly discuss:

∗ if one amongKν andKℓ is close to “maximal” and the other close to a multiple ofπ/2, the PMNS
matrix is close to “maximal”;

∗ if bothKℓ andKν are close to “maximal” with respective mixing angles(2k+1)π/4 and(2n+1)π/4,
the PMNS matrix is close to a matrix with mixing angle(k−n)π/2; this includes the diagonal unit matrix
(up to an irrelevant sign) and the antidiagonal unit matrix;

∗ if both mixing angles ofKℓ andKν are close to a multiple ofπ/2, the same result holds.

Let us first stress that, while neutrino oscillations are determined byKν alone, the detection of neutrinos
on earth always goes through their coupling to charged leptons, which involves the PMNS matrix. We
will consider two configurations for the latter which both seem able to reproduce the observed solar
electron neutrino deficit on earth.

“Measuring” a PMNS matrix close to maximal for two generations favors the first possibility. One
among the two sets(νe, νµ) and(e−, µ−) of leptons has then a maximal mixing, while the mixing angle
of the second is a multiple ofπ/2 (in which case only simple mass-flavour alignment or nearly perfect
“crossing” can occur). The following picture may then be conceived. Let us suppose that the flux of
neutrinos stays unperturbed during its travel from the center of the sun to the surface of the earth, where
it is detected. This can for example happen if the Mikheyev-Smirnov-Wolfenstein (MSW) effect [11]
does not operate inside the sun and if, then, vacuum oscillations do not modify the neutrino spectrum.
Its detection through the charged currents (and, so, through the maximal PMNS matrix) introduces a
coefficient≈ ±1/

√
2, which yields a factor1/2 in the square of the corresponding amplitude. A1/2

“deficit” occurs though, in reality, no oscillation took place.
Mass-flavour alignment for one fermion species, which is oneof the two alternatives leading to this first
possibility, rules out the corresponding oscillations. Itis natural to assume this property for charged lep-
tons (as usually done), since such oscillations cannot anyhow be observed as soon as one measures their
energy with a precision much higher than their mass-splitting [10]. The emerging picture may appear
coherent, though the asymmetry arising between the two species of leptons raises questions concerning
the role of the electric charge. Another possible weakness of this point of view lies in the importance
acquired by the measuring process through which, furthermore, the determination of the PMNS matrix
cannot be truly asserted.

Now, we would like to point out that the following scenario, with a PMNS matrix≈ diag(1, 1), is
possible as well. This belongs to the second possibility in the original list, and accordingly provides
a symmetric treatment of neutral and charged leptons, whichboth have maximal mixing. In this case,
we are led instead to consider that neutrinos do oscillate intheir travel from the core of the sun to the
earth. So, with respect to what is expected from solar models, a modified flux ofνem reaches the earth,
which can for example be altered by a factor≈ ±1/

√
2. These neutrinos then diagonally couple, in the

detector, to charged leptons with the coefficient1 occurring now in the PMNS matrix, such that a global
factor1/2 again occurs in the (amplitude)2. It can rightly be interpreted as “neutrino oscillations”.

5After convenient rephasing of the fermions (see (17)), bothKℓ andKν become close to unitary matrices with respective
mixing anglesθℓ andθν ; the PMNS matrix is then close to a unitary matrix with angle(θℓ − θν).
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This treatment avoids the slightly opportunistic evictionof electron-muon oscillations that occurred be-
fore, and which is not mandatory: it indeed undoubtedly leads to potential such oscillations, which can
appear problematic, but can be argued away, as already explained, according to [10]. Charged currents
now differ from those in the quark sector by a stronger suppression of their off-diagonal components as
compared with the ones obtained from the CKM matrix.

The two scenarii just described, which differ, seem nevertheless to lead to the same conclusion,i.e. the
observed depletion of electronic solar neutrinos on earth.Discriminating between them (and others ?)
needs a more careful investigation which lies beyond the scope of this work.

As for the third possibility, it can easily be shown never to lead to any neutrino deficit. Thus, the maximal
character ofKν , which is common to the first two cases, appears as the essential ingredient for the
occurrence of this phenomenon.

4 Neutral mesons

Neutral kaons are composite states, and any Lagrangian thatlimits to their description can only be effec-
tive. A similar propagator formalism can nevertheless be applied [7][8].

The second order electroweak transitions, which coupleK0 to K0, are family changing transitions in
whichd ands quarks get swapped. WhenCP is conserved, theK0

1 andK0
2 mass eigenstates, respectively

symmetric and antisymmetric with respect tod ↔ s family exchange, correspond to exact maximal
mixing. They form an orthonormal basis and no spurious stateoccurs.CP violation alters this situation:
theCP violating parametersǫL andǫS for KL andKS mass eigenstates slightly differ due to their mass
splitting and the Hamiltonian is no longer normal. Inside each in or outspace mass eigenstates no longer
form orthonormal basis whilein andout mass eigenstates, which differ, form a bi-orthogonal basis.

The striking similarity between the latter and neutrinos suggests that the symmetry by exchange of fam-
ilies (universality) plays an important role in the nature of physical states.

Composite states (mesons) are however more complex that fundamental particles. Indeed, while the
underlying electroweak theory for quarks does satisfy the criteria of universality and absence of flavour
/ mass changing neutral currents, the corresponding two types of conditions are not directly available in
an effective theory for neutral kaons alone. Whether or not they could be implemented in a larger frame
of an effective theory for all scalar and pseudoscalar mesons, in which a general mass matrix in flavour
space should be diagonalized (see for example [12]), is a forthcoming matter of investigation.

5 Conclusion

In this short note, we have proposed an enlargement of the mixing scheme between mass and flavour
eigenstates, which incorporates the peculiarity of both neutrinos and neutral kaons that their mixing
angles are close to maximal. In continuation of [7][8] we have shown that, in quantum field theory,
the mixing matrices of on-shell coupled mass-split fermions should not be parametrized as unitary. The
physics of two massive neutrinos is then not that of a single mixing angle, but of two. A new family
of discrete mixing angles then springs out, among which liesthe quasi-maximal mixing observed for
neutrinos and neutral kaons. When two different mixing angles are concerned, the naiveθ2 → θ1
(“Cabibbo”) limit does not exist, which explains how discrete solutions can easily be overlooked.
The role of family exchange symmetry has been emphasized. The generalization of this simple exercise
to more than two flavours will be the subject of a subsequent work. Other aspects of coupled fermionic
systems will also appear in [13].

Acknowledgments:Comments and suggestions by O. Babelon, A. Djouadi, O. Lychkovskiy, V.A. Novikov,
L.B. Okun, M.I. Vysotsky and J.B. Zuber are gratefully acknowledged. The authors bear of course full
responsibility for their assertions.
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Appendix

A The mass matrix in electroweak physics

The Yukawa couplings between fermions and theSU(2) Higgs doublet yield mass terms which write (we
take the example ofu-type quarks)ψufLMuψufR, to which are always added their complex conjugate

ψufRM
†
uψufL (in order to make the corresponding operator in the Lagrangian hermitian).ψufL denotes

the vector(ufL, cfL, tfL)T of left-handed flavour eigenstates,ψufR its right counterpart.

The usual way to make the CKM matrix appear in the weak bare Lagrangian is to diagonalize the
complex and potentially non-hermitianMu by a bi-unitary transformationU †

uMuVu = Du. One ac-
cordingly definesquark masses as the square roots of the (real positive) eigenvalues of the hermi-
tian MuM

†
u andM †

uMu. They accordingly differ from the eigenvalues ofMu or M †
u and they are

real positive (thus presumably not suitable to describe unstable fermions). The CKM matrix, which
acts on left-handed quarks, isK = U †

uUd (the d subscript is attached tod-like quarks). The mix-
ing matricesVu and Vd for right-handed quarks do not appear in the bare electroweak Lagrangian
(right handed quarks do not couple to weak gauge bosons and their vectorial couplings to other gauge
fields are, like their kinetic terms, invariant by any unitary transformation). Both initial mass term and
its complex conjugate are diagonalized by the same bi-unitary transformation, and they rewrite (Du

being real)(U †
uψufL)Du(V †

uψufR) + (V †
uψufR)Du(U †

uψufL). Two different mass bases then occur,
ψumL = U †

uψufL for left fermions andχumR = V †
uψufR for right fermions, in terms of which the mass

term finally takes the following form:ψumLDuχumR + χumRDuψumL, which is that of a set of Dirac
fermions built from the two sets of Weyl fermionsψumL andχumR. Kinetic terms can also be rewritten
as the ones of these Dirac fermions.

Another (equivalent) argument uses thepolar decomposition theoremstating that any complex matrix can
always be written as the product of an hermitian matrix timesa unitary matrixMu = HuWu. One then
absorbs the unitary matrixWu into the right-handed fermions̃ψufR = WuψufR, arguing again that they
do not couple to the weak gauge bosons, and one is left with a hermitian mass matrix [14]Hu which can

be diagonalized with a single unitary matrixUu. The mass term then becomes(U †
uψufL)Du(U †

uψ̃ufR).
As already mentioned, the kinetic terms for right-handed fermions, which are insensitive to any unitary
transformation, are in particular unaffected by their redefinition. Like before, the mass bases for right-
and left-handed fermions differ.

Thus, when the mass matrix is non-hermitian, two types of mixing matrices have to be introduced for left
and right fermions. The flavour content of the two spinors making up mass eigenstates is then different,
unlike what occurs (by convention) for bispinor flavour eigenstates. If one rather sticks to identical
transformations for left and right fermions, the mass termψufLMuψufR + ψufRM

†
uψufL generated by

the coupling to the Higgs doublet includes aγ5 term proportional toMu −M †
u which must be taken into

account. A certain type of left-right symmetry is thus seen to be broken.

The necessary transformation of right fermions plays a roleat the quantum level (in the renormalized
Lagrangian) because they do couple to weak gauge bosons whenradiative corrections are included (at
orderg4) [15].

B Unitarity for an effective CP -violating theory of neutral kaons [7]

The following simple exercise can be done for neutral kaons,which proves that theKL → KL transition
amplitude stays unaltered by off-diagonal transitions andthe non-orthogonality of mass eigenstates. This
happens, as proved in [7], when their twoCP violation parameters are differentǫL 6= ǫS.
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Consider first the simplest possible theory of an (uncoupled) unique generic kaonK; the only possible
transition is that ofK into itself, with, of course, probability1. The propagator∆ of K is that of a free
field.

Consider now the effective theory for the coupledK0−K0 system withCP violation like in [7]. On one
side, sinceKL andKS are mass-split and no particle can carry away the missing energy in aKL → KS

on-shell decay, the only open channel for the evolution ofKL is itself. On the other side, the Lagrangian

includes aKL −KS operator
[
|KS >in out< KL| − |KL >in out< KS |

]
with a coefficientV (z) given

in eq. (114) of [7], andKL andKS are not orthogonalout< KS |KL >in = −out< KL |KS >in =

1
2

(
ξS

ξL
− ξL

ξS

)
= υ 6= 0, ξL,S =

√
1−ǫin

L,S

1+ǫin
L,S

. 6

ALL andALS (see Fig. 4) are the V-resummed diagonalKL − KL and mixedKL − KS propagators;

ALL = ∆
(

1
1+V 2∆2

)
andALS = ∆

(
−V ∆

1+V 2∆2

)
, where∆ ≈ ∆L ≈ ∆S is the “average” neutral kaon

propagator.

The non-orthogonality ofKL andKS entails that any ingoing or outgoingKL has a non-zeroKS com-
ponent, andvice versa. This brings additional corrections toALL andALS , such that theKL −KL and
KL − KS full propagators are finally given byBLL andBLS (we limited the expansion atO(υ2) for
BLL).
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Fig. 4: KL → KL transitions

In the expression ofV (z) (eq. (114) in [7]):
- b(z) andc(z), which describeK0 −K0 transitions, are of second order(g4) in the weak interactions;

- eiαc(z)
CP
= e−iαb(z) (the corrections due toCP violation are proportional to(ǫinS + ǫinL )(eiαb(z) +

e−iαc(z)));
- D(z) = 1 + O(ǫ2), a(z) ≈ 1

∆(z) ;
- the coefficient which factorizesa(z) is the same2υ as above.
Sincea(z) in the diagonal part of the inverse propagatora(z) ≈ 1

∆(z) and since one can approximate

V (z) ≈ 1
∆(z) υ, one getsALL ≈ ∆

(
1

1+υ2

)
andALS ≈ −∆

(
υ

1+υ2

)
; likewise, one findsASS ≈ ALL

andASL ≈ −ALS , which finally givesBLL ≈ ∆: it is the “free” kaon propagator, like in a theory
where none of the intricacies due to mass splitting andCP violation (in particular the non-unitarity of
the mixing matrix) occurs. The transition probability forKL → KL thus stays also unchanged and equal
to 1: no violation of unitarity occurs. If neutral kaons are given complex(mass)2 to account for their
instability, the probability is no longer conserved, but this violation of unitarity is unrelated with the
peculiarities of the mixing matrix.

6No confusion should arise with asymptotic states of the S-matrix: in andout states denote here the right and left eigenvec-
tors of the kaon propagator, which is non-normal whenCP is broken.
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