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Two-dimensional inverse pro�ling problem using phaseless dataAmélie Litman and Kamal BelkebirInstitut Fresnel, UMR-CNRS 6133,Campus de Saint Jér�me, 
ase 162Université de Proven
e, 13397 Marseille Cedex, Fran
eThis paper deals with the 
hara
terization of two-dimensional tar-gets from their di�ra
ted intensity. The target 
hara
terization isperformed by minimizing an adequate 
ost fun
tional, 
ombinedwith a level-set representation if the target is homogeneous. Onekey issue in this minimization is the 
hoi
e of an updating dire
tion,whi
h involves the gradient of the 
ost fun
tional. This gradient
an be evaluated using a �
titious �eld, solution of an adjoint prob-lem where re
eivers a
t as sour
es with a spe
i�
 amplitude. Weexplore the Born approximation for the adjoint �eld and 
omparevarious approa
hes for a wide variety of obje
ts.
© 2007 Opti
al So
iety of Ameri
aOCIS 
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21. Introdu
tionIn some pra
ti
al appli
ations, the phase measurement of the s
attered �elds are too 
or-rupted by noise to be useful or even there is no phase measurement at all, e.g., opti
almeasurement setup. Even if there is some e�ort nowadays to provide experimental setupswhi
h measure all 
omponents of the s
attered �elds1,2, our purpose herein is to investigatea method that image samples from the modulus of the s
attered �eld only. Indeed, it hasbeen shown that the s
attered intensity 
ould provide useful information on the obsta
les.3Instead of extra
ting some phase information from measurements4, and then solving theinverse s
attering problem from the measured intensity and the preliminary retrieved phase,we dire
tly retrieve the targets under test from the s
attered intensity. Following the ideasof Refs. 5,6, the approa
h, suggested herein, builds up the parameter of interest, namely the
ontrast of permittivity, iteratively. It is gradually adjusted by minimizing a 
ost fun
tionalproperly de�ned.This minimization under 
onstraints is reformulated in terms of a Lagrangian fun
tional,whose saddle point leads to the de�nition of an adjoint problem.7 By virtue of the re
ipro
ityprin
iple, this adjoint problem is equivalent to a forward s
attering problem where re
eiversa
t as sour
es with a 
orre
tly de�ned amplitude. It will be shown that the only di�eren
ebetween a standard minimization pro
ess using modulus-phase data and this algorithmis expressed in these weighting 
oe�
ients. This implies that passing from full datato amplitude data requires only one line 
hange in a software program if an adjoint �eldformalism is used.This approa
h is then introdu
ed for two 
ases of permittivity pro�le: a 
ontinuous pro�le



3and a step pro�le. The �rst 
ase is solved thanks to a 
onjugate-gradient type algorithm.For the se
ond 
ase, a level-set representation is introdu
ed, whi
h fully takes into a

ountprior information stating that the obsta
le is homogeneous.8 Results using modulus onlymeasurements will then be analyzed in a free spa
e 
on�guration for those two 
ases ofpermittivity pro�le. In parti
ular, we highlight with various numeri
al examples the e�e
ton the gradient 
omputation and on the 
onvergen
e, of physi
al approximations su
h asBorn approximation for both the forward and adjoint �elds. We also introdu
e a newinitial guess based on an appropriate use of topologi
al derivative, whi
h is no more thanthe variation of the 
ost fun
tional due to the in
lusions of small diele
tri
 balls.9The following paper is organized as follows. In the �rst se
tion, a des
ription of the ge-ometry is provided. The se
ond se
tion is devoted to the de�nition of the inverse s
atteringproblem, with the introdu
tion of the 
ost fun
tional and the asso
iated Lagrangian for-mulation. The gradient expression is then provided and several 
hoi
es of 
omputation aredis
ussed. The third se
tion fo
uses on the appli
ation of this gradient 
omputation to the
ase of heterogeneous obsta
les by means of 
onjugate-gradient algorithm or to the 
ase ofhomogeneous obsta
les by means of level-sets. The way the initial guess is obtained is alsoexplained in the same se
tion. Finally, the last se
tion provides numeri
al examples for bothhomogeneous and heterogeneous obsta
les, with and without noise, showing the e�e
ts ofa 
orre
t gradient 
omputation as well as the appropriate use of an a priori information onthe nature of the s
atterers.



42. Statement of the problemThe geometry of the problem studied in this paper is shown in Fig. (1) where a two-dimensional obje
t of arbitrary 
ross-se
tion Ω is 
on�ned in a bounded domain D. The em-bedding medium Ωb is assumed to be in�nite and homogeneous, with permittivity εb = ε0εbr,and of permeability µ = µ0 (ε0 and µ0 being the permittivity and permeability of the va
-uum, respe
tively). The s
atterers are assumed to be inhomogeneous 
ylinders with a per-mittivity distribution ε(r) = ε0εr(r); the entire 
on�guration is non-magneti
 (µ = µ0). Aright-handed Cartesian 
oordinate frame (O,ux,uy,uz) is de�ned. The origin O 
an beeither inside or outside the s
atterer and the z-axis is parallel to the invarian
e axis of thes
atterer. The position ve
tor OM 
an then be written as OM = r+ z uz. The sour
es thatgenerate the ele
tromagneti
 ex
itation are assumed to be lines parallel to the z-axis, lo
atedat (rl)1≤l≤L. Taking into a

ount a time fa
tor exp(−iωt), in the Transverse Magneti
 (TM)
ase, the time-harmoni
 in
ident ele
tri
 �eld 
reated by the lth line sour
e is given by
E

i
l(r) = Ei

l(r)uz = P
ωµ0

4
H

(1)
0 (kb |r − rl|)uz, (1)where P is the strength of the ele
tri
 sour
e, ω the angular frequen
y, H

(1)
0 the Hankelfun
tion of zero order and of the �rst kind and kb the wavenumber in the surroundingmedium.For the inverse s
attering problem, we assume that the unknown obje
t is su

essivelyilluminated by L ele
tromagneti
 ex
itations and for ea
h the s
attered �eld is availablealong a 
ontour Γ at M positions. The dire
t s
attering problem may be formulated as two
oupled 
ontrast-sour
e integral relations: the observation equation (Eq. 2) and the 
oupling



5equation (Eq. 3)
Es

l (r ∈ Γ) = k2
0

∫

D

χ(r′) El(r
′) G(r, r′) dr′, (2)

El(r ∈ D) = Ei
l + k2

0

∫

D

χ(r′) El(r
′) G(r, r′) dr′, (3)where χ(r) = εr(r) − εbr denotes the permittivity 
ontrast whi
h vanishes outside D ⊃ Ω,

G(r, r′) is the two-dimensional free-spa
e Green fun
tion and k0 represents the va
uumwavenumber. For the sake of simpli
ity, the equations (Eq. 2) and (Eq. 3) are rewritten as
Es

l = Kχ El, and El = Ei
l + Gχ El. (4)3. Inverse s
attering problemThe inverse s
attering problem is stated as �nding the permittivity distribution in the box

D su
h that the 
orresponding s
attered intensity predi
ted by the model via the 
ouplingand the observation equation mat
hes the data. Is proposed herein an iterative approa
hto solve this ill-posed and non-linear problem. The �rst step 
onsists in the de�nition ofa dis
repan
y 
riteria between the measured �elds and the simulated ones. This 
riteriadepends on the amount of available data, e.g., modulus and phase or modulus only. Thederivative of this 
ost fun
tional must then be expli
itly obtained and it will be shown thatit introdu
es an adjoint state equation where re
eivers a
t as sour
es with an amplitudemainly depending on the expression of the 
ost fun
tional.A. Cost fun
tional de�nitionThe parameter of interest, namely the 
ontrast χ, is gradually adjusted by minimizing a
ost fun
tional J (χ) =
∑L

l=1 F(Es
l (χ)) suitably de�ned under the 
onstraints of (Eq. 4). If



6both amplitudes and phase must be mat
hed, the 
ost fun
tional reads as
J (χ) =

1

2

L
∑

l=1

wl‖E
obs
l − Es

l (χ)‖2
Γ (5)where Eobs 
orrespond to the available measurements and wl to appropriate weight 
oef-�
ients, for example, w−1

l = ‖Eobs
l ‖2

D. If s
attered intensity must be mat
hed, the 
ostfun
tional reads as
J (χ) =

1

2

L
∑

l=1

wl‖I
obs
l − |Es

l (χ)|2‖2
Γ (6)where Iobs 
orrespond to the available intensity measurements and w−1

l = ‖Iobs
l ‖2

Γ.B. Gradient expressionThis minimization problem under 
onstraints 
an be reformulated using a Lagrangian fun
-tional L as7
L(χ, Es, E, U s, U) =

L
∑

l=1

{F(Es
l ) (7)

+ < U s
l | Es

l −KχEl >Γ

+ < Ul | El − Ei
l − GχEl >D

}where χ is the unknown 
ontrast, F is the 
ost fun
tion to minimize, Es and E 
orrespondto the simulated s
attered and total �elds, U s and U are Lagrange multipliers, < | >Γ isthe s
alar produ
t on Γ
(

< u | v >Γ=
∫

Γ
u∗(r)v(r)dr

) and < | >D the s
alar produ
t on D

(

< u | v >D=
∫

D
u∗(r)v(r)dr

). This Lagrangian is used to express �rst-order and se
ond-order 
onditions for a lo
al minimizer, whi
h are linked to the existen
e of a saddle-point.This saddle-point provides an e�
ient way to 
ompute the gradient of the 
ost fun
tional by



7introdu
ing an adjoint �eld. The adjoint �eld, due to the re
ipro
ity prin
iple, is equivalentto the dire
t �eld where re
eivers a
t are sour
es with an amplitude linked to the 
ostfun
tional expression
Pl = P i

l + Gχ Pl and P i
l = −K

t∇F(Es
l ) (8)If both amplitudes and phase must be mat
hed, the in
ident adjoint �eld is given by

P i
l = wlK

t(Eobs
l − Es

l ) (9)If s
attered intensity must be mat
hed, the sour
es for the adjoint problem read as
P i

l = 2wlK
tEs

l (I
obs
l − |Es

l |
2) (10)Therefore the adjoint method is a very 
onvenient way for 
omputing derivatives for severaltypes of 
ost fun
tional.It 
an be shown (Se
. A) that the gradient of the 
ost fun
tional is given by

< ∇J (χ) | δχ >D= −ℜe <
L

∑

l=1

ElPl | δχ >D (11)In the 
ase of intensity measurements, this gradient shows the ambiguity of the 
ost fun
-tional. On one hand, the 
ost fun
tional 
an be redu
ed if the 
omputed �eld is 
lose tothe measured �eld. On the other hand, the 
ost fun
tional 
an be redu
ed if the size of thes
atterer is very small and we 
an negle
t its 
ontribution. In that 
ase, the adjoint �eld isnull as well as the gradient.C. Gradient approximationThe gradient evaluation requires the 
omputation of two forward problems. The �rst one
omputes the dire
t �eld El as the se
ond one, where the re
eivers a
t as sour
es with a



8pres
ribed amplitude, provides the adjoint �eld Pl. It might be interesting, in order to savesome 
omputational time, to perform some approximations su
h as the Born approximation.Three 
ases 
an be 
onsidered: (i) no approximation is done for the dire
t and adjoint�eld 
omputation (noted as the Full-Full 
ase in the following), (ii) Born approximationis only made for the adjoint �eld 
omputation (Full-Born) and (iii) �nally the Bornapproximation is applied for both �elds (Born-Born). In the last 
ase, the gradient isidenti
al to the one whi
h would be obtained by assuming from the beginning that the Bornapproximation was valid. As expe
ted, the way the gradient is 
omputed will have an e�e
ton the minimization pro
ess as it will be highlighted in Se
. 5 with some numeri
al examples.4. Minimization s
hemeOn
e the dis
repan
y 
riteria has been de�ned and its derivative 
omputed, a minimizationalgorithm 
an then be applied, whi
h 
an be spe
i�ed a

ording to the a priori informationavailable. For example, if the permittivity pro�le of the unknown obsta
le is assumed to be
ontinuous, a standard 
onjugate-gradient type algorithm 
an be used. If, on the 
ontrary,one is interested in looking at homogeneous by part obsta
les, this a priori information 
anbe introdu
ed via a level-set formulation where the 
ost fun
tional derivative is still needed.In all 
ases, the initial guess sele
tion is a key point for the 
onvergen
e of the minimizationpro
ess.A. Initial guess sele
tionThe initial guess 
omputation is based on topologi
al asymptoti
 expansion results9. Thetopologi
al derivative aims at introdu
ing some small diele
tri
 balls of 
onstant permittivity



9
εr into a known ba
kground of permittivity ξ(r). These balls indu
e variations on theele
tromagneti
 �elds whi
h are expressed via a topologi
al asymptoti
 expansion formula.Let us denote by Bρ a small diele
tri
 ball of size ρ|B| 
entered at point r (|B| is the measureof a referen
e ball B). This means that r ∈ Bρ ⊂ Bρ′ if 0 < ρ < ρ′ < 1. The topologi
alasymptoti
 expansion of our 
ost fun
tion 
an then be expressed by10

J
{

χ = (εr − εbr)1Bρ
(ξ − εbr)1D\Bρ

} (12)
− J {χ = (ξ − εbr)1D}

= −ρ2ℜe(εr − εbr)k
2
0|B|(

L
∑

l=1

ElPl) + o(ρ3)where 1 is the 
onventional 
hara
teristi
 fun
tion, El (resp. Pl) veri�es (Eq. 3) (resp. Eq. 9)with χ(r) = ξ(r) − εbr, ∀r ∈ D. This topologi
al derivative provides therefore informationwhere to pla
e balls su
h that the 
ost fun
tional is redu
ed and is dire
tly linked to thetopology of the s
atterers. In fa
t, if we assume that ξ = εbr, this gradient is no more thanthe �rst step of the inversion pro
ess, as expressed in (Eq. 11), assuming that there is noinitial guess.Using this topologi
al derivative, as we do not know the value of εr, we 
onstru
t theinitial guess with
χ0(r) = ηℜe

L
∑

l=1

El(r)Pl(r) (13)where η is a 
onstant de�ned su
h that J (χ0) is minimal. The �elds El and Pl are thedire
t and adjoint �elds 
omputed for χ(r) = ξ − εbr, ∀r ∈ D, with ξ very 
lose from εbr.It would have been more natural to use χ = 0 on the entire test domain D (whi
h wouldhave 
orrespond to Ω = ∅) but then, due to de�nition of the 
ost fun
tional for intensity



10measurements, the adjoint �eld would have been null as well as the topologi
al derivative.If a priori information on the nature of the s
atterer is given, su
h as the obsta
le ishomogeneous, a trun
ation at mid value is performed to obtain a binary image.B. Retrieval of an inhomogeneous pro�leIf no a priori information is available on the nature of the s
atterer, a sequen
e {χn} is builtup iteratively a

ording to the following relation
χn = χn−1 + αndn, (14)where dn is an updating dire
tion and αn a weight that is determined at ea
h iteration stepby minimizing the 
ost fun
tional J (χn) (Eq. (6)). During the lo
al sear
h for αn, the �eld

E remains �xed to the value obtained at previous iteration. As a sear
h dire
tion dn, theauthors take a Polak Ribière 
onjugate dire
tion
dn = gn + γndn−1, γn =

< gn | gn − gn−1 >D

‖gn−1‖2
D

, (15)where gn is the gradient of J (χ) with respe
t to χ. As des
ribed in Se
. 3C, this gradient
an be exa
tly 
omputed or approximated.C. Retrieval of a binary pro�leAs the nonlinear inverse problem stated above is highly ill-posed, all available information isuseful to improve the quality of the re
onstru
tions. In some 
ases, it is possible to assumethat the diele
tri
 properties of the obsta
le are known and furthermore that this obsta
leis homogeneous. The 
ontrast of permittivity will then be a binary fun
tion of the following



11form:
χ(r) = εr − εbr r ∈ Ω, χ(r) = 0 r /∈ Ω (16)where εr is known and 
onstant. In this approa
h, whi
h is redu
ed to a shape optimizationproblem, the parameter of interest, namely the shape Ω, is gradually adjusted by minimizingthe same 
ost fun
tional as previously under the 
onstraints of (Eq. 2) and (Eq. 3). Ansequen
e of shapes {Ωn} is 
onstru
ted in order to minimize the 
ost fun
tional F(Ωn). Fordoing so, several elements are ne
essary : (i) the shape representation, (ii) the 
omputationof the derivative of the 
ost fun
tional a

ording to shape, (iii) and the 
onstru
tion of theiterative sequen
e. To represent the shape, let us introdu
e an auxiliary fun
tion 
alled alevel-set fun
tion φ su
h that

Ω = {r ∈ D s.t. φ(r) < 0} . (17)This representation handles naturally all topologi
al 
hanges su
h as fusion or separationand does not require to know in advan
e the number of s
atterers as well as their 
enterspositions. The derivation of the 
ost fun
tional J whi
h now depends on φ must then bedone a

ording to this level-set representation, to obtain
< ∇J (φ) | δφ >D = −ℜe(εr − εbr) (18)

< δ(φ)|∇φ|
L

∑

l=1

ElPl | δφ >Dwhere δ(φ) 
orresponds to the one-dimensional Dira
 delta fun
tion 
on
entrated on theinterfa
e φ = 0, i.e., the interfa
e ∂Ω. As des
ribed in Se
. 3C, this gradient 
an be exa
tly
omputed or approximated. An arti�
ial time variable t is introdu
ed and the minimization



12is done by �nding the steady state solution of
φt = −∇J (φ) (19)assuming that the δ(φ) fun
tion is extended everywhere in D with value 1. This equationis solved using the Osher-Sethian numeri
al s
heme des
ribed in Ref. 11.5. Numeri
al experimentsIn this se
tion we report examples of re
onstru
tions of diele
tri
 samples to illustrate thee�
ien
y of the inversion algorithms presented in the previous se
tions. In all 
ases, syn-theti
 data are generated thanks to a fast forward solver des
ribed in details in Ref. 12.This forward solver is based on a se
ond-order a

urate spa
e-dis
retisation whi
h is 
a-pable of handling homogeneous as well as inhomogeneous pro�les. The 
onvolution-typestru
ture of the integral equation is exploited and solved via a Conjugate Gradient-FastFourier Transform (CG-FFT) method. Moreover, a spe
ial extrapolation pro
edure isused, by "mar
hing-on-in" sour
e position, to generate a

urate initial estimates for the CGmethod to redu
e the 
omputation time. On the 
ontrary, the inversion solver is based ona standard method of moment without any use of the CG-FFT method12. This solver isneeded for 
omputing both the internal and adjoint �elds. The diele
tri
 permittivity aswell as the ele
tromagneti
 �eld are interpolated by pie
ewise 
onstant basis fun
tions with
ollo
ation point test fun
tions.The re
eivers as well as the sour
es are assumed to be in�nite lines lo
ated on a 
ir
le Γof radius 1.5λ, λ being the wavelength in the va
uum. In addition, we 
onsider 64 sour
esand re
eivers evenly distributed on the measurement 
ir
le Γ. The mesh size of the forward



13solver to generate data is λ/64. The investigated domain D is a square box of side size 2λ,subdivided for numeri
al purposes into 30 square 
ells, leading thus to a mesh size of λ/15for inversion s
hemes. Consequently, the mesh size used in the inversion is di�erent from theone used to generate data, preventing any �inverse 
rime�. In all the following examples, theinitial guess is 
hosen as des
ribed in Se
. 4A with an initial 
ontrast of χ = ξ − εbr = 1.01.For su
h 
ontrast value, the Born approximation is appli
able. Finally, all iterative s
hemeshave been 
ondu
ted up to the 512-th iteration, to ensure that 
onvergen
e, if there isone, is a
hieved. In all 
ases, the evolution of the 
ost fun
tion is presented. By lettingthe inversion algorithm runs, we then have a good indi
ation of the 
onvergen
e speed, thedis
repan
y a

ura
y and the trends of the methods. In parti
ular, we 
an 
he
k if werea
hed a plateau or if the algorithm is unstable.A. Re
onstru
tion of spatially homogeneous pro�les1. The HomoCyl16 obje
tAs a �rst example, we 
onsider two 
ir
ular homogeneous 
ylinders of radii a1 = 0.15λand a2 = 0.3λ, and of relative permittivity εr = 1.6. The small 
ylinder is lo
ated at
(−0.2 λ, 0.2 λ) while the other 
ylinder is lo
ated at (−0.3 λ, − 0.3 λ). Hen
eforth, thisobje
t under test is referred as HomoCyl16 obje
t.To emphasize the in�uen
e of the phase information, two initial estimates obtained withthe same topologi
al expansion method are plotted in Fig. 2 for the HomoCyl16 obje
t. InFig. 2(a), only modulus information is used as in Fig. 2(b), modulus and phase are taken intoa

ount. It is 
lear that the phase 
ontains important topologi
al information. Therefore,



14by using modulus only data, we are more penalized in the re
onstru
tion pro
ess as using afull s
attered �eld.Fig. 3 present the re
onstru
ted 
ontrast χ within the investigated domain D, using theinversion algorithm des
ribed in Se
. 3B, for various 
hoi
es of des
ent dire
tion. Clearly,the best result, Fig. 3(a), is obtained when both the internal and the adjoint �elds are
omputed without assuming the Born approximation (Full-Full 
ase). Comparing there
onstru
ted pro�les to the a
tual one, Fig. 4, shows that not only the shape is well retrievedbut also the refra
tive index. Surprisingly, the others 
ases, in parti
ular the Born-Born
ase (Fig. 3(e)), lead to relatively a

urate re
onstru
tion of the target under test. Weemphasize that the obje
t under test is of 
hara
teristi
 dimension about λ and of diele
tri

ontrast of χ = 0.6, for whi
h the Born approximation is not valid.The evolution of the 
ost fun
tional in the 
ase of Full-Born (Fig. 3(d)) exhibits aminimum around the iteration 128. Indeed, the 
orresponding image, not plotted here, isalmost as good as Fig. 3(a). After this iteration, the 
ost fun
tional starts to in
rease againto rea
h a plateau whose 
orresponding image is presented in Fig. 3(
). This is due to thefa
t that, near the minimum, exa
t gradient 
omputation is of high importan
e, espe
iallyas it is of very small value and as numeri
al noise might 
ause the divergen
e of the iterativepro
ess. This divergen
e shows the importan
e of a 
orre
t 
omputation of the gradient. Inall 
ases, su
h behavior is not observed for the two other s
hemes, where the 
omputationof the forward and adjoint �elds are 
onsistent.The same behavior 
an be observed using a priori information on the nature of the s
at-terers by means of the level-set s
heme des
ribed in Se
. 4C. Fig. 5 show the re
onstru
ted



15images obtained after 512 iterations when using di�erent ways of 
omputing the gradient.The initial guess was 
omputed as previously and trun
ated at mid value to obtain a binaryimage. Again, Full-Full and Born-Born 
ases provide very satisfa
tory results 
om-pared to the Full-Born 
ase. The os
illations in the 
ost fun
tional appear when the sizeof the image 
hanges are of the order of the 
ell size.2. The HomoCyl20 obje
tConsider the same two 
ylinders slightly 
loser and of relative permittivity εr = 2.0 insteadof εr = 1.6. The small 
ylinder is now lo
ated at (−0.15 λ, 0.15 λ). From now on, thisobje
t is referred as HomoCyl20. Fig. 6 present results of the re
onstru
ted 
ontrastpro�le using the 
onjugate gradient algorithm for various 
hoi
es of the gradient. Contraryto the pre
eding 
ase, the 
onvergen
e in the 
ase of Full-Full (Fig. 6(a)) is slow. Thebest result is obtained for the 
ase of Full-Full, while for the other 
ases, Full-Bornand Born-Born, the re
onstru
ted targets are blurred and melted with artifa
ts. Fig. 7shows quantitative 
omparisons between re
onstru
ted targets and the a
tual ones alongdiameters of the 
ylinders.As the level-set algorithm use very strong a priori on the nature of the s
atterer, there
onstru
tions are improved for this obsta
le and the artifa
ts disappear as shown in Fig. 8.This e�e
t is also partly due to multiple s
attering e�e
ts13 whi
h is fully taken into a

ountwhen using a Full-Full approa
h for the gradient 
omputation and explains how the smalls
atterer is well re
onstru
ted. Again, the Full-Born 
ase provides the worst result andstarts to diverge after a while. On the other hand, this 
ase was the �rst to 
onverge towards



16an a

eptable solution.From these two examples, one may 
on
lude that the inversion in the Full-Full 
aseis more a

urate than the two other 
ases. It requires more 
omputation time than theBorn-Born 
ase but it takes into a

ount the multiple s
attering e�e
t. Compared tothe Full-Born 
ase, the extra 
omputational burden is minimal, as nearly everything hasalready been 
omputed to obtain the internal �eld, and the results are more satisfa
tory.B. Re
onstru
tion of spatially 
ontinuous pro�lesWe 
onsider now two inhomogeneous pro�les, denoted as LuneBerg and InhomoSin.These two pro�les 
onsist of an inhomogeneous 
ir
ular 
ylinder of radius a = 0.7λ, lo
atedat (0.15 λ, − 0.15λ). The 
ontrasts within the obje
ts are radially varying. For the pro�leLuneBerg, the 
ontrast is of the form χ(ρ) = 1− (ρ/a)2, while for the obje
t InhomoSin,the 
ontrast is of the form χ(ρ) = sin2(πρ/a), where ρ denotes the radial 
oordinate inthe frame of the 
enter of the 
ylinder. These pro�les are spatially 
ontinuous and 
annotbe represented by a binary level-set representation neither by the extended one for therepresentation of multiple 
onstitutive materials as suggested in Ref. 14. In addition, theseobsta
les present internal �elds whi
h are strongly di�erent from the in
ident �eld as shownin Fig. 9. The obje
t LuneBerg is known as an ideal two-dimensional Luneberg lens.For the obje
t InhomoSin, it is predi
ted the presen
e of whispering-gallery modes thatpropagates along the interior boundary of the 
ylinder.15



171. Inversion from noiseless dataFigs. (10) and (11) present results of the re
onstru
tion of the target LuneBerg and In-HomoSin, respe
tively. In all 
ases, the support of the obje
t under test is well retrieved.However, in the 
ase of the 
omputation under the assumption of the Born approximationfor both the internal �eld and the adjoint �eld, the re
onstru
ted 
ontrast pro�le is mean-ingless as 
learly shown in Fig 12. A perfe
t re
onstru
tion is obtained for the Full-Full
ase for both pro�les.2. Inversion from noisy dataIn this se
tion are presented results of inversion from noisy data. We restri
t ourselvesto the 
ase of inhomogeneous targets (LuneBerg and InHomoSin) targets, in view of thefa
t that no prior information is introdu
ed. The 
ase of homogeneous targets is expe
ted tobe more robust against the presen
e of noise in data. Uniform white noise has been addedto the simulated intensity data. Hen
e, the input data used for the inversion are 
orrupteda

ording to the following relatioñ
Iobs
l (r) = (1 + bu)Iobs

l (r), (20)where Ĩobs
l denotes the 
orrupted data, u ∈ [−1, 1] is a random number, b monitors thelevel of noise. Fig. 13 presents the result of the inversion for the LuneBerg and theInHomoSin targets, respe
tively. For these numeri
al experiments, the level of noise b is ashigh as 10%. It is 
learly shown (see Fig. 14) that the Full-Full s
heme is more robustagainst the presen
e of noise in the data than the two others inversion s
hemes (Full-Bornand Born-Born).



186. Con
lusionWe have examined two 
on�gurations of pra
ti
al interest of inverse s
attering from intensitymeasurements. The �rst one was related to the retrieval of heterogeneous obje
ts, while these
ond was more spe
i�
 to homogeneous ones. A 
ost fun
tional 
riterion has been de�nedand minimized to 
ompute the best available estimate. We have shown that the gradient
omputation is similar to the one that would have been obtained when using modulus andphase information. Indeed, this gradient is obtained by 
ombining an internal �eld and anadjoint �eld where the re
eivers a
t as sour
es with a pres
ribed amplitude whi
h di�ersa

ording to the available data. We have also shown that this gradient 
an be used as aninitial guess, based on topologi
al derivative results.We have explored the Born approximation for the internal and the adjoint �eld andnumeri
al examples have shown that the inversion in the Full-Full 
ase was more a

uratethan using a Born approximation for the adjoint and/or the internal �eld. This behavior hasbeen observed for both homogeneous and heterogeneous obsta
les. Even if the 
omputationalburden is slightly higher in the Full-Full 
ase, this 
an be signi�
antly redu
ed by usingfast forward solvers. In addition, the Full-Full s
heme is more robust against thepresen
e of noise than the two other ones.The numeri
al examples have also shown the in�uen
e of a priori information, in parti
-ular when the obsta
le are homogeneous. In that 
ase, the level-set representation provide�nal results where the boundaries of the obsta
le are better resolved. It would be inter-esting to see what would be the extension of the inverse s
attering problem with intensitymeasurements with homogeneous by parts obsta
les using the ideas of Ref. 14.



19It has been also shown that the gradient of the 
ost fun
tional is null if the initial guessis a �at ba
kground, a situation whi
h does not appear when using modulus and phasedata. In order to 
ompute properly the topologi
al asymptoti
 expansion and use it as aninitial guess, it would be interesting to look at se
ond-order derivative following the ideas ofRef. 16.Finally, this work 
an easily be extended to the 
ase of obsta
les pla
ed on a substrate,whi
h is the typi
al 
on�guration of opti
al di�ra
tion setups. The main di�eren
e will relyin the Green fun
tions whi
h will have to take into a

ount the interfa
es. The next stepwill be to handle real data sets.Appendix A: Gradient 
omputationThe parameter of interest, here the 
ontrast χ, must minimize a properly de�ned 
ostfun
tional J (χ) (see (Eq.5) and (Eq. 6)), under the 
onstraints of (Eq. 4). Let us assumefurthermore that the 
ost fun
tional is su
h that, for all δEs,
F(Es + δEs) = F(Es) + ℜe < ∇F(Es) | δEs >Γ

+o(‖δEs‖Γ)If for example, amplitude and phase measurements must be mat
hed, this means
∇F(Es

l ) = − wl(E
obs
l − Es

l ). If intensity measurements must be mat
hed, this means
∇ F(Es

l ) = − 2wlE
s(Iobs

l − |Es
l |

2).Let us denote by L the Lagrangian fun
tional de�ned in (Eq. 7). It 
an be noti
ed that,if the �elds Es and E both satisfy the forward equations, then
L(χ, Es(χ), E(χ), U s, U) = J (χ) ∀U s, ∀U



20If we derive this equation in the δχ dire
tion, we get
< ∇J (χ) | δχ >D=< ∂χL(χ, Es, E, U s, U) | δχ >D

+ < ∂EsL(χ, Es, E, U s, U) ∂χEs | δχ >D

+ < ∂EL(χ, Es, E, U s, U) ∂χE | δχ >DThe quantities U s and U are 
hosen in order to eliminate the last terms in the summation,i.e., they must satisfy the following adjoint equations
< ∂EsL(χ, Es, E, U s, U) | δEs >Γ = 0 ∀δEs

< ∂EL(χ, Es, E, U s, U) | δE >D = 0 ∀δEThis implies that the Lagrangian 
oe�
ient U s
l must satisfy the following equation

U s
l = −∇F(Es

l )Repla
ing into the se
ond equation, 
ombined with the re
ipro
ity prin
iple Ḡ
† = G, andusing the notation Ul = χPl, this indu
es the adjoint state equation

Pl = GχPl − K
t∇F(Es

l )This equation is similar to the forward problem equation where only the in
ident �eld has
hanged. For the adjoint problem, the in
ident �eld is due to the re
eivers whi
h a
t assour
es with an amplitude spe
i�ed by ∇F(Es
l ).Let us go ba
k to the derivation in the δχ dire
tion, 
omputed at the saddle-point position.This means that

< ∇J (χ) | δχ >D = < ∂χL(χ, Es, E, U s, U) | δχ >D

= −ℜe <

L
∑

l=1

ElPl | δχ >D
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23List of �guresFig. 1: Geometry of the problem. A two-dimensional 
ylinder with 
ross-se
tion Ω andof permittivity 
ontrast χ(x, y) is radiated by an ele
tromagneti
 sour
e lo
ated on a 
ir
le
Γ. The s
attered intensity is assumed to be available on Γ.Fig. 2: Initial guess using the topologi
al asymptoti
 expansion results (a) with modulusonly data; (b) with modulus and phase data. The obje
t under test HomoCyl16 is 
onsti-tuted by two 
ir
ular 
ylinders of 
ontrast χ = 0.6. Bla
k 
ir
les in the images 
orrespondto boundaries of a
tual 
ylinders.Fig. 3: Re
onstru
ted 
ontrast distribution using a 
onjugate gradient method, for theHomoCyl16 obje
t. The updating dire
tion dn involves a gradient derived from a solutionof an adjoint problem. (a) Both the internal �eld and the adjoint �eld are 
omputed a

u-rately (Full-Full 
ase); (
) Same as in (a) but the evaluation of the adjoint �eld assumesthe Born approximation (Full-Born 
ase); (e) The Born approximation is assumed forboth the internal �eld and for the adjoint �eld (Born-Born 
ase). Curves (b), (d) and(f) represent the evolution in log-s
ale of the minimized 
ost fun
tional with respe
t to theiteration steps for the re
onstru
tions plotted in (a), (
) and (e), respe
tively.Fig. 4: Comparisons between the re
onstru
ted 
ontrast presented in Fig. 3 and the a
tualone along the x-axis. Left 
olumn 
omparisons are presented along the line y = −0.3λ, whi
h
orresponds to a 
ut along a diameter of the large 
ylinder of Fig. 3. The right 
olumnpresent 
omparisons along the line y = 0.2λ, whi
h 
orresponds to a 
ut along a diameterof the small 
ylinder of Fig. 3. Full line 
orresponds to the a
tual pro�le, while the dottedline 
orresponds to the re
onstru
ted one. (a) and (b) 
orrespond to Fig.3(a). (
) and (d)
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orrespond to Fig.3(
). (e) and (f) 
orrespond to Fig.3(e).Fig. 5: Same as in Fig. 3, but the inversion is performed using the level-set s
hemedes
ribed in Se
. 4C, where it is assumed that the permittivity 
ontrast of targets undertest is known.Fig. 6: Same as in Fig. 3, but with the obje
t under test HomoCyl20, whi
h is 
onsti-tuted by 
ir
ular 
ylinders of permittivity 
ontrast χ = 1.Fig. 7: Comparisons between the re
onstru
ted 
ontrast presented in Fig. 6 and the a
tualone along the x-axis. Left 
olumn 
omparisons are presented along the line y = −0.3λ, whi
h
orresponds to a 
ut along a diameter of the large 
ylinder of Fig. 6. The right 
olumnpresent 
omparisons along the line y ≈ 0.15λ, whi
h 
orresponds to a 
ut along a diameterof the small 
ylinder of Fig. 6. Full line 
orresponds to the a
tual pro�le, while the dottedline 
orresponds to the re
onstru
ted one. (a) and (b) 
orrespond to Fig. 6(a); (
) and (d)
orrespond to Fig.6(
); (e) and (f) 
orrespond to Fig.6(e).Fig. 8: Same as in Fig. 6, but the inversion is performed using the level-set s
hemedes
ribed in Se
. 4C.Fig. 9: Modulus of ele
tromagneti
 �elds in the test domain D for a sour
e lo
ated at
(1.5λ, 0) (a) In
ident �eld; (b) Internal �eld of the obje
t LuneBerg; (
) Internal �eld ofthe obje
t InhomoSin.Fig. 10: Re
onstru
tion of the inhomogeneous obje
t LuneBerg from noiseless data,using the 
onjugate gradient method des
ribed in Se
. (3B). (a) Full-Full 
ase; (
) Full-Born 
ase; (e) Born-Born 
ase. The se
ond 
olumn of the �gure present the evolution inlog-s
ale of the minimized 
ost fun
tional versus iteration steps whi
h 
orrespond to images



25plotted in the �rst 
olumn.Fig. 11: Same as in Fig. 10 but with the obje
t InhomoSin.Fig. 12: Comparisons between the re
onstru
ted pro�les and the a
tual one along ahorizontal line y ≈ −0.15 λ for the LuneBerg (�rst 
olumn) and InhomoSin obje
ts(se
ond 
olumn). Full line stands for the a
tual pro�le while the dotted line 
orresponds tothe re
onstru
ted one. (a)(b) Full-Full; (
)(d) Full-Born and (e)(f) Born-Born.Fig. 13: Same as in Fig. 10 and Fig. 11 but with 10% additive noise in the data. First
olumn 
orresponds to the LuneBerg obje
t while the se
ond 
olumn 
orresponds to theInhomoSin obje
t.Fig. 14: Same as in Fig. 12 but with 10% additive noise.
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Fig. 1. Geometry of the problem. A two-dimensional 
ylinder with 
ross-se
tion Ω and ofpermittivity 
ontrast χ(x, y) is radiated by an ele
tromagneti
 sour
e lo
ated on a 
ir
le Γ.The s
attered intensity is assumed to be available on Γ.
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Fig. 7. Comparisons between the re
onstru
ted 
ontrast presented in Fig. 6 and the a
tualone along the x-axis. Left 
olumn 
omparisons are presented along the line y = −0.3λ,whi
h 
orresponds to a 
ut along a diameter of the large 
ylinder of Fig. 6. The right
olumn present 
omparisons along the line y ≈ 0.15λ, whi
h 
orresponds to a 
ut along adiameter of the small 
ylinder of Fig. 6. Full line 
orresponds to the a
tual pro�le, whilethe dotted line 
orresponds to the re
onstru
ted one. (a) and (b) 
orrespond to Fig. 6(a);(
) and (d) 
orrespond to Fig.6(
); (e) and (f) 
orrespond to Fig.6(e).
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Fig. 8. Same as in Fig. 6, but the inversion is performed using the level-set s
heme des
ribedin Se
. 4C.
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Fig. 10. Re
onstru
tion of the inhomogeneous obje
t LuneBerg from noiseless data, usingthe 
onjugate gradient method des
ribed in Se
. (3B). (a) Full-Full 
ase; (
) Full-Born 
ase; (e) Born-Born 
ase. The se
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olumn of the �gure present the evolution inlog-s
ale of the minimized 
ost fun
tional versus iteration steps whi
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orrespond to imagesplotted in the �rst 
olumn.
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Fig. 11. Same as in Fig. 10 but with the obje
t InhomoSin.
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Fig. 12. Comparisons between the re
onstru
ted pro�les and the a
tual one along a hori-zontal line y ≈ −0.15 λ for the LuneBerg (�rst 
olumn) and InhomoSin obje
ts (se
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olumn). Full line stands for the a
tual pro�le while the dotted line 
orresponds to there
onstru
ted one. (a)(b) Full-Full; (
)(d) Full-Born and (e)(f) Born-Born.
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Fig. 13. Same as in Fig. 10 and Fig. 11 but with 10% additive noise in the data. First
olumn 
orresponds to the LuneBerg obje
t while the se
ond 
olumn 
orresponds to theInhomoSin obje
t.
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Fig. 14. Same as in Fig. 12 but with 10% additive noise.


