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Abstract

The problem of estimating an unknown regression function in a regression setting
with (known) random design is concerned. By adopting the minimax point of
view, we explore the asymptotic performances of an adaptive estimator based on
wavelet block thresholding under the global L risk (p > 1). We show that the
estimator achieves the optimal rates of convergence over a wide range of Besov balls.

Key Words: Minimax, wavelet block thresholding, Regression with random de-
sign, Besov spaces.

AMS subject classification: Primary : 62G07; Secondary : 62C20.

1 Motivation

Suppose we observe n pairs (X1, Y1), ..., (Xp, Yn) i.i.d governed by the equation :
Y; :f(Xz)—FZZ, 1=1,...,n, (11)

where the z;’s are Gaussian i.i.d with mean zero, variance one and are independent of the design
X1, ..., Xp,. We assume that the design is known with X; € [0, 1] and we denote by g the density
of Xi. The function f is unknown with | f|lcc = supgep1)]f(#)| < oco. The objective is to
estimate f from observations (X1, Y1), ..., (Xpn, Yn).

When wavelet methods are considered, this estimation problem has been investigated by
many authors in various statistical setting. Let us cite Delyon and Juditsky (1996), Cai and
Brown (1998, 1999), Maxim (2003), to name a few. The standard approach consists in conside-
ring constructions based on term-by-term thresholding via the VisuShrink algorithm developed
by Donoho and Johnstone (1995). Traditionaly, under some assumptions on g, such procedures
attain the minimax rate of convergence up to a logarithmic factor over a wide class of Besov
balls. If we consider the L% risk that means that the hard thresholding procedure f satisfies :

s B | i) - foar) < () e

feBs (R) n

Here E} denotes the expectation with respect to the distribution P} of (X1,Y1), ..., (Xn, Ys)
and Bj .(R) is a Besov ball (to be defined in Section 2). Let us mention that f is adaptive in
the sense where its construction does not depend on the parameter of regularity s.

In order to remove the logarithmic term, an adaptive wavelet construction based on the
block thresholding developed by Cai (1999, 2002) has been studied by Chicken (2003) in the
context of uniform design (i.e g = 1jg1]). A such estimator f satisfies :

1 ~ 2s
sup K% (/0 |f(z) — f(:c)]%lx) < Cn” T3,

fEBS oo (R)
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Here B3, . (R) is a Holder space of function (to be defined in Section 2). In addition to attain the
optimal rate of convergence under the minimax context above, good performances are observed
in practice.

This present paper proposes to investigate the minimax rates of convergence of the BlockSh-
rink procedure under the L” risk (p > 1) over a wide class of Besov balls B; .(R). We show
that under some assumptions on g, the proposed BlockShrink procedure attains the minimax
rate of convergence for numerous values of s, m and r. It is important to mention that the proof
is based on a general theorem which can be found in Chesneau (2006a). In fact, we only need
to prove a technical concentration inequality to determine the desired minimax results.

The rest of the paper is organized as follows. Section 2 describes wavelet bases on the
interval, Besov balls and the BlockShrink construction adapted to the LL? risk. Their minimax
performances over Besov balls and under the IL? risk are investigated in Section 3.

2 Methodology

Throughout this paper, we set :

1
LP([0,1]) = {f measurable on [0,1]; | f :/ |f(z)Pdz < +o0}.
0

The notation ¢ =< b means : there exist two constants C > 0 and ¢ > 0 such that ¢b < a < Cb.
The notations a A b and a V b mean respectively : min(a, b) and max(a,b).

2.1 Wavelet bases and Besov spaces

We summarize in this subsection the basics on wavelet bases on the unit interval [0, 1].

Let us focus on the wavelet basis of [0, 1] described by Cohen et al. (1993) : We consider ¢
a "father” wavelet of a multiresolution analysis on R and v the associated "mother” wavelet.
Assume that Supp(¢) = Supp(y)) = [1 — N, N] and fl Ny O(x)dr =1, fl ~ Z(z)dz = 0 for
1=0,.,N—1.

Let us set :
Gik(r) =256(200 — k) and 4(z) = 259 (2z — k).
Then there exists an integer 7 satisfying 27 > 2N such that the collection ¢ defined by :

C={brp(), k=0,...,2" = 1; ¥jx(); j =7, k=0,..,27 — 1}
with an appropriate treatments at the boundaries, is an orthonormal basis of L2([0, 1]).
Let 1 < p < co. Any function f of LP([0, 1]) can be decomposed on ( as :

ZO‘TWW +ZZﬁgk%k x €10, 1],

keAr J>T kEA;

where o), = fo z)pjk(x)de, Bjr = fo z);p(z)dr and A; = {0, ...,27 — 1}. The following
concentration inéquality is standard : Let p > 1. For any sequence u = (u; ), and any j > 7
there exists a constant C' > 0 such that :

| Z Uj kPjk ‘p < Z |k l”

keA; keA;

(2.1)
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This inequality holds if we exchange ¢ by .

Let us now define the main function spaces of our study. Let N € N*, R >0, 1 <r < oo,
1<m<ooand 7! < s < N. The equivalence below shows the link which exists between the
Besov balls and the wavelet basis (. See Meyer (1990) for a detailed proof.

ea 11 1 1 .
(X jor 1 (@272 (Chcn, 1Bi6)7))F < R< oo if r< oo,

feB; (R <
SUD>r_ 1 2j(s+%—%)(zk€Aj 1B;x")* < R < o0 if r=o0.

2.2 BlockShrink procedures

Let us now present the adaptive procedures which will be at the heart of our statistical
study.

Definition 2.1 (BlockShrink procedures). Let 1 < p < oo. Let ji be an integer satisfying
21 = ln(n)g and let jo be an integer satisfying 272 < | /%. For all j in {j1,...,Jo}, let us

divide A into consecutive nonoverlapping blocks Bj i of length ln(n)gv1 ie:

Bj,K:{keAj: (K—1)1n(n)§vlgkgmn(n)%vl—1}, K € A,

where the sets A; are defined by :

b

A; = {1, o2 ln(n)_i}

(for convenience we suppose that nz ln(n)prJrl € N*). We define the BlockShrink procedure f
by :

J2
Fa)y= > ajatin@ +> > > Bj,kl{l;j,K(p)zm—%}wj,k(x)a z€[0,1}, (22)

kGAjl =71 KGAj kGBij

where Kk is a positive real number, & and B are the following unbiased estimators of o
and Bj :

S DF- AINCSNN ) L RANC'S 23)
G — = (X)), R (X .
TR g g0) TR R T L g () R
and b x (p) is the normalized l,-norm of estimators (Bj,k)kij,K i.e:
P

. 1 .
b)) = | —7 > |8kl

ln(n) 2 kEBj,K

The wavelet construction above can be viewed as an LLP version of the BlockShrink proce-
dure developed by Cai (1999) for the LL? risk and the white noise model. Let us mention that it
appears in Picard and Tribouley (2000) in another statistical context and for the local L? risk.

3 Minimax results over Besov balls

Theorem 3.1 below exhibits the rates of convergence attained by the BlockShrink procedure
describes in Definition 2.1 over Besov balls under the IL? risk.
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Theorem 3.1 (Minimax results over Besov balls). Let 1 < p < oo, R > 0 and a1, ay and €
such that : i
5 STxty 1
ap=——, apg=——+—"— and e=ws+2" (7w —p).
o2 P as-L)+1 (r=2)
Suppose that we observe the data (1.1) and that there exists two constants Cx > 0 and ¢y > 0
such that :
|flloo <Cy <oo and inf |g(x)| > ce > 0.
z€[0,1]
Then for s > 27 +7n71, r > 1, there exists a constant C > 0 depending on C and ¢, such that
the BlockShrink procedure f described in Definition 2.1 satisfies :

Cn_c”p, if > D,
A C(lnén))alp, if €e>0, p>m,
sup  E¥([[f — flI}) <
feBs (R) C(ln(n))agp, if e<O,
O y0p () =+ if =0,

for k and n large enough.

The rates of convergence exhibit in the previous theorem are optimal in the minimax sense,
except for the case {¢ > 0, p > 7} where a logarithmic factor appeared.

Let us mention that :

1. our block thresholding procedure has better rates of convergence than the warped
wavelet thresholding procedure f* developed by Kerkyacharian and Picard (2005). Accor-
ding to Kerkyacharian and Picard (2005, Proposition 2), under the assumption g known with
0<m<g< M < oo, such 'warped’ procedure f* satisfies :

N

o) yoap, if >0,
sup BRI fIB) < 4 O(Rnyeer, if €<0,
f(G=YHeB; . (R) C(lﬂ n) )azp ln(n)(p_%)ﬂ if €=0,
Let us notice that the regularity of f(G~!) is concerned and we have supposed that g is bounded

from above contrary to the assumption of Theorem 3.1.

2. Theorem 3.1 can be viewed as a generalization of Chicken (2003, Theorem 2) which
proves this result in the case where p = 2, 7 = 00, r = 00 and g = 1jg 1) (uniform design), the
BlockShrink procedure satisfies :

sup  ER(|f — fl3) < Cn7?,
feB% (R)

for k and n large enough.

3.1 Proofs

Preleminary remarks : For the sake of legibility, we shall adopt the following notations :

2= ad D =)

KEA; (K)  keBjxk
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According to the proof of Chesneau (2006a, Theorems 4.1 and Theorem 4.2), it suffices to
show that the estimators &;j and f3; satisfy the three following assumptions :

Assumption 1. There exists a constant C' > 0 such that the following moments condition
holds :
~ _bp
sup B (|éj, r — ajy xlf) < Cn™2,
k)EAj

Assumption 2. There exists a constant C' > 0 such that the following moments condition
holds :
sup E?(‘Bj,k - 6],]{: 2p) < Cnipa .] € {j17 "')j2}7
k)EA]'

Assumption 3. There exist constants k1 and C' > 0 such that the following concentration
condition holds :

1 n 1
sup P}H((——— = BipP)r > —=) < COn7P, € {j1,..,J2}-
b f((ln(n)gVI%W]’k BjklP)? = 2\/5) < j € {1, da}

The assumptions 1 and 2 have been shown in the proof of Theorem 3.2 of Chesneau (2006b).
That’s why we focus our attention on the assumption 3.

The proofs of all major statement are based on several auxiliary lemmas. First, let us set
a version of Talagrand’s inequality and a version of Cirelson’s inequality.

Lemma 3.1 (Talagrand (Talagrand (1994))). Let Vi, ..., V,, be independent and identically dis-
tributed random variables, let €, ..., €, be independent Rademacher variables, also independent
of Vi,..., Vi, and let F be a class of functions uniformly bounded by T. If

— SUPper VCLT(h(Vi)) <v,
— E(supper > ig 6h(Vi)) <nH,

then there exist universal constants Cy, Cy such that for rp(h) = n=t 3" | h(V;)—E(h(V1))
and any t > 0 we have :

ot

P(sup rp(h) >t + CoH) < exp(—nCi min <, > ).
heF v' T

Lemma 3.2 (Cirelson, Ibragimov, Sudakov’s inequality (Cirelson et al. (1976))). Let (n:, t € T')

be a centered Gaussian process. If

— E(supyermt) < N,
— super Var(n) < W,

then for any ¢ > 0 we have :

2

P(supn > ¢+ N) < exp(—c—). (3.1)
teT 2w

We are now in position to start the proof. Here and later, C' denotes a constant (inde-
pendent of n and f) which may be different from one term to the other. The notation ”|X”
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means conditionaly to Xy, ..., X,,.

Proof ofTheorem 3.1. Since for 1 < p < 2 and all k > 0, the [, norm inequality gives
us :

P} ((In(n ij, = B3)7 2 57 < (G 3 Bk = 03 2 570,

(K)

it suffices to show the assumption 3 in the case where p > 2. We have the decomposition

Bik — Bik = Aji + Bjk

where
1 f(X)) f(X1)
k= Z SO Vi (0 — Ef (5 (X0))
and
S R
j,k) - n — g(XZ) j,k 7 7.
Using Minkowski’s inequality, one gets :
1
Pyp > — I\ <U+YV

where we have set :

Z/{:Pn p)%

1 n 1 . ko
\/72’ jk’ p 7) and V_]pf(\/m(%|337k 24\/ﬁ)

Let us analyze each term I/ and V in turn.

¢ Bound for the term U. Here, the aim is to apply Talagrand’s inequality (Lemma 3.1).
Let us consider an infinite sequence

Co={a=(ajr); Y _lajxu|? <1}

keZ
where ¢ is defined by the equation p~' + ¢~ = 1. Let us consider a class of functions

F =1 h; h(z) = @ Z%,k%,k(@a acCy
9() &5

Using an argument of duality, it is easy to notice that we have :

Z |6]k - ﬁj k|p p = sup Za], ﬁjk ﬁ] k)(_ sup Tn(h))

5 a€Cq (75 heF

So we only need to find the values corresponding to v, H and T in Talagrand’s inequality. Let
us set a preliminary remark.

Remark 3.1. Since p > 2, we have clearly ¢ < 2 and by comparison between the l, norms :

L
sup Z]ajk] 2 < sup Z]a]k]q )a

aeq(K aEq(K
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o Value of T. Using Holder’s inequality, the fact that || f|le < 00, inf,c(o 1) [g(x)| > 0 and
the concentration inéquality (2.1), for all h € F one gets :

% Zm, )2 < OO inla))z
(K)

|h(2)]

IN
Q
\V)
o
&
m

=)

=

We deduce that :

o Value of H. If €1, ..., €, are independent Rademacher variables independent of X1, ..., X,
then by Holder’s inequality and Cauchy-Schwartz’s inequality we obtain :

E? supz Zam zm ) sueraj,qu%ZE“rZ wy, (X,)7)*

aECqz 1 Cq (K) i—

ZE”Z f %k (X077 (3.2)

IN

IN

By virtue of Khintchine’s inequality, we can bound the last term by :

rZ f wj, X)) = EnEan f w], X0)PIX)

IN

=403 ;(Xj) LB =W G3)
=1

2 .
For the sake of simplicity in exposition, let us set N; = g 5 8?)) wjz 1 (Xi). An elementary inequality
of convexity gives us :

n

W < O S (N: — E}(N)IE) + nEE} (V)
=1

) = C(Wy + Wa). (3.4)

Let us analyze each term W; and W5 in turn.

Bound for the term Wj. Using Bernstein’s inequality with the i.i.d centered variables
Ni, ..., N, and Cauchy-Schwartz’s inequality, it comes :

Wi < C(EF(N: — EF(ND|2) + (nEF( N — E}(N)F))
< CHEF(INI2) + (nEF(N)T).

Since for any m > 1, any j € {ji, ..., j2} and under the assumptions of boundedness on f and
g we have :

Ef()Pr
o lg@)Pm=t

2 (m=1)| | 2m=2 / ()2 < 29D < 02iam=1) < T,
0

1
EF(IN:[™)) [y (@) " da < C/O [k ()27 dx

IN

we deduce that :

[SIS]

(3.5)
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Bound for the term Ws. Since E?(Nl) < C, we have clearly :

Wy < Cn?. (3.6)
Combining (3.2)-(3.6), we see that :
E’%(sup Z Zaik Z 1/1]k ) < ZW % n2Ca7"d(B )% < Cnz ln(n)%.
acCq ;4
It follows that :
HeC In(n)
n
o Value of v. Using the fact that || f|lec < 00, infyejo17]9(z)| > 0 and ¢ < 2, one gets :
|f(X1)? 2
sup Var(h(X < sup IE” a; k(X
sup Var(h(X1)) < sup E}( g | ; (X))
< CsupE} Zzaj K — Pk (X1) ¥ (X1))
a€Cy (K) ( )
< C sué) Z Z%,k% k// Y k()Y (x)de = C sup Z lajr* < C.
ac

a€Cy (K)

We conclude that
v=C.

Since n27 < n2i2 < Cn2 ln(n)_%, if we set t = g4/ % then we have :

min <t2 t) = min (C%an(n) ¢ 111(”)) > Cr? In(n)

T 64 n '8V n2 64 n

for n large enough. Thus, for a such choice of ¢, Talagrand’s inequality (see Lemma 3.1) gives
us :

u

; 7) Z| Jk‘ E \f 8f)

< exp(— nC’finn?(l )) <n?P

for k large enough. We obtain the desired bound for the term U.

e Bound for the term V. The Cirelson’s inequality (see Lemma 3.2) will be at the heart
of the present proof. As in the previous subsection, let us consider the set

Co = q @ = (a); Z]am!q<1

1

where ¢ is the real number satisfying ¢—' + p~' = 1. Let us consider :

Z(a) =) a;xBjx

(K)
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and let us notice that an argument of duality gives us :

1

sup Z(a Z |Bjl?)?.
acCy

The rest of the proof is inspired by some methods developed in Kerkyacharian and Picard
(2005, Proof of Proposition 3). Let us set :

H_{m_lz ij i _1|Z“}-

Using Holder’s inequality, the fact that conditionally on (X7, ..., X,) we have

Z(a QZ Wﬂf )’)

and that inf (o 1) [g(2)| > 0, on the set By we have :

n

N(E) = Ej(sup 2(@)[%) < (CBHIBuPIX)? < O (g S0 by a(X)E)?

a X X7,
<a (K) TRE=A
! e 1 po 1

= n2 =y (X)) -1+ 1)2

OGS g P - L D8
< O (4 DBP) < On 3 + 1)bCard(B; )b < Ol + 13 2,

n
()

we deduce that :

Pj(sup Z(a) > ¢+ C(1+ )31/ )) = Ej(Bj(sup Z(a) > e + C(1 I\F\x

a€eCy n a€Cy

l\J

a€cCqy

< FJ(B.) + B (P (sup 2() 2 e+ N (% >\x> .

Since, conditionally on (X1, ..., X,,), Z(a) is a centered Gaussian process, we are in position to
apply Cirelson’s inequality which gives us :

E"(]P’”(:élg Z(a) 2 c+ N(X))[X)) < E?(exp—(zw(x))) (3.8)

where W(X) = supyec, Varf(Z(a)[X).
o Bound for W(X). Let us consider the set :

n

1
Ax = sup( Z Z ;. kA, ke ( -1 Z m%’,k( %k Z ]a]’ Z K
9€Ca kB, k k'EB; i i=1 9\
Since ¢ < 2, on the set A¢ we have :
n
1
G o= swp d > agrap(nT ) m%k(&)%k’ (X3))

9€Ca keB; «c KEB; i i=1 I\
< Sup Z Z a5 kA5 k! Z ¢]k ¢jk Z|(L] k| + SUPZ’(IJ k’

a€Cq kGB KK GBJ K =1 Cq (K)
< (k+1).

< E}PH(sup Z(a) > ¢+ C(1 + k)2 In(n >|X)( .+ 15¢))

(3.7)
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Since B} (Bjx) = 0 and E}(2;21) = 1ifi = i’ and 0 otherwise, || f||oc < 0o and inf,¢(o 1) |9(z)| >
0, it follows from the previous inequality that on A¢ we have :

W(X) = sup Var}(Z(a)X) < sup E}( Z Z a;j kj p BjkBjw|X)

a€Cq a€Cq k‘GBj K k‘IGB]' K
< Csup(n? Z Z a],ka]k’zz %k Xi)jp (Xi)EF (zizir))
a€Cq kEB; i K'EB; i im1i—19
n 1 -
= Cnlsup Y > ajraiw(n Imej,k(Xi)wj,k’(Xi))):Cn ‘G
a€Cq keB, x K EB, i i—1 g A
< OnY(k+1).
Therefore :
Mexp—(o-C)) = Epexp (oS )a) + Ef(exp (o)1)
FEP o)) T TP Ty A T RSP Ty ) A
< PHA) tep ("0 ) (39)
R A TP '

Now, let us consider the following proposition which will be proved at the end of the proof.

Proposition 3.1. There exists a constant C > 0 such that for n and k large enough we have :

max (P (Ax), P}(Bx)) < Cn P, Jj € {1, Jo} (3.10)

Putting (3.7)-(3.10) together and taking ¢ = g/ %, we find :

ln(n) K ln( )

K 1
YV = Pl(sup Z - <IP’”suZ - +C(1+ k)2
jomp Z(@) 2 T %) < Bj(sup 2(0) 2 ¢ (1+m)5y/ 1)
In(n)x>

< C(PH(Ax) +P}(Bg) + exp —(m))

w2
< C(n—Cn2 +n CT) < CnP

for x large enough. Combining the bounds of & and V), the proof of Theorem 3.1 is complete in
the case where p > 2.

Proof of Proposition 3.1. Let us investigate separately the bounds of P?(BH) and P} (Ag)-

;(Xi) <

are i.i.d with

2 .
e Let us show that IP’?(BH) < Cn~P. Since the variables w;’{“)((ng)
(X1)

15 +llooll®2,27 and E% < 5(XD) > = 1, Hoeffding’s inequality yields :

2n2K?
"(Bx) < 2exp | — - | <Cn™P
e ( nu;nwwné@z%)
for 27 < 272 < C, /ﬁ and k large enough.

o Let us show that }P”fl (Ax) < Cn~P. The aim is to apply the Talagrand inequality. Let us
consider the set of functions F’ defined by :

F = h; h Z Z Qj kA, k’wj k )%’,k" (ZE), ac Cq

kEB] K k' EB] K
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and let us notice that :

n

sup( 3030 ey (v (X () = X agaf?) = sup 7

a€Cq keBj k k'eBj k i=1 (K)
where r, is defined as in Lemma 3.1. Thus, it suffices to determine the values of T', H and v

present in the Talagrand inequality.

o Value of T. Using the Holder inequality, the fact that inf,¢(o 1) |g(x)] > ¢ > 0 and the
concentration inequality (2.1), for any h € F' it comes :

z)| < CZyajky Z’%k )2 < C.
Hence T = C27.

o Value of H. The I, Holder inequality combined with the Holder inequality and the fact
that ¢ < 2 give us :

S = Ef(sup > > a]kagk/z g&i)%,k(Xi)%,k/(Xz‘)))

9€Ca keB; « k' EB; K

= sup( > > lajsPlajel) )2 ( (> > E !Zez Qm (Xi) ¥ (X0))[%))

9€Ca |eB; k k'EB; K kEB; K K'EB; K

oy Y E \zez S0 o K (X))

kEBij k?/EBj’K

N

N

IN

(3.11)

Since (€1, ..., €,) are i.i.d Rademacher variables and are independent of (X1, ..., X,,), we have :

IZQ %k (X (X)) = E}( E"!Zéz %k (Xi)wse (X0))I?X))

=1
= Z\ \ (500 (X0) P[00 (X))
< CnE}L(Wj,k(XD\ 2w (X1)[?). (3.12)

Since the concentration inequality (2.1) says that :

> EH(iR(X0)?) < €2,

(K)
the inequalities (3.11) and (3.12) give us :
S < Cnsd.

Hence H = C’2jn_%.
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o Value of v. Taking in account the assumption done on g, the fact that ¢ < 2, the Holder
inequality et the concentration inequality (2.1), one gets :

1
sup Var(h(X < sup E% aj k0 ki (X1) V)0 (X 2
heF (h{X1)) aeCy f(|g(X1)|2|ke%2Kk’ezB;K sk V(X (K1)
< Csup(O_ ajul’EHO . [r(X1)[))?)
°<Ca (1) (K)
< C2¥.

Hence v = C2%.

If we take t = % then :

t2 t K2 K K2

Choising a such t and taking in account the fact that 21 < 9272 < %, the Talagrand
inequality says that :

n

1 C g
Pisup( > > arajw(n' )] m%bj,k(Xi)%bj,k'(Xz’)) = laal) > g+ C¥n~2)

a€Cq kEBj’K kIEBjYK =1 (K)

and a fortiori P}(A,), is dominated by :
Cexp(—nCr?27%12) < Cn~P

for k large enough. This ends the proof of Proposition 3.1. O
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