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Abstract

The problem of estimating an unknown regression function in a regression setting
with (known) random design is concerned. By adopting the minimax point of
view, we explore the asymptotic performances of an adaptive estimator based on
wavelet block thresholding under the global L

p risk (p > 1). We show that the
estimator achieves the optimal rates of convergence over a wide range of Besov balls.
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1 Motivation

Suppose we observe n pairs (X1, Y1), ..., (Xn, Yn) i.i.d governed by the equation :

Yi = f(Xi) + zi, i = 1, ..., n, (1.1)

where the zi’s are Gaussian i.i.d with mean zero, variance one and are independent of the design
X1, ..., Xn. We assume that the design is known with Xi ∈ [0, 1] and we denote by g the density
of X1. The function f is unknown with ‖f‖∞ = supx∈[0,1] |f(x)| < ∞. The objective is to
estimate f from observations (X1, Y1), ..., (Xn, Yn).

When wavelet methods are considered, this estimation problem has been investigated by
many authors in various statistical setting. Let us cite Delyon and Juditsky (1996), Cai and
Brown (1998, 1999), Maxim (2003), to name a few. The standard approach consists in conside-
ring constructions based on term-by-term thresholding via the VisuShrink algorithm developed
by Donoho and Johnstone (1995). Traditionaly, under some assumptions on g, such procedures
attain the minimax rate of convergence up to a logarithmic factor over a wide class of Besov
balls. If we consider the L

2 risk that means that the hard thresholding procedure f̂ satisfies :

sup
f∈Bs

π,r(R)
E
n
f

(∫ 1

0
|f̂(x) − f(x)|2dx

)

≤ C

(

ln(n)

n

) 2s
1+2s

.

Here E
n
f denotes the expectation with respect to the distribution P

n
f of (X1, Y1), ..., (Xn, Yn)

and Bs
π,r(R) is a Besov ball (to be defined in Section 2). Let us mention that f̂ is adaptive in

the sense where its construction does not depend on the parameter of regularity s.

In order to remove the logarithmic term, an adaptive wavelet construction based on the
block thresholding developed by Cai (1999, 2002) has been studied by Chicken (2003) in the
context of uniform design (i.e g = 1[0,1]). A such estimator f̂ satisfies :

sup
f∈Bs

∞,∞(R)
E
n
f

(∫ 1

0
|f̂(x) − f(x)|2dx

)

≤ Cn
− 2s

1+2s .
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Here Bs
∞,∞(R) is a Hölder space of function (to be defined in Section 2). In addition to attain the

optimal rate of convergence under the minimax context above, good performances are observed
in practice.

This present paper proposes to investigate the minimax rates of convergence of the BlockSh-
rink procedure under the L

p risk (p > 1) over a wide class of Besov balls Bs
π,r(R). We show

that under some assumptions on g, the proposed BlockShrink procedure attains the minimax
rate of convergence for numerous values of s, π and r. It is important to mention that the proof
is based on a general theorem which can be found in Chesneau (2006a). In fact, we only need
to prove a technical concentration inequality to determine the desired minimax results.

The rest of the paper is organized as follows. Section 2 describes wavelet bases on the
interval, Besov balls and the BlockShrink construction adapted to the L

p risk. Their minimax
performances over Besov balls and under the L

p risk are investigated in Section 3.

2 Methodology

Throughout this paper, we set :

L
p([0, 1]) =

{

f measurable on [0, 1]; ‖f‖pp =

∫ 1

0
|f(x)|pdx < +∞

}

.

The notation a � b means : there exist two constants C > 0 and c > 0 such that cb ≤ a ≤ Cb.
The notations a ∧ b and a ∨ b mean respectively : min(a, b) and max(a, b).

2.1 Wavelet bases and Besov spaces

We summarize in this subsection the basics on wavelet bases on the unit interval [0, 1].

Let us focus on the wavelet basis of [0, 1] described by Cohen et al. (1993) : We consider φ
a ”father” wavelet of a multiresolution analysis on R and ψ the associated ”mother” wavelet.
Assume that Supp(φ) = Supp(ψ) = [1 − N,N ] and

∫ N

1−N φ(x)dx = 1,
∫ N

1−N x
lψ(x)dx = 0 for

l = 0, ..., N − 1.

Let us set :

φj,k(x) = 2
j

2φ(2jx− k) and ψj,k(x) = 2
j

2ψ(2jx− k).

Then there exists an integer τ satisfying 2τ ≥ 2N such that the collection ζ defined by :

ζ = {φτ,k(.), k = 0, ..., 2τ − 1; ψj,k(.); j ≥ τ, k = 0, ..., 2j − 1}

with an appropriate treatments at the boundaries, is an orthonormal basis of L
2([0, 1]).

Let 1 ≤ p <∞. Any function f of L
p([0, 1]) can be decomposed on ζ as :

f(x) =
∑

k∈∆τ

ατ,kφτ,k(x) +
∑

j≥τ

∑

k∈∆j

βj,kψj,k(x), x ∈ [0, 1],

where αj,k =
∫ 1
0 f(x)φj,k(x)dx, βj,k =

∫ 1
0 f(x)ψj,k(x)dx and ∆j = {0, ..., 2j − 1}. The following

concentration inéquality is standard : Let p ≥ 1. For any sequence u = (uj,k)j,k and any j ≥ τ

there exists a constant C > 0 such that :

‖
∑

k∈∆j

uj,kφj,k‖pp ≤ C2j(
p

2
−1)

∑

k∈∆j

|uj,k|p. (2.1)
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This inequality holds if we exchange φ by ψ.

Let us now define the main function spaces of our study. Let N ∈ N
∗, R > 0, 1 ≤ r ≤ ∞,

1 ≤ π ≤ ∞ and π−1 < s < N . The equivalence below shows the link which exists between the
Besov balls and the wavelet basis ζ. See Meyer (1990) for a detailed proof.

f ∈ Bs
π,r(R) ⇐⇒











(
∑

j≥τ−1(2
j(s+ 1

2
− 1

π
)(
∑

k∈∆j
|βj,k|π)

1

π )r)
1

r ≤ R <∞ if r <∞,

supj≥τ−1 2j(s+
1

2
− 1

π
)(
∑

k∈∆j
|βj,k|π)

1

π ≤ R <∞ if r = ∞.

2.2 BlockShrink procedures

Let us now present the adaptive procedures which will be at the heart of our statistical
study.

Definition 2.1 (BlockShrink procedures). Let 1 < p < ∞. Let j1 be an integer satisfying

2j1 � ln(n)
p

2 and let j2 be an integer satisfying 2j2 �
√

n
ln(n) . For all j in {j1, ..., j2}, let us

divide ∆j into consecutive nonoverlapping blocks Bj,K of length ln(n)
p

2
∨1 i.e :

Bj,K =
{

k ∈ ∆j : (K − 1) ln(n)
p

2
∨1 ≤ k ≤ K ln(n)

p

2
∨1 − 1

}

, K ∈ Aj ,

where the sets Aj are defined by :

Aj =
{

1, ..., 2j ln(n)−
p

2

}

(for convenience we suppose that n
1

2 ln(n)−
p+1

2 ∈ N
∗). We define the BlockShrink procedure f̂

by :

f̂(x) =
∑

k∈∆j1

α̂j1,kφj1,k(x) +

j2
∑

j=j1

∑

K∈Aj

∑

k∈Bj,K

β̂j,k1 �
b̂j,K(p)≥κn−

1
2 � ψj,k(x), x ∈ [0, 1], (2.2)

where κ is a positive real number, α̂j,k and β̂j,k are the following unbiased estimators of αj,k
and βj,k :

α̂j,k =
1

n

n
∑

i=1

Yi

g(Xi)
φj,k(Xi), β̂j,k =

1

n

n
∑

i=1

Yi

g(Xi)
ψj,k(Xi) (2.3)

and b̂j,K(p) is the normalized lp-norm of estimators (β̂j,k)k∈Bj,K
i.e :

b̂j,K(p) =





1

ln(n)
p

2
∨1

∑

k∈Bj,K

|β̂j,k|p




1

p

.

The wavelet construction above can be viewed as an L
p version of the BlockShrink proce-

dure developed by Cai (1999) for the L
2 risk and the white noise model. Let us mention that it

appears in Picard and Tribouley (2000) in another statistical context and for the local L
p risk.

3 Minimax results over Besov balls

Theorem 3.1 below exhibits the rates of convergence attained by the BlockShrink procedure
describes in Definition 2.1 over Besov balls under the L

p risk.
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Theorem 3.1 (Minimax results over Besov balls). Let 1 < p < ∞, R > 0 and α1, α2 and ε

such that :

α1 =
s

1 + 2s
, α2 =

s− 1
π

+ 1
p

2(s− 1
π
) + 1

and ε = πs+ 2−1(π − p).

Suppose that we observe the data (1.1) and that there exists two constants C∗ > 0 and c∗ > 0
such that :

‖f‖∞ ≤ C∗ <∞ and inf
x∈[0,1]

|g(x)| ≥ c∗ > 0.

Then for s > 2−1 +π−1, r ≥ 1, there exists a constant C > 0 depending on C∗ and c∗ such that
the BlockShrink procedure f̂ described in Definition 2.1 satisfies :

sup
f∈Bs

π,r(R)
E
n
f (‖f̂ − f‖pp) ≤











































Cn−α1p, if π ≥ p,

C( ln(n)
n

)α1p, if ε > 0, p > π,

C( ln(n)
n

)α2p, if ε < 0,

C( ln(n)
n

)α2p ln(n)(p−
π
r
)+ , if ε = 0,

for κ and n large enough.

The rates of convergence exhibit in the previous theorem are optimal in the minimax sense,
except for the case {ε > 0, p > π} where a logarithmic factor appeared.

Let us mention that :

1. our block thresholding procedure has better rates of convergence than the warped
wavelet thresholding procedure f̂∗ developed by Kerkyacharian and Picard (2005). Accor-
ding to Kerkyacharian and Picard (2005, Proposition 2), under the assumption g known with
0 < m ≤ g ≤M <∞, such ’warped’ procedure f̂∗ satisfies :

sup
f(G−1)∈Bs

π,r(R)

E
n
f (‖f̂∗ − f‖pp) ≤











C( ln(n)
n

)α1p, if ε > 0,

C( ln(n)
n

)α2p, if ε < 0,

C( ln(n)
n

)α2p ln(n)(p−
π
r
)+ , if ε = 0,

Let us notice that the regularity of f(G−1) is concerned and we have supposed that g is bounded
from above contrary to the assumption of Theorem 3.1.

2. Theorem 3.1 can be viewed as a generalization of Chicken (2003, Theorem 2) which
proves this result in the case where p = 2, π = ∞, r = ∞ and g = 1[0,1] (uniform design), the
BlockShrink procedure satisfies :

sup
f∈Bs

∞,∞(R)
E
n
f (‖f̂ − f‖2

2) ≤ Cn−2α1 ,

for κ and n large enough.

3.1 Proofs

Preleminary remarks : For the sake of legibility, we shall adopt the following notations :

∑

K

=
∑

K∈Aj

and
∑

(K)

=
∑

k∈Bj,K

.
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According to the proof of Chesneau (2006a, Theorems 4.1 and Theorem 4.2), it suffices to
show that the estimators α̂j,k and β̂j,k satisfy the three following assumptions :

Assumption 1. There exists a constant C > 0 such that the following moments condition
holds :

sup
k∈∆j

E
n
f (|α̂j1,k − αj1,k|p) ≤ Cn−

p

2 ,

Assumption 2. There exists a constant C > 0 such that the following moments condition
holds :

sup
k∈∆j

E
n
f (|β̂j,k − βj,k|2p) ≤ Cn−p, j ∈ {j1, ..., j2},

Assumption 3. There exist constants κ1 and C > 0 such that the following concentration
condition holds :

sup
K∈Aj

P
n
f ((

1

ln(n)
p

2
∨1

∑

(K)

|β̂j,k − βj,k|p)
1

p ≥ κ1

2
√
n

) ≤ Cn−p, j ∈ {j1, ..., j2}.

The assumptions 1 and 2 have been shown in the proof of Theorem 3.2 of Chesneau (2006b).
That’s why we focus our attention on the assumption 3.

The proofs of all major statement are based on several auxiliary lemmas. First, let us set
a version of Talagrand’s inequality and a version of Cirelson’s inequality.

Lemma 3.1 (Talagrand (Talagrand (1994))). Let V1, ..., Vn be independent and identically dis-
tributed random variables, let ε1, ..., εn be independent Rademacher variables, also independent
of V1, ..., Vn, and let F be a class of functions uniformly bounded by T . If

− suph∈F V ar(h(V1)) ≤ ν,

− E(suph∈F
∑n

i=1 εih(Vi)) ≤ nH,

then there exist universal constants C1, C2 such that for rn(h) = n−1
∑n

i=1 h(Vi)−E(h(V1))
and any t > 0 we have :

P(sup
h∈F

rn(h) ≥ t+ C2H) ≤ exp(−nC1 min

(

t2

v
,
t

T

)

).

Lemma 3.2 (Cirelson, Ibragimov, Sudakov’s inequality (Cirelson et al. (1976))). Let (ηt, t ∈ T )
be a centered Gaussian process. If

− E(supt∈T ηt) ≤ N ,

− supt∈T V ar(ηt) ≤W ,

then for any c > 0 we have :

P(sup
t∈T

ηt ≥ c+N) ≤ exp(− c2

2W
). (3.1)

We are now in position to start the proof. Here and later, C denotes a constant (inde-
pendent of n and f) which may be different from one term to the other. The notation ”|X”
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means conditionaly to X1, ..., Xn.

Proof ofTheorem 3.1. Since for 1 < p < 2 and all κ > 0, the lp norm inequality gives
us :

P
n
f ((ln(n)−1

∑

(K)

|β̂j,k − βj,k|p)
1

p ≥ κ

2
√
n

) ≤ P
n
f ((ln(n)−1

∑

(K)

|β̂j,k − βj,k|2)
1

2 ≥ κ

2
√
n

),

it suffices to show the assumption 3 in the case where p ≥ 2. We have the decomposition

β̂j,k − βj,k = Aj,k +Bj,k

where

Aj,k =
1

n

n
∑

i=1

f(Xi)

g(Xi)
ψj,k(X1) − E

n
f (
f(X1)

g(X1)
ψj,k(X1))

and

Bj,k =
1

n

n
∑

i=1

1

g(Xi)
ψj,k(Xi)zi.

Using Minkowski’s inequality, one gets :

P
n
f (

1
√

ln(n)
(
∑

(K)

|β̂j,k − βj,k|p)
1

p ≥ κ

2
√
n

) ≤ U + V

where we have set :

U = P
n
f (

1
√

ln(n)
(
∑

(K)

|Aj,k|p)
1

p ≥ κ

4
√
n

) and V = P
n
f (

1
√

ln(n)
(
∑

(K)

|Bj,k|p)
1

p ≥ κ

4
√
n

).

Let us analyze each term U and V in turn.

• Bound for the term U . Here, the aim is to apply Talagrand’s inequality (Lemma 3.1).
Let us consider an infinite sequence

Cq = {a = (aj,k);
∑

k∈Z

|aj,k|q ≤ 1}

where q is defined by the equation p−1 + q−1 = 1. Let us consider a class of functions

F =







h; h(x) =
f(x)

g(x)

∑

(K)

aj,kψj,k(x), a ∈ Cq







.

Using an argument of duality, it is easy to notice that we have :

(
∑

(K)

|β̂j,k − βj,k|p)
1

p = sup
a∈Cq

∑

(K)

aj,k(β̂j,k − βj,k)(= sup
h∈F

rn(h)).

So we only need to find the values corresponding to v, H and T in Talagrand’s inequality. Let
us set a preliminary remark.

Remark 3.1. Since p ≥ 2, we have clearly q ≤ 2 and by comparison between the lp norms :

sup
a∈Cq

(
∑

(K)

|aj,k|2)
1

2 ≤ sup
a∈Cq

(
∑

(K)

|aj,k|q)
1

q ≤ 1.
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◦ Value of T . Using Hölder’s inequality, the fact that ‖f‖∞ < ∞, infx∈[0,1] |g(x)| > 0 and
the concentration inéquality (2.1), for all h ∈ F one gets :

|h(x)| ≤ |f(x)|
|g(x)| (

∑

(K)

|ψj,k(x)|2)
1

2 sup
a∈Cq

(
∑

(K)

|aj,k|2)
1

2 ≤ C(
∑

(K)

|ψj,k(x)|2)
1

2

≤ C2
j

2 , x ∈ [0, 1].

We deduce that :
T = C2

j

2 .

◦ Value of H. If ε1, ..., εn are independent Rademacher variables independent of X1, ..., Xn

then by Hölder’s inequality and Cauchy-Schwartz’s inequality we obtain :

E
n
f (sup
a∈Cq

n
∑

i=1

(
∑

(K)

aj,kεi
f(Xi)

g(Xi)
ψj,k(Xi))) ≤ sup

a∈Cq

(
∑

(K)

|aj,k|q)
1

q (
∑

(K)

E
n
f (|

n
∑

i=1

εi
f(Xi)

g(Xi)
ψj,k(Xi)|p))

1

p

≤ (
∑

(K)

E
n
f (|

n
∑

i=1

εi
f(Xi)

g(Xi)
ψj,k(Xi)|p))

1

p . (3.2)

By virtue of Khintchine’s inequality, we can bound the last term by :

E
n
f (|

n
∑

i=1

εi
f(Xi)

g(Xi)
ψj,k(Xi)|p) = E

n
f (E

n
f (|

n
∑

i=1

εi
f(Xi)

g(Xi)
ψj,k(Xi)|p|X))

≤ E
n
f (|

n
∑

i=1

f2(Xi)

g2(Xi)
ψ2
j,k(Xi))|

p

2 ) = W. (3.3)

For the sake of simplicity in exposition, let us set Ni = f2(Xi)
g2(Xi)

ψ2
j,k(Xi). An elementary inequality

of convexity gives us :

W ≤ C(Enf (|
n
∑

i=1

(Ni − E
n
f (N1))|

p

2 ) + n
p

2 E
n
f (N1)

p

2 ) = C(W1 +W2). (3.4)

Let us analyze each term W1 and W2 in turn.

Bound for the term W1. Using Bernstein’s inequality with the i.i.d centered variables
N1, ..., Nn and Cauchy-Schwartz’s inequality, it comes :

W1 ≤ C(nE
n
f (|N1 − E

n
f (N1)|

p

2 ) + (nE
n
f (|N1 − E

n
f (N1)|2))

p

4 )

≤ C(nE
n
f (|N1|

p

2 ) + (nE
n
f (|N1|2))

p

4 ).

Since for any m ≥ 1, any j ∈ {j1, ..., j2} and under the assumptions of boundedness on f and
g we have :

E
n
f (|N1|m)) =

∫ 1

0

|f(x)|2m
|g(x)|2m−1

|ψj,k(x)|2mdx ≤ C

∫ 1

0
|ψj,k(x)|2mdx

≤ C2j(m−1)‖ψ‖2m−2
∞

∫ 1

0
|ψj,k(x)|2dx ≤ C2j(m−1) ≤ C2j2(m−1) ≤ Cnm−1,

we deduce that :

W1 ≤ Cn
p

2 . (3.5)
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Bound for the term W2. Since E
n
f (N1) ≤ C, we have clearly :

W2 ≤ Cn
p

2 . (3.6)

Combining (3.2)-(3.6), we see that :

E
n
f (sup
a∈Cq

n
∑

i=1

(
∑

(K)

aj,kεi
f(Xi)

g(Xi)
ψj,k(Xi))) ≤ (

∑

(K)

W )
1

p ≤ Cn
1

2Card(Bj,K)
1

p ≤ Cn
1

2 ln(n)
1

2 .

It follows that :

H = C

√

ln(n)

n
.

◦ Value of v. Using the fact that ‖f‖∞ <∞, infx∈[0,1] |g(x)| > 0 and q ≤ 2, one gets :

sup
h∈F

V ar(h(X1)) ≤ sup
a∈Cq

E
n
f (

|f(X1)|2
|g(X1)|2

|
∑

(K)

aj,kψj,k(X1)|2)

≤ C sup
a∈Cq

E
n
f (
∑

(K)

∑

(K)

aj,kaj,k′
1

g(X1)
ψj,k(X1)ψj,k′(X1))

≤ C sup
a∈Cq

∑

(K)

∑

(K)

aj,kaj,k′

∫ 1

0
ψj,k(x)ψj,k′(x)dx = C sup

a∈Cq

∑

(K)

|aj,k|2 ≤ C.

We conclude that
v = C.

Since n2j ≤ n2j2 ≤ Cn
3

2 ln(n)−
1

2 , if we set t = κ
8

√

ln(n)
n

then we have :

min

(

t2

v
,
t

T

)

= min

(

Cκ2

64

ln(n)

n
,
C

8

√

ln(n)

n2j

)

≥ Cκ2

64

ln(n)

n

for n large enough. Thus, for a such choice of t, Talagrand’s inequality (see Lemma 3.1) gives
us :

U = P
n
f (

1
√

ln(n)
(
∑

(K)

|Aj,k|p)
1

p ≥ κ

4
√
n

) ≤ P
n
f (

1
√

ln(n)
(
∑

(K)

|Aj,k|p)
1

p ≥ C√
n

+
κ

8
√
n

)

≤ exp(−nCκ2 ln(n)

n
) ≤ n−p

for κ large enough. We obtain the desired bound for the term U .

• Bound for the term V. The Cirelson’s inequality (see Lemma 3.2) will be at the heart
of the present proof. As in the previous subsection, let us consider the set

Cq =







a = (aj,k);
∑

(K)

|aj,k|q ≤ 1







where q is the real number satisfying q−1 + p−1 = 1. Let us consider :

Z(a) =
∑

(K)

aj,kBj,k
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and let us notice that an argument of duality gives us :

sup
a∈Cq

Z(a) = (
∑

(K)

|Bj,k|p)
1

p .

The rest of the proof is inspired by some methods developed in Kerkyacharian and Picard
(2005, Proof of Proposition 3). Let us set :

Bκ =

{

|n−1
n
∑

i=1

1

g(Xi)
|ψj,k(Xi)|2 − 1| ≥ κ

}

.

Using Holder’s inequality, the fact that conditionally on (X1, ..., Xn) we have

Z(a) ∼ N (0,
1

n2

n
∑

i=1

1

g2(Xi)
|ψj,k(Xi)|2)

and that infx∈[0,1] |g(x)| > 0, on the set Bcκ we have :

N(X) = E
n
f (sup
a∈Cq

Z(a)|X) ≤ (
∑

(K)

E
n
f (|Bj,k|p|X))

1

p ≤ C(
∑

(K)

(
1

n2

n
∑

i=1

1

g(Xi)
|ψj,k(Xi)|2)

p

2 )
1

p

= n−
1

2 (
∑

(K)

(
1

n

n
∑

i=1

1

g(Xi)
|ψj,k(Xi)|2 − 1 + 1)

p

2 )
1

p

≤ Cn−
1

2 ((
∑

(K)

(κ+ 1)
p

2 )
1

p ) ≤ Cn−
1

2 (κ+ 1)
1

2Card(Bj,K)
1

p ≤ C(κ+ 1)
1

2

√

ln(n)

n
,

we deduce that :

P
n
f (sup
a∈Cq

Z(a) ≥ c+ C(1 + κ)
1

2

√

ln(n)

n
) = E

n
f (P

n
f (sup
a∈Cq

Z(a) ≥ c+ C(1 + κ)
1

2

√

ln(n)

n
|X))

≤ E
n
f (P

n
f (sup
a∈Cq

Z(a) ≥ c+ C(1 + κ)
1

2

√

ln(n)

n
|X)(1Bκ

+ 1Bc
κ
))

≤ P
n
f (Bκ) + E

n
f (P

n
f (sup
a∈Cq

Z(a) ≥ c+N(X)|X)). (3.7)

Since, conditionally on (X1, ..., Xn), Z(a) is a centered Gaussian process, we are in position to
apply Cirelson’s inequality which gives us :

E
n
f (P

n
f (sup
a∈Cq

Z(a) ≥ c+N(X))|X)) ≤ E
n
f (exp−(

c2

2W (X)
)) (3.8)

where W (X) = supa∈Cq
V arnf (Z(a)|X).

◦ Bound for W (X). Let us consider the set :

Aκ =







sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n
−1

n
∑

i=1

1

g(Xi)
ψj,k(Xi)ψj,k′(Xi)) −

∑

(K)

|aj,k|2) ≥ κ







.

Since q ≤ 2, on the set Ac
κ we have :

G = sup
a∈Cq

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n
−1

n
∑

i=1

1

g(Xi)
ψj,k(Xi)ψj,k′(Xi))

≤ sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n
−1

n
∑

i=1

1

g(Xi)
ψj,k(Xi)ψj,k′(Xi)) −

∑

(K)

|aj,k|2) + sup
a∈Cq

∑

(K)

|aj,k|2

≤ (κ+ 1).
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Since E
n
f (Bj,k) = 0 and E

n
f (zizi′) = 1 if i = i′ and 0 otherwise, ‖f‖∞ <∞ and infx∈[0,1] |g(x)| >

0, it follows from the previous inequality that on Ac
κ we have :

W (X) = sup
a∈Cq

V arnf (Z(a)|X) ≤ sup
a∈Cq

E
n
f (
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′Bj,kBj,k′ |X)

≤ C sup
a∈Cq

(n−2
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′

n
∑

i=1

n
∑

i′=1

1

g(Xi)
ψj,k(Xi)ψj,k′(Xi′)E

n
f (zizi′))

= Cn−1 sup
a∈Cq

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n
−1

n
∑

i=1

1

g(Xi)
ψj,k(Xi)ψj,k′(Xi))) = Cn−1G

≤ Cn−1(κ+ 1).

Therefore :

E
n
f (exp−(

c2

2W1(X)
)) = E

n
f (exp−(

c2

2W1(X)
)1Aκ

) + E
n
f (exp−(

c2

2W1(X)
)1Ac

κ
)

≤ P
n
f (Aκ) + exp−(

nc2

2(κ+ 1)
). (3.9)

Now, let us consider the following proposition which will be proved at the end of the proof.

Proposition 3.1. There exists a constant C > 0 such that for n and κ large enough we have :

max(Pnf (Aκ),P
n
f (Bκ)) ≤ Cn−p, j ∈ {j1, ..., j2}. (3.10)

Putting (3.7)-(3.10) together and taking c = κ
8

√

ln(n)
n

, we find :

V = P
n
f (sup
a∈Cq

Z(a) ≥ κ

4

√

ln(n)

n
) ≤ P

n
f (sup
a∈Cq

Z(a) ≥ κ

8

√

ln(n)

n
+ C(1 + κ)

1

2

√

ln(n)

n
)

≤ C(Pnf (Aκ) + P
n
f (Bκ) + exp−(

ln(n)κ2

128(κ+ 1)
))

≤ C(n−Cκ
2

+ n
−C κ2

1+κ ) ≤ Cn−p

for κ large enough. Combining the bounds of U and V, the proof of Theorem 3.1 is complete in
the case where p ≥ 2.

Proof of Proposition 3.1. Let us investigate separately the bounds of P
n
f (Bκ) and P

n
f (Aκ).

• Let us show that P
n
f (Bκ) ≤ Cn−p. Since the variables

ψ2
j,k

(Xi)

g(Xi)
are i.i.d with

ψ2
j,k

(Xi)

g(Xi)
≤

‖1
g
‖∞‖ψ‖2

∞2j and E
n
f

(

ψ2
j,k

(X1)

g(X1)

)

= 1, Hoeffding’s inequality yields :

P
n
f (Bκ) ≤ 2 exp

(

− 2n2κ2

n‖1
g
‖2
∞‖ψ‖4

∞22j

)

≤ Cn−p

for 2j ≤ 2j2 ≤ C
√

n
ln(n) and κ large enough.

• Let us show that P
n
f (Aκ) ≤ Cn−p. The aim is to apply the Talagrand inequality. Let us

consider the set of functions F ′ defined by :

F ′ =







h; h(x) =
1

g(x)

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′ψj,k(x)ψj,k′(x), a ∈ Cq







.
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and let us notice that :

sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n
−1

n
∑

i=1

1

g(Xi)
ψj,k(Xi)ψj,k′(Xi)) −

∑

(K)

|aj,k|2|) = sup
h∈F ′

rn(h)

where rn is defined as in Lemma 3.1. Thus, it suffices to determine the values of T , H and v

present in the Talagrand inequality.

◦ Value of T. Using the Holder inequality, the fact that infx∈[0,1] |g(x)| ≥ c > 0 and the
concentration inequality (2.1), for any h ∈ F ′ it comes :

|h(x)| ≤ C
∑

(K)

|aj,k|2
∑

(K)

|ψj,k(x)|2 ≤ C2j .

Hence T = C2j .

◦ Value of H. The l2 Holder inequality combined with the Hölder inequality and the fact
that q ≤ 2 give us :

S = E
n
f (sup
a∈Cq

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(

n
∑

i=1

εi
1

g(Xi)
ψj,k(Xi)ψj,k′(Xi)))

= sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

|aj,k|2|aj,k′ |2)
1

2 (
∑

k∈Bj,K

∑

k′∈Bj,K

E
n
f (|

n
∑

i=1

εi(
1

g(Xi)
ψj,k(Xi)ψj,k′(Xi))|2))

1

2

≤ C(
∑

k∈Bj,K

∑

k′∈Bj,K

E
n
f (|

n
∑

i=1

εi(
1

g(Xi)
ψj,k(Xi)ψj,k′(Xi))|2))

1

2

(3.11)

Since (ε1, ..., εn) are i.i.d Rademacher variables and are independent of (X1, ..., Xn), we have :

E
n
f (|

n
∑

i=1

εi(
1

g(Xi)
ψj,k(Xi)ψj,k′(Xi))|2) = E

n
f (E

n
f (|

n
∑

i=1

εi(
1

g(Xi)
ψj,k(Xi)ψj,k′(Xi))|2|X))

= E
n
f (

n
∑

i=1

| 1

g(Xi)
|2|ψj,k(Xi)|2|ψj,k′(Xi)|2)

≤ CnE
n
f (|ψj,k(X1)|2|ψj,k′(X1)|2). (3.12)

Since the concentration inequality (2.1) says that :

∑

(K)

E
n
f (|ψj,k(X1)|2) ≤ C2j ,

the inequalities (3.11) and (3.12) give us :

S ≤ Cn
1

2 2j .

Hence H = C2jn−
1

2 .
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◦ Value of v. Taking in account the assumption done on g, the fact that q ≤ 2, the Hölder
inequality et the concentration inequality (2.1), one gets :

sup
h∈F

V ar(h(X1)) ≤ sup
a∈Cq

E
n
f (

1

|g(X1)|2
|
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′ψj,k(X1)ψj,k′(X1)|2)

≤ C sup
a∈Cq

(
∑

(K)

|aj,k|2)2Enf ((
∑

(K)

|ψj,k(X1)|2)2)

≤ C22j .

Hence v = C22j .

If we take t = κ
2 then :

(

t2

v
∧ t

T

)

=

(

C
κ2

22j
∧ C κ

2j

)

= C
κ2

22j

Choising a such t and taking in account the fact that 2j ≤ 2j2 ≤
√

n
ln(n) , the Talagrand

inequality says that :

P
n
f (sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n
−1

n
∑

i=1

1

g(Xi)
ψj,k(Xi)ψj,k′(Xi)) −

∑

(K)

|aj,k|2|) ≥
κ

2
+ C2jn−

1

2 )

and a fortiori P
n
f (Aκ), is dominated by :

C exp(−nCκ22−2j2) ≤ Cn−p

for κ large enough. This ends the proof of Proposition 3.1.
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