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Two-dimensional inverse pro�ling problem using phaseless dataAmélie Litman and Kamal BelkebirInstitut Fresnel, UMR-CNRS 6133,Campus de Saint Jér�me, ase 162Université de Provene, 13397 Marseille Cedex, FraneThis paper deals with the haraterization of two-dimensional tar-gets from their di�rated intensity. The target haraterization isperformed by minimizing an adequate ost funtional, ombinedwith a level-set representation if the target is homogeneous. Onekey issue in this minimization is the hoie of an updating diretion,whih involves the gradient of the ost funtional. This gradientan be evaluated using a �titious �eld, solution of an adjoint prob-lem where reeivers at as soures with a spei� amplitude. Weexplore the Born approximation for the adjoint �eld and omparevarious approahes for a wide variety of objets.© 2007 Optial Soiety of AmeriaOCIS odes: 290.3200, 110.6960



21. IntrodutionIn some pratial appliations, the phase measurement of the sattered �elds are too or-rupted by noise to be useful or even there is no phase measurement at all, e.g., optialmeasurement setup. Even if there is some e�ort nowadays to provide experimental setupswhih measure all omponents of the sattered �elds1,2, our purpose herein is to investigatea method that image samples from the modulus of the sattered �eld only. Indeed, it hasbeen shown that the sattered intensity ould provide useful information on the obstales.3Instead of extrating some phase information from measurements4, and then solving theinverse sattering problem from the measured intensity and the preliminary retrieved phase,we diretly retrieve the targets under test from the sattered intensity. Following the ideasof Refs. 5,6, the approah, suggested herein, builds up the parameter of interest, namely theontrast of permittivity, iteratively. It is gradually adjusted by minimizing a ost funtionalproperly de�ned.This minimization under onstraints is reformulated in terms of a Lagrangian funtional,whose saddle point leads to the de�nition of an adjoint problem.7 By virtue of the reiproitypriniple, this adjoint problem is equivalent to a forward sattering problem where reeiversat as soures with a orretly de�ned amplitude. It will be shown that the only di�erenebetween a standard minimization proess using modulus-phase data and this algorithmis expressed in these weighting oe�ients. This implies that passing from full datato amplitude data requires only one line hange in a software program if an adjoint �eldformalism is used.This approah is then introdued for two ases of permittivity pro�le: a ontinuous pro�le



3and a step pro�le. The �rst ase is solved thanks to a onjugate-gradient type algorithm.For the seond ase, a level-set representation is introdued, whih fully takes into aountprior information stating that the obstale is homogeneous.8 Results using modulus onlymeasurements will then be analyzed in a free spae on�guration for those two ases ofpermittivity pro�le. In partiular, we highlight with various numerial examples the e�eton the gradient omputation and on the onvergene, of physial approximations suh asBorn approximation for both the forward and adjoint �elds. We also introdue a newinitial guess based on an appropriate use of topologial derivative, whih is no more thanthe variation of the ost funtional due to the inlusions of small dieletri balls.9The following paper is organized as follows. In the �rst setion, a desription of the ge-ometry is provided. The seond setion is devoted to the de�nition of the inverse satteringproblem, with the introdution of the ost funtional and the assoiated Lagrangian for-mulation. The gradient expression is then provided and several hoies of omputation aredisussed. The third setion fouses on the appliation of this gradient omputation to thease of heterogeneous obstales by means of onjugate-gradient algorithm or to the ase ofhomogeneous obstales by means of level-sets. The way the initial guess is obtained is alsoexplained in the same setion. Finally, the last setion provides numerial examples for bothhomogeneous and heterogeneous obstales, with and without noise, showing the e�ets ofa orret gradient omputation as well as the appropriate use of an a priori information onthe nature of the satterers.



42. Statement of the problemThe geometry of the problem studied in this paper is shown in Fig. (1) where a two-dimensional objet of arbitrary ross-setion Ω is on�ned in a bounded domain D. The em-bedding medium Ωb is assumed to be in�nite and homogeneous, with permittivity εb = ε0εbr,and of permeability µ = µ0 (ε0 and µ0 being the permittivity and permeability of the va-uum, respetively). The satterers are assumed to be inhomogeneous ylinders with a per-mittivity distribution ε(r) = ε0εr(r); the entire on�guration is non-magneti (µ = µ0). Aright-handed Cartesian oordinate frame (O,ux,uy,uz) is de�ned. The origin O an beeither inside or outside the satterer and the z-axis is parallel to the invariane axis of thesatterer. The position vetor OM an then be written as OM = r+ z uz. The soures thatgenerate the eletromagneti exitation are assumed to be lines parallel to the z-axis, loatedat (rl)1≤l≤L. Taking into aount a time fator exp(−iωt), in the Transverse Magneti (TM)ase, the time-harmoni inident eletri �eld reated by the lth line soure is given by
E

i
l(r) = Ei

l(r)uz = P
ωµ0

4
H

(1)
0 (kb |r − rl|)uz, (1)where P is the strength of the eletri soure, ω the angular frequeny, H

(1)
0 the Hankelfuntion of zero order and of the �rst kind and kb the wavenumber in the surroundingmedium.For the inverse sattering problem, we assume that the unknown objet is suessivelyilluminated by L eletromagneti exitations and for eah the sattered �eld is availablealong a ontour Γ at M positions. The diret sattering problem may be formulated as twooupled ontrast-soure integral relations: the observation equation (Eq. 2) and the oupling



5equation (Eq. 3)
Es

l (r ∈ Γ) = k2
0

∫

D

χ(r′) El(r
′) G(r, r′) dr′, (2)

El(r ∈ D) = Ei
l + k2

0

∫

D

χ(r′) El(r
′) G(r, r′) dr′, (3)where χ(r) = εr(r) − εbr denotes the permittivity ontrast whih vanishes outside D ⊃ Ω,

G(r, r′) is the two-dimensional free-spae Green funtion and k0 represents the vauumwavenumber. For the sake of simpliity, the equations (Eq. 2) and (Eq. 3) are rewritten as
Es

l = Kχ El, and El = Ei
l + Gχ El. (4)3. Inverse sattering problemThe inverse sattering problem is stated as �nding the permittivity distribution in the box

D suh that the orresponding sattered intensity predited by the model via the ouplingand the observation equation mathes the data. Is proposed herein an iterative approahto solve this ill-posed and non-linear problem. The �rst step onsists in the de�nition ofa disrepany riteria between the measured �elds and the simulated ones. This riteriadepends on the amount of available data, e.g., modulus and phase or modulus only. Thederivative of this ost funtional must then be expliitly obtained and it will be shown thatit introdues an adjoint state equation where reeivers at as soures with an amplitudemainly depending on the expression of the ost funtional.A. Cost funtional de�nitionThe parameter of interest, namely the ontrast χ, is gradually adjusted by minimizing aost funtional J (χ) =
∑L

l=1 F(Es
l (χ)) suitably de�ned under the onstraints of (Eq. 4). If



6both amplitudes and phase must be mathed, the ost funtional reads as
J (χ) =

1

2

L
∑

l=1

wl‖E
obs
l − Es

l (χ)‖2
Γ (5)where Eobs orrespond to the available measurements and wl to appropriate weight oef-�ients, for example, w−1

l = ‖Eobs
l ‖2

D. If sattered intensity must be mathed, the ostfuntional reads as
J (χ) =

1

2

L
∑

l=1

wl‖I
obs
l − |Es

l (χ)|2‖2
Γ (6)where Iobs orrespond to the available intensity measurements and w−1

l = ‖Iobs
l ‖2

Γ.B. Gradient expressionThis minimization problem under onstraints an be reformulated using a Lagrangian fun-tional L as7
L(χ, Es, E, U s, U) =

L
∑

l=1

{F(Es
l ) (7)

+ < U s
l | Es

l −KχEl >Γ

+ < Ul | El − Ei
l − GχEl >D

}where χ is the unknown ontrast, F is the ost funtion to minimize, Es and E orrespondto the simulated sattered and total �elds, U s and U are Lagrange multipliers, < | >Γ isthe salar produt on Γ
(

< u | v >Γ=
∫

Γ
u∗(r)v(r)dr

) and < | >D the salar produt on D

(

< u | v >D=
∫

D
u∗(r)v(r)dr

). This Lagrangian is used to express �rst-order and seond-order onditions for a loal minimizer, whih are linked to the existene of a saddle-point.This saddle-point provides an e�ient way to ompute the gradient of the ost funtional by



7introduing an adjoint �eld. The adjoint �eld, due to the reiproity priniple, is equivalentto the diret �eld where reeivers at are soures with an amplitude linked to the ostfuntional expression
Pl = P i

l + Gχ Pl and P i
l = −K

t∇F(Es
l ) (8)If both amplitudes and phase must be mathed, the inident adjoint �eld is given by

P i
l = wlK

t(Eobs
l − Es

l ) (9)If sattered intensity must be mathed, the soures for the adjoint problem read as
P i

l = 2wlK
tEs

l (I
obs
l − |Es

l |
2) (10)Therefore the adjoint method is a very onvenient way for omputing derivatives for severaltypes of ost funtional.It an be shown (Se. A) that the gradient of the ost funtional is given by

< ∇J (χ) | δχ >D= −ℜe <
L

∑

l=1

ElPl | δχ >D (11)In the ase of intensity measurements, this gradient shows the ambiguity of the ost fun-tional. On one hand, the ost funtional an be redued if the omputed �eld is lose tothe measured �eld. On the other hand, the ost funtional an be redued if the size of thesatterer is very small and we an neglet its ontribution. In that ase, the adjoint �eld isnull as well as the gradient.C. Gradient approximationThe gradient evaluation requires the omputation of two forward problems. The �rst oneomputes the diret �eld El as the seond one, where the reeivers at as soures with a



8presribed amplitude, provides the adjoint �eld Pl. It might be interesting, in order to savesome omputational time, to perform some approximations suh as the Born approximation.Three ases an be onsidered: (i) no approximation is done for the diret and adjoint�eld omputation (noted as the Full-Full ase in the following), (ii) Born approximationis only made for the adjoint �eld omputation (Full-Born) and (iii) �nally the Bornapproximation is applied for both �elds (Born-Born). In the last ase, the gradient isidential to the one whih would be obtained by assuming from the beginning that the Bornapproximation was valid. As expeted, the way the gradient is omputed will have an e�eton the minimization proess as it will be highlighted in Se. 5 with some numerial examples.4. Minimization shemeOne the disrepany riteria has been de�ned and its derivative omputed, a minimizationalgorithm an then be applied, whih an be spei�ed aording to the a priori informationavailable. For example, if the permittivity pro�le of the unknown obstale is assumed to beontinuous, a standard onjugate-gradient type algorithm an be used. If, on the ontrary,one is interested in looking at homogeneous by part obstales, this a priori information anbe introdued via a level-set formulation where the ost funtional derivative is still needed.In all ases, the initial guess seletion is a key point for the onvergene of the minimizationproess.A. Initial guess seletionThe initial guess omputation is based on topologial asymptoti expansion results9. Thetopologial derivative aims at introduing some small dieletri balls of onstant permittivity



9
εr into a known bakground of permittivity ξ(r). These balls indue variations on theeletromagneti �elds whih are expressed via a topologial asymptoti expansion formula.Let us denote by Bρ a small dieletri ball of size ρ|B| entered at point r (|B| is the measureof a referene ball B). This means that r ∈ Bρ ⊂ Bρ′ if 0 < ρ < ρ′ < 1. The topologialasymptoti expansion of our ost funtion an then be expressed by10

J
{

χ = (εr − εbr)1Bρ
(ξ − εbr)1D\Bρ

} (12)
− J {χ = (ξ − εbr)1D}

= −ρ2ℜe(εr − εbr)k
2
0|B|(

L
∑

l=1

ElPl) + o(ρ3)where 1 is the onventional harateristi funtion, El (resp. Pl) veri�es (Eq. 3) (resp. Eq. 9)with χ(r) = ξ(r) − εbr, ∀r ∈ D. This topologial derivative provides therefore informationwhere to plae balls suh that the ost funtional is redued and is diretly linked to thetopology of the satterers. In fat, if we assume that ξ = εbr, this gradient is no more thanthe �rst step of the inversion proess, as expressed in (Eq. 11), assuming that there is noinitial guess.Using this topologial derivative, as we do not know the value of εr, we onstrut theinitial guess with
χ0(r) = ηℜe

L
∑

l=1

El(r)Pl(r) (13)where η is a onstant de�ned suh that J (χ0) is minimal. The �elds El and Pl are thediret and adjoint �elds omputed for χ(r) = ξ − εbr, ∀r ∈ D, with ξ very lose from εbr.It would have been more natural to use χ = 0 on the entire test domain D (whih wouldhave orrespond to Ω = ∅) but then, due to de�nition of the ost funtional for intensity



10measurements, the adjoint �eld would have been null as well as the topologial derivative.If a priori information on the nature of the satterer is given, suh as the obstale ishomogeneous, a trunation at mid value is performed to obtain a binary image.B. Retrieval of an inhomogeneous pro�leIf no a priori information is available on the nature of the satterer, a sequene {χn} is builtup iteratively aording to the following relation
χn = χn−1 + αndn, (14)where dn is an updating diretion and αn a weight that is determined at eah iteration stepby minimizing the ost funtional J (χn) (Eq. (6)). During the loal searh for αn, the �eld

E remains �xed to the value obtained at previous iteration. As a searh diretion dn, theauthors take a Polak Ribière onjugate diretion
dn = gn + γndn−1, γn =

< gn | gn − gn−1 >D

‖gn−1‖2
D

, (15)where gn is the gradient of J (χ) with respet to χ. As desribed in Se. 3C, this gradientan be exatly omputed or approximated.C. Retrieval of a binary pro�leAs the nonlinear inverse problem stated above is highly ill-posed, all available information isuseful to improve the quality of the reonstrutions. In some ases, it is possible to assumethat the dieletri properties of the obstale are known and furthermore that this obstaleis homogeneous. The ontrast of permittivity will then be a binary funtion of the following



11form:
χ(r) = εr − εbr r ∈ Ω, χ(r) = 0 r /∈ Ω (16)where εr is known and onstant. In this approah, whih is redued to a shape optimizationproblem, the parameter of interest, namely the shape Ω, is gradually adjusted by minimizingthe same ost funtional as previously under the onstraints of (Eq. 2) and (Eq. 3). Ansequene of shapes {Ωn} is onstruted in order to minimize the ost funtional F(Ωn). Fordoing so, several elements are neessary : (i) the shape representation, (ii) the omputationof the derivative of the ost funtional aording to shape, (iii) and the onstrution of theiterative sequene. To represent the shape, let us introdue an auxiliary funtion alled alevel-set funtion φ suh that

Ω = {r ∈ D s.t. φ(r) < 0} . (17)This representation handles naturally all topologial hanges suh as fusion or separationand does not require to know in advane the number of satterers as well as their enterspositions. The derivation of the ost funtional J whih now depends on φ must then bedone aording to this level-set representation, to obtain
< ∇J (φ) | δφ >D = −ℜe(εr − εbr) (18)

< δ(φ)|∇φ|
L

∑

l=1

ElPl | δφ >Dwhere δ(φ) orresponds to the one-dimensional Dira delta funtion onentrated on theinterfae φ = 0, i.e., the interfae ∂Ω. As desribed in Se. 3C, this gradient an be exatlyomputed or approximated. An arti�ial time variable t is introdued and the minimization



12is done by �nding the steady state solution of
φt = −∇J (φ) (19)assuming that the δ(φ) funtion is extended everywhere in D with value 1. This equationis solved using the Osher-Sethian numerial sheme desribed in Ref. 11.5. Numerial experimentsIn this setion we report examples of reonstrutions of dieletri samples to illustrate thee�ieny of the inversion algorithms presented in the previous setions. In all ases, syn-theti data are generated thanks to a fast forward solver desribed in details in Ref. 12.This forward solver is based on a seond-order aurate spae-disretisation whih is a-pable of handling homogeneous as well as inhomogeneous pro�les. The onvolution-typestruture of the integral equation is exploited and solved via a Conjugate Gradient-FastFourier Transform (CG-FFT) method. Moreover, a speial extrapolation proedure isused, by "marhing-on-in" soure position, to generate aurate initial estimates for the CGmethod to redue the omputation time. On the ontrary, the inversion solver is based ona standard method of moment without any use of the CG-FFT method12. This solver isneeded for omputing both the internal and adjoint �elds. The dieletri permittivity aswell as the eletromagneti �eld are interpolated by pieewise onstant basis funtions witholloation point test funtions.The reeivers as well as the soures are assumed to be in�nite lines loated on a irle Γof radius 1.5λ, λ being the wavelength in the vauum. In addition, we onsider 64 souresand reeivers evenly distributed on the measurement irle Γ. The mesh size of the forward



13solver to generate data is λ/64. The investigated domain D is a square box of side size 2λ,subdivided for numerial purposes into 30 square ells, leading thus to a mesh size of λ/15for inversion shemes. Consequently, the mesh size used in the inversion is di�erent from theone used to generate data, preventing any �inverse rime�. In all the following examples, theinitial guess is hosen as desribed in Se. 4A with an initial ontrast of χ = ξ − εbr = 1.01.For suh ontrast value, the Born approximation is appliable. Finally, all iterative shemeshave been onduted up to the 512-th iteration, to ensure that onvergene, if there isone, is ahieved. In all ases, the evolution of the ost funtion is presented. By lettingthe inversion algorithm runs, we then have a good indiation of the onvergene speed, thedisrepany auray and the trends of the methods. In partiular, we an hek if wereahed a plateau or if the algorithm is unstable.A. Reonstrution of spatially homogeneous pro�les1. The HomoCyl16 objetAs a �rst example, we onsider two irular homogeneous ylinders of radii a1 = 0.15λand a2 = 0.3λ, and of relative permittivity εr = 1.6. The small ylinder is loated at
(−0.2 λ, 0.2 λ) while the other ylinder is loated at (−0.3 λ, − 0.3 λ). Heneforth, thisobjet under test is referred as HomoCyl16 objet.To emphasize the in�uene of the phase information, two initial estimates obtained withthe same topologial expansion method are plotted in Fig. 2 for the HomoCyl16 objet. InFig. 2(a), only modulus information is used as in Fig. 2(b), modulus and phase are taken intoaount. It is lear that the phase ontains important topologial information. Therefore,



14by using modulus only data, we are more penalized in the reonstrution proess as using afull sattered �eld.Fig. 3 present the reonstruted ontrast χ within the investigated domain D, using theinversion algorithm desribed in Se. 3B, for various hoies of desent diretion. Clearly,the best result, Fig. 3(a), is obtained when both the internal and the adjoint �elds areomputed without assuming the Born approximation (Full-Full ase). Comparing thereonstruted pro�les to the atual one, Fig. 4, shows that not only the shape is well retrievedbut also the refrative index. Surprisingly, the others ases, in partiular the Born-Bornase (Fig. 3(e)), lead to relatively aurate reonstrution of the target under test. Weemphasize that the objet under test is of harateristi dimension about λ and of dieletriontrast of χ = 0.6, for whih the Born approximation is not valid.The evolution of the ost funtional in the ase of Full-Born (Fig. 3(d)) exhibits aminimum around the iteration 128. Indeed, the orresponding image, not plotted here, isalmost as good as Fig. 3(a). After this iteration, the ost funtional starts to inrease againto reah a plateau whose orresponding image is presented in Fig. 3(). This is due to thefat that, near the minimum, exat gradient omputation is of high importane, espeiallyas it is of very small value and as numerial noise might ause the divergene of the iterativeproess. This divergene shows the importane of a orret omputation of the gradient. Inall ases, suh behavior is not observed for the two other shemes, where the omputationof the forward and adjoint �elds are onsistent.The same behavior an be observed using a priori information on the nature of the sat-terers by means of the level-set sheme desribed in Se. 4C. Fig. 5 show the reonstruted



15images obtained after 512 iterations when using di�erent ways of omputing the gradient.The initial guess was omputed as previously and trunated at mid value to obtain a binaryimage. Again, Full-Full and Born-Born ases provide very satisfatory results om-pared to the Full-Born ase. The osillations in the ost funtional appear when the sizeof the image hanges are of the order of the ell size.2. The HomoCyl20 objetConsider the same two ylinders slightly loser and of relative permittivity εr = 2.0 insteadof εr = 1.6. The small ylinder is now loated at (−0.15 λ, 0.15 λ). From now on, thisobjet is referred as HomoCyl20. Fig. 6 present results of the reonstruted ontrastpro�le using the onjugate gradient algorithm for various hoies of the gradient. Contraryto the preeding ase, the onvergene in the ase of Full-Full (Fig. 6(a)) is slow. Thebest result is obtained for the ase of Full-Full, while for the other ases, Full-Bornand Born-Born, the reonstruted targets are blurred and melted with artifats. Fig. 7shows quantitative omparisons between reonstruted targets and the atual ones alongdiameters of the ylinders.As the level-set algorithm use very strong a priori on the nature of the satterer, thereonstrutions are improved for this obstale and the artifats disappear as shown in Fig. 8.This e�et is also partly due to multiple sattering e�ets13 whih is fully taken into aountwhen using a Full-Full approah for the gradient omputation and explains how the smallsatterer is well reonstruted. Again, the Full-Born ase provides the worst result andstarts to diverge after a while. On the other hand, this ase was the �rst to onverge towards



16an aeptable solution.From these two examples, one may onlude that the inversion in the Full-Full aseis more aurate than the two other ases. It requires more omputation time than theBorn-Born ase but it takes into aount the multiple sattering e�et. Compared tothe Full-Born ase, the extra omputational burden is minimal, as nearly everything hasalready been omputed to obtain the internal �eld, and the results are more satisfatory.B. Reonstrution of spatially ontinuous pro�lesWe onsider now two inhomogeneous pro�les, denoted as LuneBerg and InhomoSin.These two pro�les onsist of an inhomogeneous irular ylinder of radius a = 0.7λ, loatedat (0.15 λ, − 0.15λ). The ontrasts within the objets are radially varying. For the pro�leLuneBerg, the ontrast is of the form χ(ρ) = 1− (ρ/a)2, while for the objet InhomoSin,the ontrast is of the form χ(ρ) = sin2(πρ/a), where ρ denotes the radial oordinate inthe frame of the enter of the ylinder. These pro�les are spatially ontinuous and annotbe represented by a binary level-set representation neither by the extended one for therepresentation of multiple onstitutive materials as suggested in Ref. 14. In addition, theseobstales present internal �elds whih are strongly di�erent from the inident �eld as shownin Fig. 9. The objet LuneBerg is known as an ideal two-dimensional Luneberg lens.For the objet InhomoSin, it is predited the presene of whispering-gallery modes thatpropagates along the interior boundary of the ylinder.15



171. Inversion from noiseless dataFigs. (10) and (11) present results of the reonstrution of the target LuneBerg and In-HomoSin, respetively. In all ases, the support of the objet under test is well retrieved.However, in the ase of the omputation under the assumption of the Born approximationfor both the internal �eld and the adjoint �eld, the reonstruted ontrast pro�le is mean-ingless as learly shown in Fig 12. A perfet reonstrution is obtained for the Full-Fullase for both pro�les.2. Inversion from noisy dataIn this setion are presented results of inversion from noisy data. We restrit ourselvesto the ase of inhomogeneous targets (LuneBerg and InHomoSin) targets, in view of thefat that no prior information is introdued. The ase of homogeneous targets is expeted tobe more robust against the presene of noise in data. Uniform white noise has been addedto the simulated intensity data. Hene, the input data used for the inversion are orruptedaording to the following relatioñ
Iobs
l (r) = (1 + bu)Iobs

l (r), (20)where Ĩobs
l denotes the orrupted data, u ∈ [−1, 1] is a random number, b monitors thelevel of noise. Fig. 13 presents the result of the inversion for the LuneBerg and theInHomoSin targets, respetively. For these numerial experiments, the level of noise b is ashigh as 10%. It is learly shown (see Fig. 14) that the Full-Full sheme is more robustagainst the presene of noise in the data than the two others inversion shemes (Full-Bornand Born-Born).



186. ConlusionWe have examined two on�gurations of pratial interest of inverse sattering from intensitymeasurements. The �rst one was related to the retrieval of heterogeneous objets, while theseond was more spei� to homogeneous ones. A ost funtional riterion has been de�nedand minimized to ompute the best available estimate. We have shown that the gradientomputation is similar to the one that would have been obtained when using modulus andphase information. Indeed, this gradient is obtained by ombining an internal �eld and anadjoint �eld where the reeivers at as soures with a presribed amplitude whih di�ersaording to the available data. We have also shown that this gradient an be used as aninitial guess, based on topologial derivative results.We have explored the Born approximation for the internal and the adjoint �eld andnumerial examples have shown that the inversion in the Full-Full ase was more auratethan using a Born approximation for the adjoint and/or the internal �eld. This behavior hasbeen observed for both homogeneous and heterogeneous obstales. Even if the omputationalburden is slightly higher in the Full-Full ase, this an be signi�antly redued by usingfast forward solvers. In addition, the Full-Full sheme is more robust against thepresene of noise than the two other ones.The numerial examples have also shown the in�uene of a priori information, in parti-ular when the obstale are homogeneous. In that ase, the level-set representation provide�nal results where the boundaries of the obstale are better resolved. It would be inter-esting to see what would be the extension of the inverse sattering problem with intensitymeasurements with homogeneous by parts obstales using the ideas of Ref. 14.



19It has been also shown that the gradient of the ost funtional is null if the initial guessis a �at bakground, a situation whih does not appear when using modulus and phasedata. In order to ompute properly the topologial asymptoti expansion and use it as aninitial guess, it would be interesting to look at seond-order derivative following the ideas ofRef. 16.Finally, this work an easily be extended to the ase of obstales plaed on a substrate,whih is the typial on�guration of optial di�ration setups. The main di�erene will relyin the Green funtions whih will have to take into aount the interfaes. The next stepwill be to handle real data sets.Appendix A: Gradient omputationThe parameter of interest, here the ontrast χ, must minimize a properly de�ned ostfuntional J (χ) (see (Eq.5) and (Eq. 6)), under the onstraints of (Eq. 4). Let us assumefurthermore that the ost funtional is suh that, for all δEs,
F(Es + δEs) = F(Es) + ℜe < ∇F(Es) | δEs >Γ

+o(‖δEs‖Γ)If for example, amplitude and phase measurements must be mathed, this means
∇F(Es

l ) = − wl(E
obs
l − Es

l ). If intensity measurements must be mathed, this means
∇ F(Es

l ) = − 2wlE
s(Iobs

l − |Es
l |

2).Let us denote by L the Lagrangian funtional de�ned in (Eq. 7). It an be notied that,if the �elds Es and E both satisfy the forward equations, then
L(χ, Es(χ), E(χ), U s, U) = J (χ) ∀U s, ∀U



20If we derive this equation in the δχ diretion, we get
< ∇J (χ) | δχ >D=< ∂χL(χ, Es, E, U s, U) | δχ >D

+ < ∂EsL(χ, Es, E, U s, U) ∂χEs | δχ >D

+ < ∂EL(χ, Es, E, U s, U) ∂χE | δχ >DThe quantities U s and U are hosen in order to eliminate the last terms in the summation,i.e., they must satisfy the following adjoint equations
< ∂EsL(χ, Es, E, U s, U) | δEs >Γ = 0 ∀δEs

< ∂EL(χ, Es, E, U s, U) | δE >D = 0 ∀δEThis implies that the Lagrangian oe�ient U s
l must satisfy the following equation

U s
l = −∇F(Es

l )Replaing into the seond equation, ombined with the reiproity priniple Ḡ
† = G, andusing the notation Ul = χPl, this indues the adjoint state equation

Pl = GχPl − K
t∇F(Es

l )This equation is similar to the forward problem equation where only the inident �eld hashanged. For the adjoint problem, the inident �eld is due to the reeivers whih at assoures with an amplitude spei�ed by ∇F(Es
l ).Let us go bak to the derivation in the δχ diretion, omputed at the saddle-point position.This means that

< ∇J (χ) | δχ >D = < ∂χL(χ, Es, E, U s, U) | δχ >D

= −ℜe <

L
∑

l=1

ElPl | δχ >D
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23List of �guresFig. 1: Geometry of the problem. A two-dimensional ylinder with ross-setion Ω andof permittivity ontrast χ(x, y) is radiated by an eletromagneti soure loated on a irle
Γ. The sattered intensity is assumed to be available on Γ.Fig. 2: Initial guess using the topologial asymptoti expansion results (a) with modulusonly data; (b) with modulus and phase data. The objet under test HomoCyl16 is onsti-tuted by two irular ylinders of ontrast χ = 0.6. Blak irles in the images orrespondto boundaries of atual ylinders.Fig. 3: Reonstruted ontrast distribution using a onjugate gradient method, for theHomoCyl16 objet. The updating diretion dn involves a gradient derived from a solutionof an adjoint problem. (a) Both the internal �eld and the adjoint �eld are omputed au-rately (Full-Full ase); () Same as in (a) but the evaluation of the adjoint �eld assumesthe Born approximation (Full-Born ase); (e) The Born approximation is assumed forboth the internal �eld and for the adjoint �eld (Born-Born ase). Curves (b), (d) and(f) represent the evolution in log-sale of the minimized ost funtional with respet to theiteration steps for the reonstrutions plotted in (a), () and (e), respetively.Fig. 4: Comparisons between the reonstruted ontrast presented in Fig. 3 and the atualone along the x-axis. Left olumn omparisons are presented along the line y = −0.3λ, whihorresponds to a ut along a diameter of the large ylinder of Fig. 3. The right olumnpresent omparisons along the line y = 0.2λ, whih orresponds to a ut along a diameterof the small ylinder of Fig. 3. Full line orresponds to the atual pro�le, while the dottedline orresponds to the reonstruted one. (a) and (b) orrespond to Fig.3(a). () and (d)



24orrespond to Fig.3(). (e) and (f) orrespond to Fig.3(e).Fig. 5: Same as in Fig. 3, but the inversion is performed using the level-set shemedesribed in Se. 4C, where it is assumed that the permittivity ontrast of targets undertest is known.Fig. 6: Same as in Fig. 3, but with the objet under test HomoCyl20, whih is onsti-tuted by irular ylinders of permittivity ontrast χ = 1.Fig. 7: Comparisons between the reonstruted ontrast presented in Fig. 6 and the atualone along the x-axis. Left olumn omparisons are presented along the line y = −0.3λ, whihorresponds to a ut along a diameter of the large ylinder of Fig. 6. The right olumnpresent omparisons along the line y ≈ 0.15λ, whih orresponds to a ut along a diameterof the small ylinder of Fig. 6. Full line orresponds to the atual pro�le, while the dottedline orresponds to the reonstruted one. (a) and (b) orrespond to Fig. 6(a); () and (d)orrespond to Fig.6(); (e) and (f) orrespond to Fig.6(e).Fig. 8: Same as in Fig. 6, but the inversion is performed using the level-set shemedesribed in Se. 4C.Fig. 9: Modulus of eletromagneti �elds in the test domain D for a soure loated at
(1.5λ, 0) (a) Inident �eld; (b) Internal �eld of the objet LuneBerg; () Internal �eld ofthe objet InhomoSin.Fig. 10: Reonstrution of the inhomogeneous objet LuneBerg from noiseless data,using the onjugate gradient method desribed in Se. (3B). (a) Full-Full ase; () Full-Born ase; (e) Born-Born ase. The seond olumn of the �gure present the evolution inlog-sale of the minimized ost funtional versus iteration steps whih orrespond to images



25plotted in the �rst olumn.Fig. 11: Same as in Fig. 10 but with the objet InhomoSin.Fig. 12: Comparisons between the reonstruted pro�les and the atual one along ahorizontal line y ≈ −0.15 λ for the LuneBerg (�rst olumn) and InhomoSin objets(seond olumn). Full line stands for the atual pro�le while the dotted line orresponds tothe reonstruted one. (a)(b) Full-Full; ()(d) Full-Born and (e)(f) Born-Born.Fig. 13: Same as in Fig. 10 and Fig. 11 but with 10% additive noise in the data. Firstolumn orresponds to the LuneBerg objet while the seond olumn orresponds to theInhomoSin objet.Fig. 14: Same as in Fig. 12 but with 10% additive noise.
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Fig. 1. Geometry of the problem. A two-dimensional ylinder with ross-setion Ω and ofpermittivity ontrast χ(x, y) is radiated by an eletromagneti soure loated on a irle Γ.The sattered intensity is assumed to be available on Γ.
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Fig. 5. Same as in Fig. 3, but the inversion is performed using the level-set sheme desribedin Se. 4C, where it is assumed that the permittivity ontrast of targets under test is known.
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Fig. 6. Same as in Fig. 3, but with the objet under test HomoCyl20, whih is onstitutedby irular ylinders of permittivity ontrast χ = 1.
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Fig. 8. Same as in Fig. 6, but the inversion is performed using the level-set sheme desribedin Se. 4C.
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Fig. 9. Modulus of eletromagneti �elds in the test domain D for a soure loated at
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Fig. 10. Reonstrution of the inhomogeneous objet LuneBerg from noiseless data, usingthe onjugate gradient method desribed in Se. (3B). (a) Full-Full ase; () Full-Born ase; (e) Born-Born ase. The seond olumn of the �gure present the evolution inlog-sale of the minimized ost funtional versus iteration steps whih orrespond to imagesplotted in the �rst olumn.
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Fig. 11. Same as in Fig. 10 but with the objet InhomoSin.
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Fig. 12. Comparisons between the reonstruted pro�les and the atual one along a hori-zontal line y ≈ −0.15 λ for the LuneBerg (�rst olumn) and InhomoSin objets (seondolumn). Full line stands for the atual pro�le while the dotted line orresponds to thereonstruted one. (a)(b) Full-Full; ()(d) Full-Born and (e)(f) Born-Born.
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Fig. 13. Same as in Fig. 10 and Fig. 11 but with 10% additive noise in the data. Firstolumn orresponds to the LuneBerg objet while the seond olumn orresponds to theInhomoSin objet.
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Fig. 14. Same as in Fig. 12 but with 10% additive noise.


