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Abstract

In the framework of regression model with (known) random design, we prove
that estimators of wavelet coefficients of the unknown regression function
satisfy a strong large deviation inequality. This result can be used to show
several statistical properties concerning a wavelet block thresholding estima-
tor.
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1 Motivation

Wavelets have been shown to be a very successful tool in the framework of
nonparametric function estimation. They provide adaptive estimators which
enjoy good theoretical and practical properties.

In the present paper, we focus our attention on the regression model with
(known) random design. We show that estimators of wavelet coefficients of
the unknown regression function satisfy a strong large deviation inequality.

Thanks to this inequality, we can apply several general results established
in the literature concerning the performances of a L

p version of an adaptive
wavelet block thresholding estimator. It has been initially developed by Cai
(1997, 2002) in the framework of the regression model with deterministic eq-
uispaced data. Among the numerous consequences of our inequality, we can



Regression with Random Design and Wavelet Block Thresholding 2

show that the considered BlockShrink construction provides adaptive confi-
dence intervals under the local L

p risk and that it achieves (near) minimax
rates of convergence over Besov balls under the global L

p risk.

The paper is organized as follows. Section 2 describes wavelet bases.
Section 3 presents the model and the main result of the paper. Some appli-
cations are described in Section 4. Section 5 contains a detailed proof of the
main result.

2 Wavelets

We consider an orthonormal wavelet basis generated by dilation and transla-
tion of a compactly supported ”father” wavelet φ and a compactly supported
”mother” wavelet ψ. For the purposes of this paper, we use the periodized
wavelets bases on the unit interval. Let us set

φj,k = 2j/2φ(2jx− k), ψj,k = 2j/2ψ(2jx− k).

And let us denote the periodized wavelets by φper
j,k (x) =

∑

l∈Z
φj,k(x − l),

ψper
j,k (x) =

∑

l∈Z
ψj,k(x − l), x ∈ [0, 1]. There exists an integer τ such that

the collection ζ = {φper
j,k (x), k = 0, ..., 2τ − 1; ψper

j,k (x), j = τ, ...,∞, k =

0, ..., 2j − 1} constitutes an orthonormal basis of L
2([0, 1]). The superscript

”per” will be suppressed from the notations for convenience.

For any integer l ≥ τ , a square-integrable function on [0, 1] can be ex-
panded into a wavelet series

f(x) =
2l−1
∑

k=0

αl,kφl,k(x) +
∞

∑

j=l

2j−1
∑

k=0

βj,kψj,k(x),

where αj,k =
∫ 1

0
f(x)φj,k(x)dx, βj,k =

∫ 1

0
f(x)ψj,k(x)dx.

For further details about wavelets, see Meyer (1990) and Cohen et al. (1993).

Since ψ is compactly supported, the following property of concentration
holds : there exists a constant C > 0 such that, for any m > 0 and any
x ∈ [0, 1], we have

2j−1
∑

k=0

|ψj,k(x)|
m

6 C2jm/2. (2.1)
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3 The model and the main result

In this study, we consider the regression model with random design de-
scribed as follows : suppose that we observe n pairs of random variables
i.i.d ((X1, Y1), ..., (Xn, Yn)) governed by the equation:

Yi = f(Xi) + zi, i ∈ {1, ..., n}, (3.1)

where the zi’s are Gaussian i.i.d with mean zero, variance one and are in-
dependent of the design (X1, ..., Xn). We assume that the design is known
with X1 ∈ [0, 1]. We denote by g the density of X1 and we assume that g
is bounded from above and below. The function f is unknown and bounded
from above (‖f‖∞ is supposed to be known). The goal is to estimate f from
observations ((X1, Y1), ..., (Xn, Yn)).

This statistical problem has been investigated by many authors via var-
ious approaches. Numerous minimax results can be found in the book of
Tsybakov (2004).

If we consider the framework of wavelet analysis, the first step to estimate
f consists in estimating the associated wavelet coefficients (βj,k)j,k. Here, we
consider the following unbiased estimator of βj,k:

β̂j,k = n−1
n

∑

i=1

Yig(Xi)
−1ψj,k(Xi). (3.2)

Theorem 3.1 below shows that the estimators (β̂j,k)k satisfy a strong large
deviation inequality. (It is important to mention that all the constants of our
study are independent of f and n.)

Theorem 3.1. Let us consider the regression model with random design
described by (3.1). Let p ∈ [2,∞) and L be an integer such that (logn)p/2 6

L < 2(log n)p/2. Let j1 and j2 be integers satisfying

L 6 2j1 < 2L, (n/ logn)1/2
6 2j2 < 2(n/ logn)1/2.

For any j ∈ {j1, ..., j2}, let us set Aj = {1, ..., 2jL−1} and

Bj,K = {k ∈ {0, ..., 2j − 1} : (K − 1)L 6 k 6 KL− 1}, K ∈ Aj.
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Then there exist two constants µ1 > 0 and C > 0 such that, for any j ∈
{j1, ..., j2}, K ∈ Aj and n large enough, the estimators (β̂j,k)k defined by
(3.2) satisfy

P
n
f ((L−1

∑

k∈Bj,K

|β̂j,k − βj,k|
p)1/p

> µ12
−1n−1/2) 6 Cn−p. (3.3)

The proof of Theorem 3.1 uses several well-known large deviation inequal-
ities as the Talagrand inequality, the Cirelson inequality and the Hoeffding
inequality.

Remark 3.1. Let us adopt the statistical framework of Theorem 3.1. For
any k ∈ {0, ..., 2j − 1}, there exist two constants µ2 > 0 and C > 0, and
K∗ ∈ Aj such that k ∈ Bj,K∗ and

P
n
f (|β̂j,k − βj,k| > µ22

−1
√

(logn/n))

6 P
n
f ((L−1

∑

m∈Bj,K∗

|β̂j,m − βj,m|
p)1/p

> µ12
−1n−1/2) 6 Cn−p.

Therefore, the inequality (3.3) is stronger than an usual large deviation in-
equality generally used to investigate the (minimax) performances of the hard
thresholding procedure introduced by Donoho and Johnstone (1995). See, for
instance, (Kerkyacharian and Picard, 2000, Theorems 5.1 and 5.2).

Finally, let us notice that the estimator β̂j,k satisfies a conventional mo-
ments condition.

Remark 3.2. If we use the Rosenthal inequality, one can show that there
exists a constant C > 0 such that the estimator β̂j,k defined by (3.2) satisfies
the following moments inequality :

E
n
f (|β̂j,k − βj,k|

2p) 6 Cn−p, (3.4)

(see, for instance, (Kerkyacharian and Picard, 2005, Proof of Proposition
3)).

4 Some applications

In the framework of the regression model with (known) random design (3.1),
the large deviation inequality proved in Theorem (3.1) can be applied to show
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several statistical properties concerning the following adaptive estimator of
f :

f̂n(x) =

2j1−1
∑

k=0

α̂j1,kφj1,k(x) +

j2
∑

j=j1

∑

K∈Aj

∑

k∈Bj,K

β̂j,k1{b̂j,K>µ1n−1/2}ψj,k(x), (4.1)

where j1, j2, β̂j,k, Aj, Bj,K and µ1 are defined in Theorem 3.1, the esti-

mator α̂j,k is defined by α̂j,k = n−1
∑n

i=1 Yig(Xi)
−1φj,k(Xi) and b̂j,K is the

normalized lp-norm of the estimators (β̂j,k)k∈Bj,K
i.e:

b̂j,K = (L−1
∑

k∈Bj,K

|β̂j,k|
p)1/p.

This construction is a L
p version of the BlockShrink estimator adapted to our

statistical problem. Such estimator has been introduced by Cai (1997, 2002)
in the framework of the regression model with deterministic equispaced data.
Two consequences of the moments inequality (3.4) and the large deviation
inequality (3.3) described in Theorem 3.1 are briefly described below.

• Adaptive confidence intervals : if we apply a result proved by Picard
and Tribouley (2000, Proposition 1) then the wavelet block threshold-
ing estimator (4.1) provides adaptive confidence intervals around f(x0)
with x0 ∈ [0, 1] under the local L

p risk.

• Optimality result : Chesneau (2006, Theorem 4.2) determines the rates
of convergence achieved by the wavelet block thresholding estimator
(4.1) over Besov balls under the global L

p risk. More precisely, by
considering the Besov balls Bs

π,r(M) defined by :

Bs
π,r(M) = {f ∈ L

π([0, 1]); (

∞
∑

j=τ−1

[2j(s+1/2−1/π)(

2j−1
∑

k=0

|βj,k|
π)1/π]r)1/r

6 M},

(with the usual modification if r = ∞) we can set the following theorem

Theorem 4.1 (Application of Theorem 4.2 proved by Chesneau (2006)).
Let us consider the regression model with random design (3.1). Let
p ∈ [2,∞[. Let us consider the estimator f̂n defined by (4.1). Then
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there exists a constant C > 0 such that, for any π ∈ [1,∞], r ∈ [1,∞],
s ∈]1/π + 1/2,∞) and n large enough, we have

sup
f∈Bs

π,r(M)

E
n
f (

∫ 1

0

|f̂n(x) − f(x)|pdx) 6 Cϕn,

where

ϕn =

{

n−α1p(logn)α1p1{p>π} , when ε > 0,

(logn/n)α2p(log n)(p−π/r)+1{ε=0} , when ε 6 0,

with α1 = s/(2s + 1), α2 = (s − 1/π + 1/p)/(2(s − 1/π) + 1) and
ε = πs+ 2−1(π − p).

These rates of convergence are minimax and better than those achieved
by the well-known hard thresholding estimator. Theorem 4.1 can be
viewed as a generalization of a result proved by Chicken (2003, Theorem
2) for the uniform design, the L

2 risk and the Hölder balls Bs
∞,∞(M).

5 Proofs

First of all, let us recall the Talagrand inequality and the Cirelson inequality.

Lemma 5.1 (Talagrand (1994)). Let (V1, ..., Vn) be i.i.d random variables
and (ε1, ..., εn) be independent Rademacher variables, also independent of
(V1, ..., Vn). Let F be a class of functions uniformly bounded by T . Let
rn : F → R be the operator defined by :

rn(h) = n−1
n

∑

i=1

h(Vi) − E(h(V1)).

Suppose that suph∈F V ar(h(V1)) 6 v and E(suph∈F

∑n
i=1 εih(Vi)) 6 nH.

Then, there exist two constants C1 > 0 and C2 > 0 such that, for any t > 0,
we have :

P(sup
h∈F

rn(h) > t+ C2H) 6 exp(−nC1

(

t2v−1 ∧ tT−1
)

).
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Lemma 5.2 (Cirelson et al. (1976)). Let D be a subset of R. Let (ηt)t∈D be a
centered Gaussian process. Suppose that E(supt∈D ηt) 6 N and supt∈D V ar(ηt) 6

Q. Then, for any x > 0, we have

P(sup
t∈D

ηt > x +N) 6 exp(−x2/(2Q)). (5.1)

We are now in position to prove Theorem 3.1. In the following proofs,
C represents a constant which may be different from one term to the other.
We suppose that n is large enough.

Proof of Theorem 3.1. By the definiton of β̂j,k, we have the following decom-
position

β̂j,k − βj,k = Aj,k +Bj,k

where

Aj,k = n−1

n
∑

i=1

f(Xi)g(Xi)
−1ψj,k(X1) − E

n
f (f(X1)g(X1)

−1ψj,k(X1)),

Bj,k = n−1
n

∑

i=1

g(Xi)
−1ψj,k(Xi)zi.

By the lp Minkowski inequality, for any µ > 0, we have

P
n
f ((L−1

∑

k∈Bj,K

|β̂j,k − βj,k|
p)1/p

> 2−1µn−1/2) 6 U + V,

where
U = P

n
f ((L−1

∑

k∈Bj,K

|Aj,k|
p)1/p

> 4−1µn−1/2),

V = P
n
f ((L

−1
∑

k∈Bj,K

|Bj,k|
p)1/p

> 4−1µn−1/2).

Let us investigate separately the upper bounds of U and V.

• The upper bound for U . Our goal is to apply the Talagrand inequality
described in Lemma 5.1. Let us consider the set Cq defined by Cq = {a =
(aj,k) ∈ Z

∗;
∑

k∈Bj,K
|aj,k|q 6 1} and the functions class F defined by F =
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{h; h(x) = f(x)g(x)−1
∑

k∈Bj,K
aj,kψj,k(x), a ∈ Cq}. By an argument of

duality, we have

(
∑

k∈Bj,K

|Aj,k|
p)1/p = sup

a∈Cq

∑

k∈Bj,K

aj,kAj,k = sup
h∈F

rn(h),

where rn denotes the operator defined in Lemma 5.1. Let us evaluate the
parameters T , H and v of the Talagrand inequality.

First of all, notice that, for p > 2 (and a fortiori q = 1 + (p − 1)−1 6

2), an elementary inequality of lp norm gives supa∈Cq
(
∑

k∈Bj,K
|aj,k|2)1/2 6

supa∈Cq
(
∑

k∈Bj,K
|aj,k|q)1/q 6 1.

− The value of T . Let h be a function in F . By the Hölder inequality, the
assumptions of boundedness of f and g and the property of concentration
(2.1), we find

|h(x)| 6 |f(x)||g(x)|−1(
∑

k∈Bj,K

|ψj,k(x)|
2)1/2 sup

a∈Cq

(
∑

k∈Bj,K

|aj,k|
2)1/2

6 ‖f‖∞‖1/g‖∞(
∑

k∈Bj,K

|ψj,k(x)|
2)1/2

6 C2j/2, x ∈ [0, 1].

Hence T = C2j/2.

− The value of H. The lp-Hölder inequality and the Hölder inequality
imply

E
n
f (sup

a∈Cq

n
∑

i=1

(
∑

k∈Bj,K

aj,kεif(Xi)g(Xi)
−1ψj,k(Xi)))

6 sup
a∈Cq

(
∑

k∈Bj,K

|aj,k|
q)1/q(

∑

k∈Bj,K

E
n
f (|

n
∑

i=1

εif(Xi)g(Xi)
−1ψj,k(Xi)|

p))1/p

6 (
∑

k∈Bj,K

E
n
f (|

n
∑

i=1

εif(Xi)g(Xi)
−1ψj,k(Xi)|

p))1/p. (5.2)

Since (ε1, ..., εn) are independent Rademacher variables, also independent of
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X = (X1, ..., Xn), the Khintchine inequality yields

E
n
f (|

n
∑

i=1

εif(Xi)g(Xi)
−1ψj,k(Xi)|

p)

= E
n
f (En

f (|
n

∑

i=1

εif(Xi)g(Xi)
−1ψj,k(Xi)|

p|X))

6 CE
n
f (|

n
∑

i=1

|f(Xi)|
2|g(Xi)|

−2|ψj,k(Xi)|
2|p/2)

= CI. (5.3)

Let us consider the i.i.d random variables (N1, ..., Nn) with

Ni = |f(Xi)|
2|g(Xi)|

−2|ψj,k(Xi)|
2, i ∈ {1, ..., n}.

An elementary inequality of convexity implies I 6 2p/2−1(I1 + I2) where

I1 = E
n
f (|

n
∑

i=1

(Ni − E
n
f (N1))|

p/2), I2 = np/2
E

n
f (N1)

p/2.

Let us analyze the upper bounds for I1 and I2, in turn.

− The upper bound for I1. The Rosenthal inequality applied to (N1, ..., Nn)
and the Cauchy-Schwartz inequality imply

I1 6 C(nE
n
f (|N1 − E

n
f (N1)|

p/2) + (nE
n
f (|N1 − E

n
f (N1)|

2))p/4)

6 C(nE
n
f (|N1|

p/2) + (nE
n
f (|N1|

2))p/4).

For any m > 1, j ∈ {j1, ..., j2} and k ∈ {0, ..., 2j − 1}, the assumptions of
boundedness of f and g give

E
n
f (|N1|

m) =

∫ 1

0

|f(x)|2m|g(x)|−2m+1|ψj,k(x)|
2mdx

6 C2j(m−1)‖ψ‖2m−2
∞

∫ 1

0

|ψj,k(x)|
2dx 6 C2j2(m−1)

6 Cnm−1.

We deduce that I1 6 Cnp/2.

− The upper bound for I2. Since E
n
f (N1) 6 C, we have I2 6 Cnp/2.
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Combining the obtained upper bounds for I1 and I2, we find

I 6 C(I1 + I2) 6 Cnp/2. (5.4)

Putting (5.2), (5.3) and (5.4) together, we see that

E
n
f (sup

a∈Cq

n
∑

i=1

(
∑

k∈Bj,K

aj,kεif(Xi)g(Xi)
−1ψj,k(Xi))) 6 (

∑

k∈Bj,K

I)1/p
6 Cn1/2L1/p.

Hence H = Cn−1/2L1/p.

− The value of v. By the assumptions of boundedness of f and g and
the orthonormality of ζ, we obtain

sup
h∈F

V ar(h(X1))

6 sup
a∈Cq

E
n
f (|f(X1)|

2|g(X1)|
−2|

∑

k∈Bj,K

aj,kψj,k(X1)|
2)

6 ‖f‖2
∞‖1/g‖∞ sup

a∈Cq

E
n
f (

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′g(X1)
−1ψj,k(X1)ψj,k′(X1))

= C sup
a∈Cq

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′

∫ 1

0

ψj,k(x)ψj,k′(x)dx

= C sup
a∈Cq

∑

k∈Bj,K

|aj,k|
2

6 C.

Hence v = C.

Now, let us notice that, for any j ∈ {j1, ..., j2}, we have n2j 6 n2j2 6

2n3/2(logn)−1/2. Since (log n)1/2 6 L1/p < 21/p(logn)1/2, for t = 8−1µL1/pn−1/2

we have
(

t2v−1 ∧ tT−1
)

> C
(

µ2(logn/n) ∧ µ
√

(logn/(n2j))
)

> Cµ2(logn/n).

So, for µ large enough and t = 8−1µL1/pn−1/2, the Talagrand inequality yields

U = P
n
f ((L−1

∑

k∈Bj,K

|Aj,k|
p)1/p

> 4−1µn−1/2)

6 P
n
f ((L−1

∑

k∈Bj,K

|Aj,k|
p)1/p

> 8−1µn−1/2 + Cn−1/2)

6 P
n
f (sup

h∈F
rn(h) > t+ C2H)

6 exp(−nC1

(

t2v−1 ∧ tT−1
)

) 6 exp(−nCµ2(logn/n)) 6 n−p.
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We obtain the desired upper bound for U .

• The upper bound for V. Our goal is to apply the Cirelson inequal-
ity described in Lemma 5.2. Let us consider the set Cq defined by {a =
(aj,k) ∈ Z

∗;
∑

k∈Bj,K
|aj,k|q 6 1} and the process Z(a) defined by Z(a) =

∑

k∈Bj,K
aj,kBj,k. Let us notice that, conditionally to X = (X1, ..., Xn), Z(a)

is a gaussian centered process. Moreover, by an argument of duality, we have

sup
a∈Cq

Z(a) = sup
a∈Cq

∑

k∈Bj,K

aj,kBj,k = (
∑

k∈Bj,K

|Bj,k|
p)1/p.

Now, let us investigate separately the upper bounds for E
n
f (supa∈Cq

Z(a)|X)
and supa∈Cq

V arn
f (Z(a)|X).

− The upper bound for E
n
f (supa∈Cq

Z(a)|X). Let us consider the set Bµ

defined by

Bµ = {|n−1
n

∑

i=1

g(Xi)
−1|ψj,k(Xi)|

2 − 1| > µ}.

Let us work on the set Bc
µ, the complementary of Bµ. By the Jensen

inequality, the fact that Z(a) | X ∼ N (0, n−2
∑n

i=1 |g(Xi)|−2|ψj,k(Xi)|2) and
the assumptions of boundedness made on g, we find

E
n
f (sup

a∈Cq

Z(a)|X) 6 (
∑

k∈Bj,K

E
n
f (|Bj,k|

p|X))1/p

= C[
∑

k∈Bj,K

(n−2
n

∑

i=1

|g(Xi)|
−2|ψj,k(Xi)|

2)p/2]1/p

6 C‖1/g‖∞[
∑

k∈Bj,K

(n−2

n
∑

i=1

g(Xi)
−1|ψj,k(Xi)|

2)p/2]1/p

6 Cn−1/2[
∑

k∈Bj,K

(n−1
n

∑

i=1

g(Xi)
−1|ψj,k(Xi)|

2 − 1 + 1)p/2]1/p

6 Cn−1/2[
∑

k∈Bj,K

(µ+ 1)p/2]1/p
6 C(µ+ 1)1/2L1/pn−1/2.

Hence N = N(X) = C(µ+ 1)1/2L1/pn−1/2.
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− The upper bound for supa∈Cq
V arn

f (Z(a)|X). Let us define the set Aµ

by

Aµ = {sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n−1

n
∑

i=1

g(Xi)
−1ψj,k(Xi)ψj,k′(Xi)) −

∑

k∈Bj,K

|aj,k|
2) > µ}.

Let us work on the set Ac
µ, the complementary of Aµ. Using the assump-

tions of boundedness of g, we have

G = sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n−1

n
∑

i=1

|g(Xi)|
−2ψj,k(Xi)ψj,k′(Xi)))

6 C[sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n−1

n
∑

i=1

g(Xi)
−1ψj,k(Xi)ψj,k′(Xi))...

−
∑

k∈Bj,K

|aj,k|
2) + sup

a∈Cq

∑

k∈Bj,K

|aj,k|
2] 6 C(µ+ 1).

Since E
n
f (zizi′) = 1 if i = i′ and 0 otherwise, we have

sup
a∈Cq

V arn
f (Z(a)|X) = sup

a∈Cq

E
n
f (|Z(a)|2|X)

= sup
a∈Cq

E
n
f (

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′Bj,kBj,k′|X)

= sup
a∈Cq

(n−2
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′

n
∑

i=1

n
∑

i′=1

|g(Xi)|
−2ψj,k(Xi)ψj,k′(Xi′)E

n
f (zizi′))

= n−1 sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n−1
n

∑

i=1

|g(Xi)|
−2ψj,k(Xi)ψj,k′(Xi)))

= n−1G 6 Cn−1(µ+ 1).

Hence Q = Q(X) = Cn−1(µ+ 1).

The obtained values of N and Q will allow us to conclude. For any x > 0,
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we have

P
n
f (sup

a∈Cq

Z(a) > x + C(1 + µ)1/2L1/pn−1/2)

= E
n
f (Pn

f (sup
a∈Cq

Z(a) > x + C(1 + µ)1/2L1/pn−1/2|X)(1Bµ + 1Bc
µ
))

6 P
n
f (Bµ) + E

n
f (Pn

f (sup
a∈Cq

Z(a) > x +N(X)|X)). (5.5)

The Cirelson inequality described in Lemma 5.2 implies

E
n
f (Pn

f (sup
a∈Cq

Z(a) > x +N(X)|X)) 6 E
n
f (exp−(x2/(2Q(X)))). (5.6)

Moreover, by definition of Aµ, we have

E
n
f (exp (−x2/(2Q(X)))) = E

n
f (exp (−x2/(2Q(X)))(1Aµ + 1Ac

µ
))

6 P
n
f (Aµ) + exp (−nx2/(2(µ+ 1))). (5.7)

Putting the inequalities (5.5), (5.6) and (5.7) together, for x = 8−1µL1/pn−1/2

and µ large enough, we obtain

V = P
n
f (sup

a∈Cq

Z(a) > 4−1µL1/pn−1/2)

6 P
n
f (sup

a∈Cq

Z(a) > 8−1µL1/pn−1/2 + C(1 + µ)1/2L1/pn−1/2)

6 C[Pn
f (Aµ) + P

n
f (Bµ) + exp (−Cµ2L2/p/(µ+ 1))]. (5.8)

Lemma 5.3 below provides the upper bounds for P
n
f (Aµ) and P

n
f (Bµ).

Lemma 5.3. For µ and n large enough, there exists a constant C > 0 such
that

max(Pn
f (Aµ),P

n
f (Bµ)) 6 Cn−p.

By the inequality (5.8), the fact that (logn)p/2 6 L < 2(logn)p/2 and
Lemma 5.3, for µ large enough, we have

V 6 Cn−p.

Combining the obtained upper bounds for U and V, we achieve the proof
of Theorem 3.1.
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Proof of Lemma 5.3. Let us investigate the upper bounds for P
n
f (Bµ) and

P
n
f (Aµ).

• The upper bound for P
n
f (Bµ). First of all, notice that the random vari-

ables
(|ψj,k(X1)|

2g(X1)
−1, ..., |ψj,k(Xn)|2g(Xn)

−1),

are i.i.d. and, since g is bounded from below, we have

|ψj,k(Xi)|
2g(Xi)

−1
6 ‖1/g‖∞‖ψ‖2

∞2j, E
n
f

(

|ψj,k(X1)|
2g(X1)

−1) = 1.

So, for any j ∈ {j1, ..., j2}, the Hoeffding inequality implies the existence of
a constant C > 0 such that

P
n
f (Bµ) 6 2 exp

(

−Cnµ22−2j
)

6 2 exp
(

−Cnµ22−2j2
)

6 2n−Cµ2

.

We obtain the desired upper bound by taking µ large enough.

• The upper bound for P
n
f (Aµ). The goal is to apply the Talagrand in-

equality described in Lemma 5.1. Let us consider the set Cq defined by
Cq = {a = (aj,k) ∈ Z

∗;
∑

k∈Bj,K
|aj,k|q 6 1} and the functions class F ′

defined by

F ′ = {h; h(x) = g(x)−1
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′ψj,k(x)ψj,k′(x), a ∈ Cq}.

We have

sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n−1
n

∑

i=1

g(Xi)
−1ψj,k(Xi)ψj,k′(Xi)) −

∑

k∈Bj,K

|aj,k|
2)

= sup
h∈F ′

rn(h),

where rn denotes the operator defined in Lemma 5.1. Thus, it suffices to
determine the parameter T , H and v of the Talagrand inequality.

− The value of T. Let h be a function of F ′. Using the Hölder inequality,
the fact that g is bounded from below and the concentration property (2.1),
we find

|h(x)| 6 ‖1/g‖∞
∑

k∈Bj,K

|aj,k|
2

∑

k∈Bj,K

|ψj,k(x)|
2

6 C2j, x ∈ [0, 1].
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Hence T = C2j.

− The value of H. The l2-Hölder inequality and the Hölder inequality
imply

E
n
f (sup

a∈Cq

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(
n

∑

i=1

εig(Xi)
−1ψj,k(Xi)ψj,k′(Xi)))

6 sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

|aj,k|
2|aj,k′|2)1/2...

[
∑

k∈Bj,K

∑

k′∈Bj,K

E
n
f (|

n
∑

i=1

εi(g(Xi)
−1ψj,k(Xi)ψj,k′(Xi))|

2)]1/2

6 [
∑

k∈Bj,K

∑

k′∈Bj,K

E
n
f (|

n
∑

i=1

εi(g(Xi)
−1ψj,k(Xi)ψj,k′(Xi))|

2)]1/2. (5.9)

Since (ε1, ..., εn) are independent Rademacher variables, also independent of
(X1, ..., Xn) = X, the Khintchine inequality and the fact that g is bounded
from below imply

E
n
f (|

n
∑

i=1

εi(g(Xi)
−1ψj,k(Xi)ψj,k′(Xi))|

2)

= E
n
f (En

f (|
n

∑

i=1

εi(g(Xi)
−1ψj,k(Xi)ψj,k′(Xi))|

2|X))

6 CE
n
f (

n
∑

i=1

|g(Xi)|
−2|ψj,k(Xi)|

2|ψj,k′(Xi)|
2)

6 C‖1/g‖2
∞nE

n
f (|ψj,k(X1)|

2|ψj,k′(X1)|
2). (5.10)

Using the property of concentration (2.1) and the inequalities (5.9) and
(5.10), we find

E
n
f (sup

a∈Cq

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(
n

∑

i=1

εig(Xi)
−1ψj,k(Xi)ψj,k′(Xi)))

6 C[nE
n
f ((

∑

k∈Bj,K

|ψj,k(Xi)|
2)2)]1/2

6 Cn1/22j.

Hence H = C2jn−1/2.
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− The value of v. Using the fact that g is bounded from below, the Hölder
inequality and the property of concentration (2.1), we have

sup
h∈F

V ar(h(X1)) 6 sup
a∈Cq

E
n
f (|g(X1)|

−2|
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′ψj,k(X1)ψj,k′(X1)|
2)

6 C‖1/g‖2
∞ sup

a∈Cq

(
∑

k∈Bj,K

|aj,k|
2)2

E
n
f ((

∑

k∈Bj,K

|ψj,k(X1)|
2)2)

6 C22j.

Hence v = C22j.

Now, let us notice that if t = 2−1µ then

(

t2v−1 ∧ tT−1
)

> C
(

µ22−2j ∧ µ2−j
)

= Cµ22−2j.

For any j ∈ {j1, ..., j2}, µ large enough and t = 2−1µ, the Talagrand inequal-
ity gives

P
n
f (Aµ)

6 P
n
f (sup

a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n−1

n
∑

i=1

g(Xi)
−1ψj,k(Xi)ψj,k′(Xi)) − ...

∑

k∈Bj,K

|aj,k|
2) > 2−1µ+ C2jn−1/2) 6 P(sup

h∈F
rn(h) > t + C2H)

6 exp(−nC1

(

t2v−1 ∧ tT−1
)

) 6 exp(−nCµ22−2j)

6 exp(−nCµ22−2j2) 6 n−p.

This ends the proof of Lemma 5.3.
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Picard, D. and Tribouley, K. (2000). Adaptive confidence interval for
pointwise curve estimation. Ann.Statist., 28(1):298–335.

Talagrand, M. (1994). Sharper bounds for gaussian and empirical pro-
cesses. Ann. Probab., 22:28–76.

Tsybakov, A. (2004). Introduction à l’estimation nonparametrique.
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