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Abstract

In this paper we formalize a graph-partitioning problem that arises
in the design of SONET networks as a Set-Covering problem. We then
improve the general performance ratio of the Greedy Algorithm proved
by Chvétal for this particular case.

key-words: set-covering, approximations, telecommunication net-
works.

Introduction

SONET networks [5] are common and widely used telecommunication net-
works. For such networks, the first problem to cope with is to partition the
edges of the demand graph into sub-graphs called rings. Nodes of a same
ring are then linked together by two fibers so as to form a cycle and demands
are routed automatically around this cycle on one of the fibers, according
to possible failures. This is made possible by complex devices called ADM
at every node. These devices have a limited capacity of treatment which
constraints a ring to a maximum capacity C. In the scope of this paper,
we consider that this capacity must be at least as big as the sum of the
demands within a ring!.

ADMs have high cost, and in what follows we consider all other costs to
be negligible. The cost of a ring is thus its number of nodes, and the global
cost of a partition is the sum of the costs of the rings.

*Laboratoire Leibniz-IMAG, 46 avenue Félix Viallet, 38031 Grenoble cedex. na-
dia.brauner@imag.fr, pierre.lemaire@imag.fr

!This corresponds to unidirectional rings, that is when a fiber is dedicated to normal
work, the other one saved for failure cases; then all demands must go all around the ring,
and therefore an ADM may have to deal with the sum of all demands when they are
simultaneous.



In our model, a node may be shared by several rings. All demands are
supposed to be unitary, and thus cannot be split between several rings, and
they all must be satisfied.

With these restrictions, the SONET network design problem is indeed
a special case of the well-known Set-Covering problem, as the first section
of this paper formalizes it. In the literature, this special case is referred
as k-EP (k-Edge Partition) or ADRL (Assignment of Demands to Rings,
with Link-costs only). Complexity issues and some linear-time O(v/C)-
approximations are considered in [3, 1], and a tabu method is proposed in
[4].

Here, we turn to Chvatal’s Greedy Algorithm for set-covering and prove
better guarantees for our special case than in the general case, which leads
to the best known guarantee for this problem.

1 A Set-Covering problem

First, we formalize the partition problem we deal with. Let G = (V, E) be a
simple graph and C a capacity. We aim at finding a minimum-cost partition
of the edges of G into rings of capacity at most C. A ring is any subset of
FE with no more than C edges. Thus, let be:

A = {A;CE, |4 <C}
v; = the number of vertices of A;

o life€ A;
Qei = 0 otherwise

The problem is then:

min Z VT (ADRL.0)
A;eA

[ADRL] { 5t D aezi>1 Ve€E (ADRL.)
A;eA

z; € {0,1} VA; € A (ADRL.2)

The set A is the set of all possible rings. Variables z; are boolean vari-
ables, of value 1 if and only if the ring A; is selected in the solution. The
objective (ADRL.0) is thus to minimize the sum of the costs of the rings in
the solution. Constraint (ADRL.1) forces every edge to be covered. This
constraint could be an equality without changing the value of an optimal
solution.

2 Performance of the Greedy Algorithm

To solve a Set-Covering problem, there exists a very intuitive greedy heuris-

tic: at iteration k, select the ring A; which minimizes the ratio PZ—@‘, where



| A%| is the number of edges in A; which are still uncovered at iteration k.

If several such rings exist, we select a ring such that A; = Af, so that
an edge is covered exactly once. Such a ring always exists since we allow
any subgraph of at most C' edges to be a ring. This is done for the sake of
simplicity and indeed without loss of generality.

In the following, we call Greedy this algorithm.

Chvétal [2] proves that Greedy is a H(C)-approximation algorithm, with
H(C) = ch':l% < 1+ In(C). For our particular case, this guarantee is
improved:

Theorem 1
The Greedy Algorithm has a worst-case performance-guarantee for ADRL

of:
a(C) = i %4_ 1 (03‘1 VCQ— lJ o "vcz— 1")

(¥
k=vo c

[e]

1++1+8C
5 .

where voc = [

In the above theorem, the value v¢ corresponds to the minimum number
of vertices in a graph with C edges (c¢f appendix B).

This results may be detailed so as to give a better idea of the guarantee:

Corollary 1

For C > 3:
PO) < af0) < TO) 4,5 — - b
< %+ln( ¢
— c 3 . 1,3
where I‘(O)—ln(E)—%_pa_Fi_ o

This comes from the comparison between Y ;_; % and In(z). The prop-
erties of composition of equivalents of the logarithm function then straight-
forwardly lead to this second corollary:

o
a(C) ~, ln( 5)

Let us now prove those results. The first idea is to use duality, as Chvatal
does for its own proof.

Corollary 2



Let H be a heuristic for the set-covering problem which returns a feasible
solution for which an edge e has a cost? ¢ (such a solution has a total cost
Y ecr 0¢). If there is a ay such that % is a feasible solution of the dual
problem, then ay is a performance ratio for H. This is formalized in the
following lemma:

Lemma 1
Let the following primal problem P and its dual D be:

min cx max yb
[P] st. Az >b [D] st. yA<c
>0 y >0

Let T be a feasible solution for [P] returned by an algorithm H and let
be o > 1. If there is a 6 such that:

1. y= g is feasible for [D] (ie. 0A < a.c,§ >0) and

2. 6b>cx
then H is a a-approzimation for problem [P] (ie. : T < a.z for all feasible
solution z of [P]). o
proof :

Let z be a feasible solution of [P]. We have:

(.c>0A4A)
a.cx > 0Azx

(Az>b)

> b
(0b>c)

> cT

This is true in particular for an optimal solution, and so Z is a a-approximation
of this optimum. a

Let us re-write these results in our particular case:

[Primal) [Dual]
min Z V;.T; max Zye
AjeA ecE
s.c. Z 0ei-zi >1 Vee E s.c. Z ye <v; VA, €A
A€eA e€A;
z; 20 Ye > 0

2This exact notion of cost of an edge is precised later.



([Primal] is indeed the continuous relaxation of the initial problem. We
also drop the constraint z; < 1 which is always true for an optimal solution.)
Intuitively, y. is the cost that must not be overpaid to cover the edge e.

Let z be a feasible solution of the primal problem. Define the cost in x
of the edge e as: 65 = Iz_i\’ where A€ is the unique ring that contains e in
the solution z (v® is the number of vertices — that is the cost — of A¢).
With this definition, we evenly divide the cost of a ring among the edges
that compose it.

In what follows, we only consider solutions returned by Greedy, and thus
we omit the index = and write 0¢ for the cost of the edge e. Notice that, as an
edge belongs to a unique ring in a solution, we have: 6 = AeA aeipz_idxi'

Now, let us prove that 8 = (0%)ecr verifies the hypotheses of lemma, 1.
We have?:

de = Z Z aeil;z—i”xi

ecE ecFE A;e A

s (mxz)

AjeA 1 ecE

> |Zi.|-’17i|Ai| =) vz
1

A;eA A;eA

and hence 0 verifies hypothesis 2 of lemma, 1. If besides we suppose that, for
an integer o

VA;e A Z 0° < a.y; (1)

ecA;

then € also verifies the hypothesis 1. So, it is sufficient to prove that the
value of a(C) of theorem 1 is valid for equation (1) to conclude that Greedy
is a a(C)-approximation for [Primal], and thus for ADRL.

Here are now two lemmas which allow to bound the cost of an edge
according to the iteration it is selected by Greedy.

Lemma 2

Let A; be an element of A. Let ey, eo,... e|4; be the edges in A; numbered
from 1 to |A;|, with respect to the order of selection by Greedy. (i.e. there
are at most k — 1 edges of A; selected before er,). We have:

Vi
gk < — '
- |Ai|—k+1

[e]

30ne should be careful not to confuse notations. A° is the unique ring that contains e
in the solution, whereas A; is the i** ring of A. If e € A;, then A; = A°.



proof :

When the edge ey, is selected, at most £ — 1 edges had been taken from
A; by Greedy. So, there remain at least |4;] — k + 1 edges for at most v;
vertices in A;. These edges form a ring A¥ of cost Mi"’fik“ by edge. If e; has
a higher cost, this implies that it has been selected with a more expensive

ring, which contradicts the selection rule of Greedy. a
Lemma 3
Let A; be an element of A. Let S be a sub-set of A; with v; — 1 edges.
We have: o1 ) )
+ vV — V; —
€ < - -
e
ecS
for every solution returned by Greedy. o
proof :
First, remove from the graph G every edge that is selected by Greedy

for a cost lower than (or equal to) % Let ap be the number of such edges

in S. We note S’ the set S with these edges removed.

Cycles of C (or less) edges would be removed for a cost 1 < % per
edge. A connected component of C (or more) edges would have at least C'
edges removed for a cost lower than % per edge. So, remains in G only a
forest F' of which trees have strictly less than C edges. Let ¢ be the number
of trees of F N §’ (a tree of F may induce several trees in F N S").

Let a1 be the number of edges of S’ which are isolated in F, and as the
number of edges which are not; we have: v; — 1 = ag + a1 + ao, or:

((11+a2—2)+(a0+%)=vi—1 ()

There are t disjoint trees on v; — 1 — ag edges: they require at least
v; — 1 — ag + t vertices among those of §’, and §' has at most v; vertices
since it is included in A;. As a consequence: v; — 1 —ag +¢ < v;, and
hence: ¢t < ap + 1. Because ¢ > a; (an isolated edge is a tree), we obtain:
a1 < ag + 1, which can be detailed since ¢ = a; if and only if a3 = 0. All in
all we get:

or a2 >0and a1 <ag+1 (ie. : a1 < ap)
ax=0and a1 <ap+1

Besides, according to equation (&), we have: (a1 + %)+ (ao+ %) = v; — L.
From which:
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e ifay =0then ay <ap+1anda; = (a;+%)<%. Since a; and v; are
integers: (a1 + %) < %] = [%5].

° ifa2>0thena1Saoand(a1+%2)§’”T_lg[”"2_1
v,




In all cases:

(a+%) < [”"2_1 (W)

Notice now that every edge e isolated in F is selected with a cost of
0¢ = 2. Any other edge of F may be selected with the whole tree to which
it belongs for a cost 6¢ < %(2 + %) (this tree has 2 < p < C edges and
thus costs p';l < 3 < 1(2+ ©#L)). This leads to a bound on the total cost

for the edges of S:

> 6° < Ylag 4201 + 5(2+ SFag = a0 + %) +2(ar + @)
ecsS

together with equation (é&):

> o6e< C+1(vi—1)+ <2—C%> (a1+(12—2)

ecS
and with the inequality (#), as <1 < 2, we obtain:
S < 1)+ 2 CH) [u]
ecS

< -1 2[5

C+1|v;—1 v; — 1
e<— _t -
N i

ecS

that is:

O

Let us prove now, with an induction on C, that inequality (1) holds for
a = «(C) as defined in theorem 1. What we have to prove is thus:

VA e A=Y 6¢ < Zk 1(0“{ 21J+2[ D (1)

Yi e€A;

(we assume an empty sum — when vo > C — to be zero.)

For C =1 or C = 2, the only rings have one edge less than their number
of vertices; that is: VA; € A : |4;] = v; — 1. Lemma 3 then applies with
S = A;. For rings such that v; = v, the inequality (1’) then holds. The
other rings are indeed only single edges for C' = 2 and then we have:

1 [(C+1|ve—-1 vo —1 7
- e=1< — S
N S e A el |

ecA;




and inequality (1°) also holds. Therefore the induction hypothesis is true for
C=1,C=2.

Let C > 3 and assume that inequality (1°) holds for every C’,1 < C' < C.
Let A; be a ring. Several cases may happen:

Case 1: |[4;|=C"<C -1
The induction hypothesis is that inequality (1’) holds for every C'. Since
« 18 an increasing function of C, and v; is positive, one has:

Z 0° < a(C")v; < a(C).;
e€cA;

Case 2: |4;|=C

Ring A; has v; = ve + z vertices. Remember that ve is the minimum
number of vertices for a graph with C' edges; therefore z > 0.

Lemma 2 proves that the C'—wv;+1 first edges of A; are selected for a total
cost of at most ZC vitl C_fcﬂv lemma 3 proves that the v; — 1 remaining
edges have a total cost of at most Cg 1 [”‘_1J +2 P’l_l] It implies that:

e <z ()
= () B(C,x)
where:
B(Cyz) = Zk
k=vg

1 C+1|ve+z—1 ) ve+z—1
vc+ T C 2 2
1 [CH+1|ve—-1 vo—1
— 2
el Al
It is thus suffisant to prove that 8(C, ) is always positive to get that equa-

tion (1) holds.
If z = 0 then B(C,0) = 0.




If z > 1 then (note that 5(C+14+C —1)=2):

1 1
C > —
B(C2) > ve veo+1
C+1|1 -1 -1
Ay N Ve + ve
C ve 2 2
—vp—1
_ 1 vo+z—1 + vo+z—1
ve+ T 2 2
=’UC:1:—1
+C—1 1 Jve—-1] 1 vo+z—1
C ve 2 vo+ T 2
—_—— —_—
2'UC2—1 SuQ;—m
1 1 —
.1 PR PR S U BN et Y S S
ve ve+1 C ve ve+ C 2 2 2
1 1 1 -1
> 1 /Cc+1 C AT c+1
ve+1 2uc C C Cve + )
:%ggforc»s >0
1 2
> -
~ wve+1l 3uc
S vo — 2
= 3ve(ve +1)
>0
If z = 1 then the first three inequalities above hold if removing the term
vclﬁ' We get:

1 c+1 C-1 c+1
cly > —(2——+——-2 —
pGL) 2 2uc< c T ¢ ) Clve + 2)

S C+1 11
- C vo+1 2ve
C+1 we-1

>
- C 2vc(ve +1)
> 0

From the two cases above, it follows that equation (1) holds for a(C). As
a consequence, by the induction principle, this ends the proof of theorem 1.

With such performances, the Greedy algorithm has the best known guar-
antees for the ADRL problem. Moreover those guarantees are pessimistic,
for the proved ratio does not seem to be tight.



We now prove the two corollaries. The first one is a consequence of the
following lemma:

Lemma 4

VnEN,VpEN,pZn:In(£)+

proof :

08 i

07t |

» 1 p+1 1
n o and n+1l z2—1

» 1
n x’

Figure 1: Comparison of the areas of

This interval is a mere comparison of areas. As a matter of fact, for
p > n, we have (cf Figurel) :

i.e. :



In our case, for C > 3 (and thus v, < C), we have:

SRR G i R )

7(C)

and the previous lemma proves:

1n<C>+ ! +v(C) < a(0) <1n<£>+—+’)’
v, C Clef
now:
1 Cc-1 vo — 1 vo — 1
= —((2—-— 2
© = 5 (=) [ 2 )
_ 1 ’Uc—]. ’Uc—]. _C—]. ’Uc—].
-l ) - [
1 C—-1 |veg—1
= —[9pp—929-_ 2=
vc<vc C { 2 J)
~—— ——
<1 U_@<.<“_L1
2 573
from that:

1 vo—1\ 3 3
> — —2— —2_ 2
(A~ (2”0 2= ) 2 200

using (2), we obtain:

c 1 3 3

which is the announced lower bound. We also have:

1 C—1vc—2
C) < —(2vg—-2———
10) < = (me-2-C5 122
1 1
< e —2- X 114 2€ _ 2
—vc(”c’ 31+ 56 O)
<3 1t,1 1
- 2 we 2C Cue
< §+L_C+1
- 2 2C Cve
using equation (2), we obtain:
3 1 1

a(C) < P(C)‘l‘T_—_

11
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which is the announced upper bound.

Remarking that % = ﬁ <L =,/<
2

o 3 1 1 C 14
< el - < bl I
a(C)_ln( 2>+2+20 Oy(}_ln( 2>+9

1 ve—2

1 : ; -
(236 — Gvg = 3¢vg 18 maximum for C = 3)

For the equivalent in corollary 2, notice that in the inequalities of corol-
lary 1 the term In (%) is the only one which tends to infinity. So, @(C) ~4+

In (%)
Moreover, if two functions f; and fo are strictly positive, equivalent at
infinity, and tend to infinity, then In(f1) ~4c In(f2). Here, these hypothesis

hold for UQ and \/g and this ends the proof by transitivity of the equivalence
(&)
relation.

3 Conclusion

We prove that Chvdatal’s greedy algorithm for the set-covering problem,
when used in the special case of ADRL, has an improved performance guar-
antee, which is the best known guarantee for this particular case. However
the sub problem of finding the best ring in the demand graph is NP-hard in
the general case (reduction to CLIQUE) and thus the algorithm is unlikely
to be polynomial.

Yet these results give insight of what can be expected from a set-covering
approach of this problem. For instance column generation methods, for
which finding a good column correspond to finding a good ring, are promis-
ing and their performances should be compared with the methods already
tried, like tabu search.
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A Some numerical values

Figures 2 et 3 show the evolution of the value of «, respectively for small
and big values of C.
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Figure 2: Evolution of the value of (C) depending on C. Plain line: a(C), dotted line:
lower and upper bounds from corollary 1.
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Figure 3: Evolution of the value of o(C) depending on C. Plain line: a(C), dotted line:

%+ln(\/§).
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B Minimum number of vertices in a graph with C
edges

Property 1
The minimum number of vertices vc of a graph with C edges is:

v — [1+\/1+80"
c— f

proof :

A graph with v vertices is contained in the complete graph of ve ver-
tices. Therefore, the minimum v is reached for the smallest complete graph
with at least C' edges.

A complete graph with v vertices has @ edges. And thus ve is the

solution of: .
min{v:vZO,v(Uz_ )ZC’}
This leads to a second-degree equation which straightforwardly gives:

o — [1+\/1+W"

2
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