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Thin layers in electrical engineering. Example of shell models
in analysing eddy-currents by boundary and finite element methods

L. Krihenbiihl and D. Muller
CEGELY (URA CNRSN°829) - Ecole Centrale de Lyon - BP 163
F - 69131 Ecully Cedex - (France)

Abstract - During last years, several numerical
formulations have been developed by us to model physical
problems such as: conducting film effects on the surface of
insulators (pollution) [1], high frequency eddy-currents [2],
earth field effects on the hull of a ship [3].

The physical effects are completely different, but in cach
of these examples, they originate from aregion thin relative
to the other geometrical dimensions. An efficient numerical
approach consists of using a surface representation with
special boundary conditions expressing the solution inside
the thin region.

We propose in this paper a didactical approach to thin
regionsin electromagneticsand, asan example, the boundary
conditions and surface equation for eddy currents flowing
inside a thin ferromagnetic shell. The numerical tests are
done using the BEM software package PHI3D, but the
results could easily be transposed in 2 FEM context.

The practical applications may concern the computation
of losses (shield of electrical machines or transformers) or
low frequency electromagnetic perturbations (screen effects,
EMC) as well as special applications like optimisation of the
induction heating of pans (French art culinaire).

1. INTRODUCTION

The behaviour of a thin conducting and ferromagnetic shell
subjected to a source field depends on frequency and can be
analysed analytically.

In the static case, only the ferromagnetic effect appears. The
shell attracts the field and channels it, all the more since the
permeability of the shell is high. The tangential component of
magnetic field is preserved through the shell and obeys on it to
asimple differential equation (boundary equation of continuity).

In the harmonic case, this effect is modified because of eddy
currents, which are characterized by the skin depth 6. The type
of solution depends essentially on relative values of e (thickness
of the shell) and 8. For e<<§, the static solution remains
correct. For ¢>>6 the shell is equivalent to a magnetic screen
and repels the magnetic field (reverse effect as static); no link
subsists locally between field values on both sides of the shell;
classical surface impedance or infinite frequency formulations
are available.

Between these cases, that is when e and & are about equal, all
components of flux density or field on both sides of the shell are
locally linked through two complicated partial differential
boundary equations. The aim of this paper is to build these
equations, to expose their physical meaning and to explain how
they can be used for numerical computation of fields.

II. PRELIMINARY COMMENTS

The developments will be presented here in term of scalar
potential or field (H = H - gradV), because it is the most
efficient when using the BIEM for the domain equation.
Results could be translated easily in terms of vector potential.

II.1. What do we seek?

The interface conditions used in numerical simulations
usually involve the potential (V) and its normal derivative
(d,V,) on both sides of the interface. To determine these four
scalar surface functions we use two domain equations (one for
each domain contiguous to the interface) and rwo interface
conditions, which express for example the continuity of
tangential field (V, = V) and normal flux (d V, =k . d.V,).

For the shell problem (Fig. 1) the situation is similar, but the
classical interface conditions are to be replaced by relations
which take into account the thickness of the shell and its
physical behaviour: we will build these relations step by step,
from the simplest (magnetostatic) to the most complex (e and
6 about equal).

linked by the [ Vi
domain equation v
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Fig. 1. The thin shell problem: two relations or equations between the boun-
dary values have to be found to describe the internal behaviour of the shell.
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I1.2. Physical interpretation of divergence.

We said (cf. I) that the magnetostatic property of a
ferromagnetic shell is to channel the flux density B. What does
that mean exactly?

The fundamental property we will use isthe continuity of the
vector B, mathematically expressed by the equation of
continuity:

divB =0 (1)
This equation expresses the concept of tubes of flux which
cannot converge upon a point without again diverging therefrom
(Fig. 2a). Some meaning vectors do not have this property: the
typical example is the electric induction D:

divD = q 2
div D is not everywhere equal to zero and it represents the
distribution of electric charge (Fig. 2b): in other words, the
righ-hand-term of the equation of continuity symbolises the
source of the flux of the left-hand-term vector.

11.3. Continuity for a shell.

Equation (1) takes a particular expression for a shell. To
obtain this expression, let us first consider that Bis everywhere
tangent to the surface of the shell. Then the normal flux is zero
and the tangential flux density is divergence free:

divg . 0 3

In fact, we have to take into account the depth e of the stiell,
and the equation of continuity is only valid for the equivalent
shell flux density F defined by the integral value:

F=.[Bu.§z | @

div,F =0 ®

On the other hand, what happens when B is not tangent to the
surface, that is if we add normal flux densities B, and B, on
both sides S, and S, of the shell? These distributions are
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increasing or decreasing the internal flux F. Then the resultdnt:
flux density (B,-B,).n is the actual source of F, like q is the
source of D (Fig. 3): then F becomes divergent:

div,F = (B,-B,).n ‘ ©)

This is the expression we were looking for. We will now

apply this particular form of the equation of continuity tothree

magnetic or electromagnetic configurations.

III. TuIN SHELL, STATIC

We considerhere the effect of astatic magnetic field ona thin
ferromagnetic shell, for example the hull of a ship. Since there
is no current flowing in the shell, it seems adequate to assign -
a constant value to the tangential component of H through the
depth; then, the shell flux density F (4) can be evaluated;

F= J'B_.dz= eB, ®

and the equations for the thin ferromagnetic shell, static, are:

H =H ' ®)

g, 1 1,2

e.p . divgHy = wH -iH,, 19
If e, isnota constant, a term Hggrade.,, hasto be
introduced !.

The main difference with the regular interface conditions is
that (10) isnota direct, algebraic, relation between components
of the fields, but a partial differential equation on the surface
of the shell, to be solved simultaneously with the domain: -

W =

Fig. 2. Typical behaviour of vector-fields [4]:
(a) non-divergent field (e.g. H) (b) divergent field (e.g. D)

equations.
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Fig. 3. Flux density in a shell and its source

1Note that, if e goes to zero, the lefi-hand-term in (10) is zero and we find again -
the classical interface conditions between two ferromagnetic materials.
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IV. HicH FREQUENCY EDDY CURRENTS

We consider here a solid conducting body in ahigh frequency
source field. For a sufficiently high frequency, the field refuses
to penetrate deep into the conducting material: because of the
skin effect, it looks like a shell.

If the skin deph & is small in comparison with the other
geometrical dimensions of the conductor, the following well
known analytical solution for the penetration of B (Fig. 4) is
valid:

B (@=B;.¢** a=(14) an

We can use it to calculate the equivalent flux density F (4) as
a function of B on the surface:

F=(@92.8. B (12)
This expression is completely analogous to (8), with a complex
equivalent depth related to the skin depth:

e=90. (12 (13)

Then, the boundary equations for the high frequency
Jormulation are:

(14)

(15)

g.u, . divHg = . H |

We find again in a different way the idea of surface impedance
[5]. Note the asymptotic solution at very high frequency, when
é (and ¢) goes to zero: (15) becomes the simiple boudary
condition (Neuman, homogenous) of the infinite frequency
Sformulation [6):

0=p H (16)

In
The normal component of field on the conductor vanishes,
meaning that the eddy currents constitute a perfect magnetic
shield.
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V. Eppy CURRENTS INTO A SHELL [7]

In this case, we have to consider the values of B on both sides
ofthe shell (index 1 and 2). The Maxwell equations, which lead
to (11) with a solid body, give the following variation of B
through the shell (Fig. 5):

B(z)= b.e?* +b'.e™* a=(14)/8 an
The vector-coefficients b and b' depend on the surface values
Band B,.

V.1. First relation: equation of continuity.
The expression of F (4) and the related boundary equation (6)
are obtained after some calculations:

F = (1-j)/2.5 .tanh(z.e/2) . (B],‘g+ B2,tg) and: (18)

19)

e tanh(a.e/2).divy(H + Hy) = (1t,.-H, - w0, )

The flux flowing into the shell depends on the apparent mean-
value of B " with a corrective factor which takes into account
the complex distribution (17). The results (18) and (19) look
like (12) and (15) except for the tanh factor, which expresses
the shell effect.

The boundary relation corresponding to (9) and (14) becomes
more complicated, because the currents flowing in the shell
make the tangential field discontinuous. We will first recall
some properties of surface-currents.

V.2. Shell current K: general properties.
Let us define the equivalent shell current K [8] by:

| H (moduilus) ! el
| e z

i delta

Fig. 4. Skin effect in a solid body

K=[i).dz 20)
Because of the particular direction of j, one has:

j=curlH=-nx 3H,8/az 21
and:

K=nx(H, . HZlg) 22)

H (modulus) H (modulus)

(arg) e | (arg) |
d=c¢ 8 <<e

Fig. 5. Skin effect in a thin shell
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Fig. 6. Shell-current and discontinuity of magnetic field

Then the discontinuity of ng islinked to the surface-current K,
meaning that they have same modulus and are perpendicular.
As a consequence, when K curls, the discontinuity of H‘s
diverges (Fig. 6):
curl K=n.div(H,- H)) 23)

V.3. Second relation: Faraday's law for a shell.

We start with Faraday's law and integrate it through the
depth.:

[eujdz = [-juc.B.dz

@4

The left-hand-term is equivalent to (23). The right-hand-term
concerns the normal component of B. The way to calculate it
from (17) is the same as we did for F, and the result is similar.
Finally we get the particular expression of Faraday's law for a
thin shell:

e divyH, - H,) = (u H, +p H )tanh(ael2)| (25)

V.4. Comment.

Equations (19) and (25) look oddly alike. Only signs are
transposed and the tanh factor jumps from the lefi- to the right-
hand-term.

The first relation (19) expresses the continuity of flux: it
connects the surface variations of the mean value of H,_ into the
shell (i. e. of the shell flux density F) to its source, which is the
resultant normal flux density (Fig. 7-a).

The second relation (25) expresses the Faraday's law. It links
the surface variations of the field discontinuity (i. e. of the shell
current K) to its source, which is the mean value of the normal
flux density through the shell (Fig. 7-b).

Both effects are less or more predominant, depending on
relative values of e and 6 (i. e. on value of g.¢ in the tank factor).

Fig. 7-a. Shell-flux F and its source (19):
div(mean-value of ng) <--> discontinuity of norinal flux density

(B,,+ B,)/2

Fig. 7-b. Shell-current K and its source (25):
div(discontinuity of H ) <--> mean-value of normal flux density

If the frequency goes to zero (i.e. 6>>e), the term tanh(ge/2)
goes to (ge/2) then: ‘
@26)

(18)y=>F=e. (Bmg+ Bz’tg)/z
which is to be compared to (6). For high frequencies; the term
tanh(ae/2) goes to 1, then:
(18)=>F=¢. (B“g+ BZ,lg) 27

which is to be compared to (12). Equations (19) and (25) give
2 equations like (15), uncoupled, one for each side of the shiell.
As a consequence, it becomes apparent that the model:of
magnetodynamic shell presented here is very general; in
particular, it includes both static and high frequency models.

VI. NUMERICAL IMPLEMENTATION.

The numerical implementation of these shell models naturally
depends on the formulation and numerical method used to
solve the volumic field problem, outside the shell. They are
efficient with variational formulations [3][9] as well as with
boundary integral equations.
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We have tested the shell models [1][2][7] in our BIE software
package PHI3D[10]. Inthat case, the boundary integral equations
describing the 3D-domains are to be coupled with the differential
boundary equations (10), (15) or (19) and (25) modeling the
shell. In both cases, the discretisation uses the same surface
finite element mesh, with respectively a point collocation
method (BIE) and a variational method (shell). The fields are
characterised using the reduced magnetic scalar potential V:

H=H_-gradV H_: source field (28

VI.1. Equations for a closed shell.

When the shell surrounds a closed area, it is possible to write
two independent BIE (one on each side of the shell), because
its sides do not concern the same 3D domain. In that case, the
system of equations is (Fig. 1):

e.1_tanh(a.e/2).[2.divgH AV +V,)] = 4.V, +d V, | 29)
et A(V,-V) = [2H, @V +d V)l anh@er2) | (30)
¢V, = - [ (V,.4.G- 4V, G).ds G

S
¢V, | (v,d.G-dV,G).s (32)

S

where G = 1/r is the Green function.

VI.2. Equations for an open shell.

When the shell does not surround a closed area, its sides
belong to the same 3D domain. Only one BIE can be written,
moreover this equation degenerates because the surfacic
integration concerns two surfaces geometrically confused:

(29) and (30) => -

V2 =- [[(V,-V,)d,G- @ V,-4. V) Glds  (33)
S

As usual in such a situation [8] we have to differentiate (33)
torecover the lostequation. This equation (cf. 36)expresses the
mean value of the normal field as an integral function of the
discontinuities of V and H .

Finally, we can write all these equations for example in terms
of perturbations only, that is, using:

V: reduced scalar magnetic potential (28):
V=(V +V,)/2 on the shell

0: discontinuity of potential, i.e. current function [8]:
¢ = (V,-V,) with the properties:
K=-nxgradg or:
(H,- H), =-gradgp
The iso-¢ are the lines of the shell-current K.

0: discontinuity of the normal field, i.e. source of V:
0= Hln-HZn = -(dnvl-ngZ)

y: modification of the mean-value of the normal
component of field, i.e. source of ¢.
V=, /2 - Hy == (@V,4,V,)0
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One obtains the following system of equations:

e th(ae/2) . (divgH, - 2.AV) = 6 (4)
el A = 2.(y+H,) th@er2) 35)
y=-n. J [(mxgrad $)xgradG - 6.gradGl.ds | (36)
S
V=- J‘(¢.m.gradG -8.G) . ds 37
S

n is the normal vector on the point of collocation,
m is the normal vector on the point of integration.

where:

VII. NuMmEericaL TEsTs.

The general magnetodynamic shell model (Eq. 29 to 32, or
34 to 37) has not yet been used to solve an industrial problem,
at least with measurements of good quality.

However, the other shell models presented above have
already proved their efficiency and their accuracy. The static
formulation is successfully used, in particular to evaluate the
magnetisation of ships due to the earth field. Excellent results
were also obtained for the TEAM Workshop problem #13
[11][12], where the object of interest is made of thin
ferromagnetic plates (3.2mm thick, other dimensions: 50 to
120mm).

High frequency formulations (surface impedance and infinite
frequency limit) have also been used for quite some time for
NDT and induction heating simulations. The coupling with
computation of thermal effects and the progress in modelling
cracks will promote these models.

Magnetodynamics: comparison with analytical results.

The first step to validate a new formulation is to compare the
solution it gives with analytical results. We will considere here
ahollow sphere in an alternating source field (Fig. 10). This is
a simple configuration, but both ferromagnetic and eddy
current effects are clearly shown (Fig. 11): it has been solved
successively using the static formulation {SF, (9) and (10)}, the
high frequency formulation { HFF, (15)}, the infinite frequency
formulation {IFF, (16)} and the general magnetodynamic
formulation {GF, (29) to (32)} with a minimal mesh (6
elements, 27 nodes, for 1/8 sphere).

Resultson test-point P are summarised onFig. 11. Analytical
and numerical results are indistinguishable: in fact the error is
less than 1%, that is the extent of the error of discretisation.
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Test-point P

air (1)

sigma = 107 [S/m]
H mu, = 100

source field |
|

Fig. 10: definition of the test-problem: the hollow ferromagnetic
sphere in a constant sinusoidal source field

B

-
\\\
\\
L

' hlgh ﬁ'eauencv

Fig. 3: Fiux lines piot (schematic)

| t | |
. 1.5 { = infinit freg. asymotote J

delta = e/2 HL (HFF)
| = H1(GF)
1.0 .
1}
Fieid values:
Hl = exterior

delta = e l
HZ = interior

; Formulations:

SF = static

HFF = high frequency
GF = general

static hmir. )
1k | 10k f{Hz]
|
; |
| i
| !
I |
I}
Fig. 11: the hollow sphere test-problem: field modulus on P

computed with 3 different shell formulations
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VIII. CoNcLUSION

With given geometrical dimensions and physical properties,
we can see that: ‘

- for f<1Hz, SF and GF give the same result.

- for £>250Hz (i.e. & < e/2) GF and HFF are equivalent.

- GF allows the exact computation of the passage from static
to high frequency.

We have to stress the price to pay: for the same mesh, the
magnetodynamic general formulation (GF) needs 8 times as
many real unknowns as the infinit frequency formulation (IFF),
4 times as many as the static formulation (SF) and 2 times as -
many as the high frequency formulation: it has to be used with
discrimination! Still itremains extremely efficientin comparison
with a finite element mesh of the volume of the shell.

The research continues, to take into account more and more
complex phenomenas (saturation, anisotropy, multi-layers shell,
etc.). We will also set up some experiments to valid the shell
models within industrial configurations.
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