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Comparison of objective functions for the JIT

problem

Vassilissa Lebacque, Vincent Jost, Nadia Brauner

15 septembre 2004

Abstract

Just-in-time production models have been developed over recent
years in order to reduce costs of diversified small-lot production. Those
methods aim at matching the exact demand of each product and the-
refore holding inventory and shortage costs as small as possible. Dif-
ferent ways of measuring the slack between a given schedule and the
ideal no-inventory no-shortage production have been considered in the
literature. This note compares the three most studied objective func-
tions and refutes several conjectures that have been developed in the
last few years.

1 Introduction

Just-in-time (JIT) manufacturing environments have been developed in or-
der to reduce costs of diversified small-lot production. This model aims at
matching the exact demand of each product and therefore holding inventory
and shortage costs as small as possible.
Monden [10] states that the most important goal of a JIT system is to keep
the schedule as balanced as possible, i.e. to keep the production rate of each
type of product per unit of time as smooth as possible. Different ways of
measuring the deviation of the real production from the ideal perfectly ba-
lanced schedule have been considered in the literature. The main objective
of this document is to compare the three most studied objective functions
and to refute several conjectures that have been developed in the last few
years. It also describes tools and models that characterise instances with
solutions which optimise several objective functions simultaneously.

We use two different formulations of the JIT scheduling problem. The first
one, a linear program, has been introduced by Miltenburg in [9]. The second
one is a reformulation by Kubiak and Sethi [7] as an assignment problem.
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Section 2 reviews previous research on JIT manufacturing. Section 3 gives
the constraints of the problem and the notations used. It also provides a
proof of the equivalence between the three objective functions for the two-
part type case. In Section 4, description of the maximum deviation JIT
problem as a perfect matching problem [11] is presented and the main results
of reformulation [7] are given ; utilisation of those results to prove optimality
of min-sum sequences is explained and graph representation in this document
is described and justified. Section 5 contains a comparison of the total and
maximum deviation problems when deviations are absolute values. Section 6
deals with 1-bounded total deviation problems, i.e. total deviation problems
such that the maximum deviation is lower or equal to 1. In Section 7 we give
some results on maximum deviation problems and total deviation problems
with square functions as deviations. Section 8 is a remark on total deviation
problems. In Section 9, we describe the linear programs employed in the
tests.

2 Literature review

In this section, we review previous research on JIT manufacturing. The des-
cription by Monden [10] of Toyota’s production system arouses first interest
in levelled scheduling. By proposing an optimisation formulation of the pro-
blem, Miltenburg [9] has lead to a considerable amount of research. This
formulation aims at minimising the total deviation or sum of all deviations
of the real production from the ideal but rational production. When the
deviations are convex, non-negative functions, Kubiak and Sethi [6, 7] prove
that this optimisation model can be reformulated as an assignment problem.
In this formulation, deviations from the ideal are represented by penalties
for placing parts earlier or tardier than their location in the ideal sequence.
Inman and Bulfin [3] give a pseudo-polynomial heuristic for total deviation
problems with slightly different penalty functions. They consider that the
due date of a part is its ideal instant of production and solve the problem
with an Earliest Due Date Rule.

An other class of objective functions has been widely considered in the li-
terature. The constraints remain the same and the goal is to minimise the
maximum deviation of the real production from the ideal. Steiner and Yeo-
mans [11] show that when considered as a one-machine scheduling problem
with release and due dates, the model could be reduced to a perfect mat-
ching problem in a bipartite convex graph. From this approach, they obtain
a pseudo-polynomial time algorithm. Brauner and Crama [2] revise those re-
sults and show that the maximum deviation JIT problem is in Co-NP. Note
that it is even difficult to know whether or not total deviation or maximum
deviation problems are in NP as the output is not polynomial in the size of
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the input.

3 Notations and constraints of the problem

3.1 Constraints

A diversified small-lot production consists of n part types with a demand
di ∈ N for part type i = 1, 2, ..n . Each part is produced in one time period.
Let D =

∑n
i=1 di be the total demand. A schedule will be called uniformly

levelled if, at each time period k, the line has assembled k di/D parts of
type i. The proportion ri = di/D is called the ideal production rate and a
JIT schedule tries to keep the effective production rate as close as possible
to that ideal. Monden [10] states that it is the main goal of Toyota’s JIT
systems.
In order to formulate this problem as an optimisation problem, we denote
xi,k, for i = 1, 2, .. n; k = 1, 2, .. D the number of parts of type i produced
in the time periods 1 to k.

Miltenburg [9] formulated the constraints of the problem as follows :

∑n
i=1 xi,k = k, k = 1, 2, .. D (1.a)

xi,D = di, i = 1, 2, .. n (1.b)
0 ≤ xi,k − xi,k−1, i = 1, 2, .. n; k = 2, 3, .. D (1.c)
xi,k ∈ N, i = 1, 2, .. n; k = 1, 2, .. D (1.d)

(1)

Equality (1.a) indicates that k parts have to be produced in the first k time
periods ; equality (1.b) means that all demands have to be satisfied at time
period D ; inequality (1.c) states that the number of parts of a given type
i produced must not decrease with time. Hence, (1.a) and (1.c) together
imply that exactly one part is produced per time period.

3.2 Objective functions

The objective function of the problem must describe the fact that we want to
keep the effective production ’as close as possible’ to the ideal and therefore
minimise the distance between a feasible sequence and the ideal production.
There is no consensus on which distance is the most adequate and many
objective functions have been studied in the literature.
In this document, we consider max-abs, sum-abs and sum-sqr problems,
which are the most widely studied.

Some authors consider that the main objective is to minimise the maxi-
mum of deviations with an objective function Fmax of the form Fmax =
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max1≤i≤n, 1≤k≤D Fi(xi,k−kri). For instance in [11, 5, 2], Fi(x) = |x|, for i =
1, 2, .. n and hence the objective function is Fmax = maxi,k |xi,k−kri| which
leads to the max-abs problem. Note that the set of optimal solutions is the
same for any identical pair functions Fi increasing on [0,+∞[ (see [4]).
In Section 4.1, the max-abs problem is formulated as a perfect matching
problem in a bipartite convex graph as in [11].

Other authors consider that the main objective is to minimise the total de-
viation with an objective function of the form Fsum =

∑D
k=1

∑n
i=1 Fi (xi,k − kri).

The problem is then denoted total deviation problem or min-sum problem.
In [7], the deviations Fi, for i = 1, 2, .., n are convex functions verifying

Fi (0) = 0, i = 1, 2, .. n and Fi (y) > 0 for y 6= 0, i = 1, 2, .. n (2)

For the min-sum problems, the most considered values for Fi are Fi(x) = |x|
and Fi(x) = x2 [9, 7, 5]. In the first case, Fsum =

∑D
k=1

∑n
i=1 |xi,k −

kri|, and we obtain the sum-abs problem. In the second case, Fsum =∑D
k=1

∑n
i=1 (xi,k − kri)2 and we refer to sum-sqr problems.

In section 4.2, JIT problems with total deviation are formulated as assign-
ment problems [7].

3.3 Notations

We use the following notations.
– The set of all integers i ∈ [a, b] is denoted [a..b] ;
– The ceiling dae of a real number a is the smallest integer greater or equal

to a ;
– The flooring bac of a real number a is the greatest integer smaller or equal

to a ;
– The rounding [a] of a real number a is the unique integer such that a− 1

2 ≤
[a] < a+ 1

2 ;

3.4 Two-part type problems

For the two-part type case, max-abs, sum-abs and sum-sqr objective func-
tions can be optimised simultaneously, i.e. for any instance, there exists a
sequence that is optimal for the 3 objective functions. For completeness, we
prove this result that has been mentioned in [2]. It can be deduced from the
following proposition :

Proposition 1 For a two-part type problem with production rates r1 and
r2 = 1− r1, the solution x∗ of the JIT problem defined by

x∗1,k = [kr1] k = 1, 2, .. D

x∗2,k = k − [kr1] k = 1, 2, .. D

4



is optimal for all objective functions Fmax or Fsum such that F1 and F2 are
nonnegative functions increasing on [0,+∞[ and verifying

∀i = 1, 2, ∀y ∈ R, Fi (y) = Fi (−y) (3)

Proof
Let x be a feasible solution of the JIT problem.

∀k = 1, 2, .. D, x1,k = j ⇒ x2,k = k − j
Hence, if x1,k = j we have

x2,k − kr2 = k − j − kr2

= k (1− r2)− j
= kr1 − j
= − (x1,k − kr1)

Therefore ∀k = 1, 2, .. D, |x1,k − kr1| = |x2,k − kr2|
By definition of x∗i,k, one has |x∗i,k−kri| ≤ 1

2 for any i = 1, 2 and k = 1, 2, .. D.
Let x be a feasible solution of the JIT problem that differs from x∗ at time
period l. As shown in [2], such a solution verifies |x1,l − lr1| ≥ 1

2
Hence ∀k = 1, 2.. D,∀i = 1, 2,, one has |xi,k − kri| ≥ |x∗i,k − kri|.
The functions F1 and F2 verify ∀i = 1, 2, ∀y ∈ ]−∞,+∞[ , Fi (y) = Fi (|y|)
and both functions are increasing on [0,+∞[ .

Therefore, ∀k = 1, 2, .. D, ∀i = 1, 2, Fi (xi,k − kri) ≥ Fi
(
x∗i,k − kri

)

Hence, for any objective function F = Fmax or F = Fsum such that F1 and
F2 are pair nonnegative functions increasing on [0,+∞[, x∗ is an optimal
solution of the F−JIT problem. 2

Remark This statement holds also if the functions F1 and F2 are identical,
non-negative, decreasing on ]−∞, 0] and increasing on [0,+∞[. The state-
ment does not hold if the functions are different, non-negative, decreasing
on ]−∞, 0], increasing on [0,+∞[ and not pair. For the instance da = 1
and db = 3 and a total deviation objective function with Fa(−1

2) + Fb(
1
2) <

Fa(
1
2) +Fb(−1

2), x∗ is not optimal as the sequence S = (b, a, b, b) is strictly
better.

4 Just in time scheduling formulations

4.1 Maximum deviation and bipartite graphs

The max-abs problem, also denoted by MDJIT (maximum deviation JIT
problem) in [2], has been analysed by Steiner and Yeomans [11] and Brauner
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and Crama [2]. Consider the recognition version of problem (1) with a max-
abs objective function :

max-abs decision problem :
Input :
– n ∈ N : number of part types
– di ∈ N : demand for part type i, i = 1, 2, .. n
– B ∈ Q : a bound
Question : Does there exist an n×D matrix x = (xi,k) such that :

max1≤i≤n, 1≤k≤D |xi,k − kri| ≤ B
∑n

i=1 xi,k = k, k = 1, 2, .. D
xi,D = di, i = 1, 2, .. n
0 ≤ xi,k − xi,k−1, i = 1, 2, .. n; k = 2, 3, .. D
xi,k ∈ N, i = 1, 2, .. n; k = 1, 2, .. D

(4)

We denote (i, j) the jth part of type i. Consider an instance (n, d1, d2, .. dn, B)
of the max-abs decision problem. Define the earliest time E(i, j) and the la-
test time L(i, j) to produce part (i, j) by

E(i, j) =

⌈
j −B
ri

⌉
and L(i, j) =

⌊
j − 1 +B

ri
+ 1

⌋
(5)

In any feasible schedule, part (i, j) lies into the interval [E(i, j)..L(i, j)] [2].

The max-abs decision problem can be formulated as a perfect matching
problem in the bipartite graph G = (V1 ∪ V2, E) as follows [11]. The vertex
set V1 = [1..D] represents the production time periods and V2 is the set of
all parts (i, j). An edge (k, (i, j)) is in E if and only if part (i, j) can be
produced in time period k, i.e., if and only if k ∈ [E(i, j)..L(i, j)].

The following statement describes a necessary and sufficient condition for
the feasibility of a solution :

Proposition 2 [2] The max-abs decision problem has a feasible solution if
and only if the graph G has a perfect matching.

From the previous proposition, we can trivially deduce :

Proposition 3 The optimal objective value of the max-abs problem is the
smallest B such that the corresponding graph G has a perfect matching

This statement will be used in Section 5 to show optimality results for max-
abs problems.
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Remark When considering possible optimal value for the max-abs ob-
jective function, one can restrict oneself to B = q

D with q ∈ [1..D] since
deviations are multiples of 1

D and since maximum deviation is always lower
than 1 (see [11, 2]).

4.2 Assignment problem and costs matrix

This section describes the formulation of problems with total deviation (like
sum-abs and sum-sqr) as assignment problems [7]. This formulation allows
to find and prove optimality for those problems.

In [7], the authors show that, for any convex function Fi, i = 1, 2, .. n veri-
fying condition (2), problem (1) with the objective of minimising the total
deviation Fsum can be reformulated as an assignment problem.
The ideal location Z∗i,j = dkije of (i, j) is the ceiling of the unique instant
kij satisfying

Fi (j − kij ri) = Fi (j − 1− kij ri) (6)

Let Ci,j,k be the costs induced by placing (i, j) in the kth position :

Ci,j,k =





∑Z∗ij−1

p=k ψijp k < Z∗ij
0 k = Z∗ij∑k−1

p=Z∗ij
ψijp k > Z∗ij

(7)

where ψijp is defined by

ψijp = |Fi (j − p ri)− Fi (j − 1− p ri) | (8)

If (i, j) is produced before the ideal instant Z∗ij , then ψijp represent inventory
costs and when (i, j) is produced after the ideal instant Z∗ij , they represent
shortage costs.

The assignment variables are defined as

yi,j,k =

{
1 if (i, j) is produced in the time period k
0 otherwise

We can now describe the assignment problem as :

st

minimise
∑D

k=1

∑n
i=1

∑di
j=1 Ci,j,k yi,j,k∑n

i=1

∑di
j=1 yi,j,k = 1, ∀k = 1, 2, .. D∑D

k=1 yi,j,k = 1, ∀i = 1, 2, .. n, ∀j = 1, 2, .. di

(9)

The constraints of this problem indicate that only one part is produced at
the time period k and that part (i, j) is produced only one time.
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4.3 Optimality certificate for min-sum problems

In order to prove the optimality of the solutions proposed in Sections 6 and 7
for problems with total deviation, we will consider the assignment problem
in term of graphs. The objective is to find a smallest perfect matching in
the weighted-bipartite graph Gw = (V1∪V2, E) where, as in Section 4.1, the
vertex set V1 = [1..D] represents the production time periods and V2 is the
set of all parts (i, j).
In problem (9), there is no constraint regarding the maximum deviation.
However we will afterward consider min-sum problems with bounded maxi-
mum deviation, in which case the edge set E can be described as before :
an edge (k, (i, j)) is in E if and only if part (i, j) can be produced in time
period k, i.e. if and only if k ∈ [E(i, j)..L(i, j)].

Such a maximum deviation bounded total deviation problem will be denoted
B-bounded min-sum problem.

Note that in a classical total deviation problem, a part (i, j) can be produced
at any instant k. Therefore Gw is a complete bipartite graph. An edge e =
(k, (i, j)) ∈ E has the weight we = Ci,j,k. Denote A the vertex-edge incidence
matrix of the graph Gw (i.e. the 2D ×D2 matrix such that al,m = 1 if the
lth vertex is incident to the mth edge and 0 otherwise).

We can rewrite the problem as

min wy
s.t. Ay = 1

y ≥ 0
(10)

Its dual is
max 1z

s.t. zA ≤ w
z

(11)

This dual problem (11) can be interpreted as finding vertex weights z such
that the sum of zl for all l ∈ V1 ∪ V2 is maximal and such that for all
edge (k, (i, j)), one has zk + zi,j ≤ Ci,j,k. Therefore, one has the following
statement :

Proposition 4 The objective value s of a total deviation problem is optimal
if and only if there is a perfect matching M and a weight function z : V1 ∪
V2 → R such that for all edges (k, (i, j)), one has

zk + zi,j ≤ Ci,j,k (12)

and
∑

k∈V1

zk +
∑

(i,j)∈V2

zi,j =
∑

(k,(i,j))∈M
Ci,j,k = s (13)
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Proof
Consider a min-sum problem and his associated graph Gw. As the graph
Gw is bipartite, the matrix A is totally unimodular. Therefore, the po-
lyhedron {y; Ay = 1, y ≥ 0} is integer and the polyhedron {z; zA ≤ w} is
rational as w is in Q. Note that the vertices of {y; Ay = 1, y ≥ 0} are the
incidence vectors of the perfect matchings of Gw. By duality, if the polytope
{y; Ay = 1, y ≥ 0} is non empty, the problems (10) and (11) have optimal
integer and rational solutions respectively. Furthermore, any couple of those
optimal solutions (y∗, z∗) verifies wy∗ = 1z∗. Denote M∗ the perfect mat-
ching whose vector of incidence is y∗. One has

wy∗ =
∑

(k,(i,j))∈E
Ci,j,ky

∗
i,j,k =

∑

(k,(i,j))∈M∗
Ci,j,k

Therefore, ∑

k∈V1

z∗k +
∑

(i,j)∈V2

z∗i,j =
∑

(k,(i,j))∈M∗
Ci,j,k

Hence, if the min-sum problem has an optimal finite value s, then s verifies
condition (13).

Let us prove the reverse implication. For all perfect matching M and all
weight function z : V1 ∪ V2 → R verifying condition (12), one has

∑

(k,(i,j))∈M
Ci,j,k ≥

∑

k∈V1

zk +
∑

(i,j)∈V2

zi,j

Therefore,

min
M perfectmatching

∑

(k,(i,j))∈M
Ci,j,k ≥ max

z verifying (12)
(
∑

k∈V1

zk +
∑

(i,j)∈V2

zi,j)

Hence, if there is is a perfect matching M ∗ and a weight function z∗ :
V1 ∪ V2 → R verifying conditions (12) such that

∑

k∈V1

z∗k +
∑

(i,j)∈V2

z∗i,j =
∑

(k,(i,j))∈M∗
Ci,j,k

then z∗ and the incidence vector of y∗ of M∗ are optimal solution of the
problems (11) and (10) respectively. 2

Proposition 4 is used in Sections 6 and 7 to prove optimality of sum-abs and
sum-sqr sequences by the means of graphs where matching, edge costs and
corresponding vertex weights are represented.
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4.4 Representation of graphs and f-factors

Most of the examples used in this document are of the same type : they
consist in a number m of part types with demand d1 = d2 = .. = dm = 1
and a number n−m of part types with demand dm+1 = dm+2 = .. = dn. In
order to draw smaller graphs, we represent the vertices (i, 1) , i = 1, 2, ..m
as one vertex denoted (a..α, 1) (α being the mth letter of the alphabet) and
for each j = 1, 2, .. dn we represent the vertices (i, j) , i = m+ 1, m+ 2, .. n
as one vertex denoted (β..γ, j) (β and γ being respectively the (m + 1)th

and nth letters of the alphabet).

This transformation of the graph is justified by the notion of f-factors.
Consider a graph G = (V,E) and a function f : V −→ N. A f-factor is a
subgraph H of G such that degH(v) = f(v),∀v ∈ V . It comes easily that
a graph has a 1-factor if and only if it has a perfect matching. For further
reading concerning f -factors theory, see [8, 1].

Consider an instance of the max-abs decision problem (n, d1, d2, ..dn, B)
and the associated graph G = (V1 ∪ V2, E). We denote D the sum of
all demands. Suppose that di1 = di2 for some part types i1 and i2. Let
j ∈ [1 .. di1 ]. By definition (5) of the earliest and latest completion times,
E(i1, j) = E(i2, j) and L(i1, j) = L(i2, j). Therefore, δ((i1, j)) = δ((i2, j))
with δ(v) the set of all edges incident to the vertex v. Hence, our transfor-
mation can be described by the following algorithm :

Algorithm Simplify
Initialisation
L = {1, 2, .. n}
G = (V1 ∪ V2, E)
f : V = V1 ∪ V2 −→ N, f(v) = 1 ∀v ∈ V

While there are i1, i2 ∈ L such that di1 = di2 Do
For all j ∈ 1, 2, .. di1 Do
V2 = V2 \ (i2, j)
f((i1, j)) = f((i1, j)) + f((i2, j))
E = E \ {((i2, j), k) ∈ δ((i2, j))}

end
L = L \ {i2}

end

The proof of the following proposition is rather easy but laborious and is
only given out of completeness.

Proposition 5 The graph G has a perfect matching, if and only if the graph
G′ obtained at the end of the algorithm has a f-factor.
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Proof
Remark first that the algorithm leaves invariant the set V1 and all values of
f over V1.

Denote Gp = (V1 ∪ V p
2 , E

p) the graph and fp the function at the beginning
of the pth iteration. Since a graph has a perfect matching if and only if it
has a 1-factor, we will consider the execution of the (p + 1)th step of the
algorithm and show that the graph Gp has a fp-factor if and only if the
graph Gp+1 has a fp+1-factor.

Suppose that this graph Gp has a fp-factor Hp and that Lp contains i1 and
i2 such that di1 = di2 . Construct the graph Gp+1 and the function fp+1 of
the (p+1)th iteration using those two elements of Lp. Let us show that Gp+1

has an fp+1-factor.
Consider the subgraph Hp+1 of Gp+1 such that V (Hp+1) = V (Gp+1) and
((i, j), k) is an edge of Hp+1 if and only if
– (i, j) ∈ V p+1

2 and ((i, j), k) is an edge of Hp.
– i = i1 and ((i2, j), k) is an edge of Hp

All the edges of Hp+1 are indeed included in Ep+1 since no edge of the form
((i2, j), k) is in the set of edges of Hp+1. Note that Hp and Hp+1 have the
same number of edges.

Let k ∈ V1. According to the definition of the edges of Hp+1, we have
degHp+1(k) = degHp(k).Hp is a fp-factor. Therefore, degHp(k) = fp(k). Fur-
thermore, as remarked previously, f p+1(k) = fp(k). Therefore, degHp+1(k) =
degHp(k) = fp(k) = fp+1(k).

Let (i, j) ∈ V p+1
2 such that i 6= i1. According to the definition of the edges of

Hp+1, degHp+1 ((i, j)) = degHp((i, j)) and hence degHp+1((i, j)) = fp((i, j))
as Hp is a fp-factor. fp and fp+1 differ on V p+1

2 only in (i1, l), l ∈ 1, 2, .. di1 .
Therefore, fp+1((i, j)) = fp((i, j)). Hence, one has degHp+1((i, j)) = fp+1((i, j))

Let j ∈ 1, 2, .. di1 . Since Hp is a f -factor, degHp((i1, j)) = fp((i1, j)) and
degHp((i2, j)) = fp((i2, j)). According to the definition ofHp+1, degHp+1((i1, j)) =
degHp((i1, j)) + degHp((i2, j)). Therefore, degHp+1((i1, j)) = fp((i1, j)) +
fp((i2, j)). Since fp+1((i1, j)) = fp((i1, j))+f

p((i2, j)) we have degHp+1((i1, j)) =
fp+1((i1, j)).

Hence, all vertex v of Hp+1 verify degHp+1(v) = fp+1(v). Therefore, Hp+1

is a fp+1-factor of Gp+1.

Let us prove the reverse implication. Suppose that Gp+1 has fp+1-factor
Hp+1. Denote F p+1 the set of the edges of Hp+1. For all j = 1, 2, .. di1
consider a partition of the set

{
((i1, j), k) ∈ F p+1

}
into 2 subsets F 1

j and F 2
j

of respective sizes fp((i1, j)) and fp((i2, j)). Note that

|
{

((i1, j), k) ∈ F p+1
}
| = fp+1((i1, j))
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since degHp+1((i1, j)) = fp+1((i1, j)). Therefore,

|
{

((i1, j), k) ∈ F p+1
}
| = fp((i1, j)) + fp((i2, j))

and hence the partition is possible.
We define the following subgraph Hp of Gp. All vertices of Gp are in Hp and
an edge ((i, j), k) of Gp is in the edge set of the subgraph Hp if and only if
– i 6∈ {i1, i2} and ((i, j), k) ∈ Ep+1

– i = i1 and ((i, j), k) ∈ F 1
j

– i = i2 and ((i, j), k) ∈ F 2
j

In way similar to that of the implication, one can prove that for any vertex
k ∈ V p

1 , one has degHp(k) = fp(k) and that for any vertex (i, j) with i 6∈
{i1, i2}, one has degHp((i, j)) = fp((i, j)).

By definition of the subgraphHp, one has for any j ∈ [1..di1 ], degHp((i1, j)) =
fp((i1, j)) and degHp((i2, j)) = fp((i2, j)).

Therefore, Hp is a fp-factor of Gp.

Hence, Gp has a fp-factor if and only if Gp+1 has a fp+1-factor and the
proposition holds. 2

Remark From the proof of Proposition 5, one can deduce how to obtain
a f -factor of the transformed graph from a perfect matching of the initial
graph and reciprocally.

Example
Consider the instance d = (1, 1, 4, 4) where da = db = 1 and dc = dd = 4.
Figure 1 represents the corresponding graph for B = 7

10 . The thick edges
are a perfect matching of the graph. When the part types with identical

1 2 3 4 5 6 7 8 9 10

(a,1) (b,1)(c,1) (d,1)

(c,2) (d,2) (c,3) (d,3)

(c,4) (d,4)

Fig. 1 – Bipartite graph for da = db = 1, dc = dd = 4 and B = 7
10

demand are grouped, one obtains the graph of Figure 2.

Remark The thick edges of the graph Figure 2 are an f -factor obtained by

12



1 2 3 4 5 6 7 8 9 10

(ab,1)(cd,1) (cd,2) (cd,3) (cd,4)

Fig. 2 – Vertices-simplified bipartite graph for da = db = 1, dc = dd = 4
and B = 7

10

applying Algorithm Simplify to the subgraph of the graph Figure 1 induced
by its perfect matching. 2

To the transformation of Algorithm Simplify, we add the following : if the
solution is symmetric, then only the first half of the graph will be represen-
ted. Proposition 6 and 7 imply that the graph is symmetric and some of the
examples proposed have symmetric matchings.

Proposition 6 Consider a B−bounded problem. Then, for all (i, j) ∈ V2

we have

E(i, di − j + 1) = D − L(i, j) + 1 (14)

L(i, di − j + 1) = D − E(i, j) + 1 (15)

Proof
From (5) one has

E(i, di − j + 1) =

⌈
di − j + 1−B

ri

⌉

=

⌈
D − j − 1 +B

ri

⌉

= D −
⌊
j − 1 +B

ri

⌋

= D −
⌊
j − 1 +B

ri
+ 1

⌋
+ 1

= D − L(i, j) + 1

The equality (15) is obtained by replacing j by di − j + 1 in (14).

Therefore, the proposition holds. 2

We shall now prove that the costs are symmetric. We will first consider 2
lemmas.

13



Lemma 1 Let Fi be a pair convex function verifying condition (2). The
ideal location Z∗i,j of part (i, j) is such that

Z∗i,j =

{
D − Z∗i,di−j+1 if ki,j is integer

D − Z∗i,di−j+1 + 1 otherwise

Proof
For any pair convex function Fi verifying condition (2), one has Fi(x) =
Fi(x − 1) if and only if x = 1

2 . Therefore, according to the definition (6) of

the ideal location ki,j of part (i, j), we have ki,j = 2j−1
2ri

.

Consider a triplet (i, j, k). Let q be an integer and α a rational such that
ki,j = q + α and α ∈ [0, 1[. One has

Z∗i,di−j+1 = dki,di−j+1e

=

⌈
2(di − j + 1)− 1

2ri

⌉

=

⌈
D − 2j − 1

2ri

⌉

= dD − q − αe
= D − q

Therefore, if ki,j is integer, i.e if Z∗i,j = ki,j = q one has Z∗i,di−j+1 = D−Z∗i,j
and if ki,j is not integer, i.e. if Z∗i,j = q+ 1, one has Z∗i,di−j+1 = D−Z∗i,j + 1
Hence, the lemma holds. 2

Lemma 2 Let Fi be a pair convex function verifying condition (2). For all
integer p in [1..D − 1] one has

ψi,j,p = ψi,di−j+1,D−p

Proof
Let m be an integer. From (8), one has

ψi,di−j+1,D−p = |Fi(di − j + 1− (D − p)ri)
−Fi(di − j + 1− (D − p)ri − 1)|

= |Fi(−(−di + j − 1 + di − pri))
−Fi(−(−di + j + di − pri))|

= |Fi(−(j − 1− pri))− Fi(−(j − pri))|

Since Fi is pair, we have ψi,di−j+1,D−p = |Fi(j − 1− pri)− Fi(j − pri)| and
therefore

ψi,di−j+1,D−p = ψi,j,p

2
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Proposition 7 Let Fi be pair convex functions verifying condition (2). For
all triplet (i, j, k), one has

Ci,j,k = Ci,di−j+1,D−k+1

Proof
Consider a triplet (i, j, k). Let us show that Ci,j,k = Ci,di−j+1,D−k+1. Accor-
ding to Lemma 1, one has Z∗i,j = D − Z∗i,di−j+1 + ε with ε ∈ {0, 1}. Denote
ε the integer 1− ε.
Suppose that k < Z∗i,j . From the Lemma 2 we deduce :

Z∗i,j−1∑

p=k

ψi,j,p =

D−Z∗i,di−j+1−ε∑

p=k

ψi,di−j+1,D−p

=
D−k∑

p=Z∗i,di−j+1+ε

ψi,di−j+1,p

If ε = 1, then ki,j is integer and hence we can deduce from the proof of
Lemma 1 that ki,di−j+1 is also integer. Therefore, together with the defini-
tion (6) of ki,di−j+1 one has ψi,di−j+1,Z∗i,di−j+1

= 0. Hence, one has

Z∗i,j−1∑

p=k

ψi,j,p =

(D−k+1)−1∑

p=Z∗i,di−j+1

ψi,di−j+1,p

Therefore, according to the definition (7) of costs, one has

Ci,j,k = Ci,di−j+1,D−k+1

Suppose that k = Z∗i,j . If ki,j is integer, ki,di−j+1 is also integer and equal to

D−k (see Lemma 1). Therefore, we have Ci,di−j+1,D−k+1 =
∑D−k+1−1

p=Z∗i,di−j+1
ψi,di−j+1,p =

ψi,j,Z∗i,di−j+1
= 0. Since k = Z∗i,j , we have Ci,j,k = 0. Hence

Ci,j,k = Ci,di−j+1,D−k+1

Suppose that k > Z∗i,j . From the Lemma 2 we deduce :

∑k−1
p=Z∗i,j

ψi,j,p =
∑k−1

p=D−Z∗i,di−j+1+ε ψi,di−j+1,D−p

=
∑Z∗i,di−j+1−ε

p=D−k+1 ψi,di−j+1,p

If ε = 0, then ki,di−j+1 is integer and ψi,di−j+1,Z∗i,di−j+1
= 0. Therefore one

has
k−1∑

p=Z∗i,j

ψi,j,p =

Z∗i,di−j+1−1∑

p=D−k+1

ψi,di−j+1,p

15



Hence, according to the definition (7) of costs, one has

Ci,j,k = Ci,di−j+1,D−k+1

Therefore, the proposition holds. 2

Proposition 6 and 7 imply that edges and costs are symmetric, but not
necessarily the optimal matching. Nonetheless, in many cases, this matching
is symmetric and we adopt a representation where only the first half of
the graph is drawn. Dots then indicate that the graph is not completely
represented (see Figure 3).

Example
We consider the preceding example with d = (1, 1, 4, 4) where da = db = 1
and dc = dd = 4. The graph of Figure 2 is symmetric. Therefore we can
simplify it to obtain the graph of Figure 3. 2

1 2 3 4 5

(cd,1) (cd,2) (ab,1)

Fig. 3 – Vertices and symmetry simplified bipartite graph for da = db = 1,
dc = dd = 4 and B = 7

10

Remark For a given statement T , we denote D-smallest example an
example of T such that no instance with a smaller D is example of the
statement T . A n-smallest example is defined similarly.

5 Max-abs and sum-abs problems

This section is motivated by a conjecture proposed by Kubiak [6] that com-
pares max-abs and sum-abs problems. They only consider the case where
the deviations are the absolute values of the differences between the ideal
and effective production.

Conjecture 1 [6] For any instance, there is a minimal sum-abs sequence
that is minimal for the max-abs problem.

In [5], the authors state that this conjecture does not hold but they do not
give any of the counter-examples found. Here we give the D-smallest and the
n-smallest together with an easy argument to verify that they are indeed.
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Note first that not all optimal max-abs sequences are optimal for the sum-
abs problem. Consider for example the instance da = 1 and db = dc = 3. The
sequence S = (c, b, c, a, b, c, b) is optimal for the max-abs objective function
with a maximum deviation of 5

7 . However, it is not optimal for the sum-abs
objective function as the sequence S = (c, b, a, c, b, c, b) is strictly better.

Proposition 8 The instance d = (1, 1, 4, 4) is a D-smallest counter-example
for Conjecture 1.

Proof
For B = 6

10 , we obtain the graph of Figure 4 which has no perfect matching.
The graph of Figure 2 obtained for B = 7

10 has a perfect matching. Therefore
the optimal value of the max-abs objective function is B∗ = 7

10 (see Propo-
sition 3). The graph of Figure 2 has a unique perfect matching up to the

1 2 3 4 5

(cd,1) (ab,1) (cd,2)

Fig. 4 – Bipartite graph for da = db = 1, dc = dd = 4 and B = 6
10

permutation of parts corresponding to the same vertex of the graph. It cor-
responds to the sequence S = (c, d, a, c, d, d, c, b, d, c). For this sequence,
the deviations are given in Table 1. Only the first half of the table has been
represented as for k = 6, 7, .. 9 one has |xa,k − kra| = |xb,D−k − (D − k)rb|
and |xb,k−krb| = |xa,D−k− (D−k)ra| and |xc,k−krc| = |xc,D−k− (D−k)rc|
and |xd,k−krd| = |xd,D−k− (D−k)rd| and hence the total deviation at time
k = 6, 7, .. 9 is the same as the total deviation at time 10 − k. The total
deviation for this unique sequence is 11, 8. It is therefore the optimal value
for the B∗-bounded sum-abs problem.

The sequence S = (c, d, c, d, a, b, d, c, d, c) has a total deviation of 11, 4.
Its deviations are symmetric with regard to time period k = 5 and therefore
only the first half of the table has been represented on Table 2. The sum of
deviations of this sequence is lower than the optimal sum of deviations for
the B∗-bounded sum-abs problem. Therefore the max-abs and sum-abs ob-
jective functions cannot be optimised simultaneously : no optimum schedule
for the max-abs problem is optimal for the sum-abs problem.

Exhaustive search with D ≤ 9 proves that d = (1, 1, 4, 4) is indeed a D-
smallest counter-example of Conjecture 1. 2
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Tab. 1 – Deviations for the sequence S = (c, d, a, c, d, d, c, b, d, c) of the
instance da = db = 1 and dc = dd = 4

time period 1 2 3 4 5
production c d a c d

a
xa,k

deviation
ideal

0
0.1
0.1

0
0.2
0.2

1
0.7
0.3

1
0.6
0.4

1
0.5
0.5

b

xb,k
deviation

ideal

0
0.1
0.1

0
0.2
0.2

0
0.3
0.3

0
0.4
0.4

0
0.5
0.5

c
xc,k

deviation
ideal

1
0.6
0.4

1
0.2
0.8

1
0.2
1.2

2
0.4
1.6

2
0
2

d

xd,k
deviation

ideal

0
0.4
0.4

1
0.2
0.8

1
0.2
1.2

1
0.6
1.6

2
0
2

Tab. 2 – Deviations for the sequence S = (c, d, c, d, a, b, d, c, d, c) of the
instance da = db = 1 and dc = dd = 4

time periode 1 2 3 4 5
production c d c d a

a

xa,k
deviation

ideal

0
0.1
0.1

0
0.2
0.2

0
0.3
0.3

0
0.4
0.4

1
0.5
0.5

b
xb,k

deviation
ideal

0
0.1
0.1

0
0.2
0.2

0
0.3
0.3

0
0.4
0.4

0
0.5
0.5

c

xc,k
deviation

ideal

1
0.6
0.4

1
0.2
0.8

2
0.8
1.2

2
0.4
1.6

2
0
2

d
xd,k

deviation
ideal

0
0.4
0.4

1
0.2
0.8

1
0.2
1.2

2
0.4
1.6

2
0
2
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The preceding example is not a n-smallest counter-example of Conjecture 5

Proposition 9 For n = 3 there are instances of the JIT problem such
that no sequence optimises sum-abs and max-abs objective functions simul-
taneously.

Proof
For n = 3, the D−smallest example is the instance d = (2, 7, 17). For
this instance, the minimum of the maximum deviation is B∗ = 16

26 and
we have the graph of Figure 5 where only the left-hand side of the graph
has been represented. The thick edges are in any perfect matching of the
graph. Therefore the graph has exactly two perfect matchings that corres-

1 2 3 4 5 6
7

8 9 10 11 12 13

(c,1) (b,1) (c,2) (c,3)

(c,4) (b,2)

(a,1)

(c,5)

(c,6)

(b,3)

(c,7) (c,8) (b,4)

(c,9)

Fig. 5 – Bipartite graph for da = 2, db = 7, dc = 17 and B = 16
26

pond to the same sum of deviations : 572
26 (which is met for instance for the

sequence S = (c, b, c, c, a, c, b, c, c, b, c, c, b, c, c, c, b, c, c, b, c, a, c, c, b, c) ). The
sequence S = (c, b, c, c, b, c, c, a, c, b, c, c, b, c, c, c, b, c, a, c, c, b, c, c, b, c) has a
sum-abs objective function equal to 556

26 . Hence, no sequence is minimal for
both functions. 2

Remark n = 3 is the smallest n such that there are instances with no se-
quence optimising sum-abs and max-abs objective functions simultaneously.
(see Proposition 1)

6 1-bounded-sum-abs and sum-sqr problems

The set of all possible solutions of 1-bounded problems is considerably smal-
ler than the one of its unbounded version. Considering 1-bounded problems
instead of unbounded ones therefore allows computational improvements on
exact min-sum methods such as computing the smallest perfect matching,
which can be done in O(nD2 log D) for a 1-bounded min-sum problem ins-
tead of O(D3 log D) for its unbounded version (see [12]). For all instance, it
is possible to find a sequence with maximum deviation lower than 1. Hence,
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it is interesting to know if such a 1-bounded sequence can always be found
that optimises total deviation problems, i.e., if the 1-bounded min-sum pro-
blems have the same optimal objective value that their unbounded versions.
This section shows that it is not the case for sum-abs and sum-sqr problems
and compares their solutions for bounded and unbounded problems.

Let P be the polyhedron of feasible solutions of the balanced schedule pro-
blem such that the maximum deviation is lower than 1.

P = {y;
∑n

i=1

∑di
j=1 yi,j,k = 1, ∀k = 1, 2, .. D∑D

k=1 yi,j,k = 1, ∀i = 1, 2, .. n, ∀j = 1, 2, .. di

|∑k
m=1

∑di
j=1 yi,j,m − kri| ≤ 1, ∀k = 1, 2, .. D,∀i = 1, 2, .. n}

(16)

Theorem 1 Any optimal sum-abs sequence y, such that y ∈ P , is an opti-
mal sequence for the sum-sqr problem.

In other words, if there is an optimal solution of the sum-abs problem such
that the maximum deviation is lower than 1 then this solution is also optimal
for the sum-sqr problem.

In order to prove this result, we will prove the following lemma that compares
the costs for the sum-abs and sum-sqr problems.

Lemma 3 For any solution y ∈ P , one has

∀i = 1, 2, .. n, ∀j = 1, 2, .. di, ∀k = 1, 2, .. D, yi,j,k = 1⇒ Cai,j,k = Csi,j,k

where Ca is the cost matrix calculated for the sum-abs problem
and Cs is the cost matrix calculated for the sum-sqr problem.

Proof

Denote dkaije and dksije the ideal locations of (i, j) in the production sequence
for the sum-abs problem and the sum-sqr problem respectively. Since |x| =
|x− 1| if and only if x = 1

2 and x2 = (x− 1)2 if and only if x = 1
2 , one has

kaij = ksij . Therefore, we will denote Z∗ij = dkaije = dksije the ideal location of
(i, j) in the production sequence for both problems.

Let Cai,j,k and Csi,j,k be the costs induced by placing (i, j) in the kth position
and ψaijp and ψsijp the inventory and shortage costs for each problem. The

function f(x) = |x2 − (x− 1)2 | − ||x| − |x− 1|| is equal to zero if and only
if x ∈ [0, 1]. Therefore we have the following statement :

ψaijp = ψsijp if and only if j − p ri ∈ [0, 1]
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Let’s prove that for any y ∈ P , if (i, j, k) is such that yi,j,k = 1 then Cai,j,k =
Csi,j,k.

Consider a solution y ∈ P and i,j,k such that yi,j,k = 1.
One has |j − kri| ≤ 1 and hence j − kri ≤ 1. We shall consider 3 cases
depending on the respective positions of k and Z∗i,j .

Case 1 : k < Z∗ij

For all p = k, k + 1, .. Z∗i,j − 1, one has

j − p ri >
1

2

since the function g (x) = j − xri is decreasing and g (ki,j) = 1
2 . Therefore,

one has 0 ≤ j − p ri ≤ 1 and hence

∀p = k, k + 1, .. Z∗i,j − 1, ψaijp = ψsijp

Case 2 : k > Z∗ij

Since yi,j,k = 1 one has xi,k−1 = j − 1 and together with y ∈ P one obtains

|j − 1− (k − 1) ri| ≤ 1

Hence, −1 ≤ j − 1− (k − 1) ri and therefore

0 ≤ j − (k − 1) ri

As the function g is decreasing, for all p = Z∗i,j , Z
∗
i,j + 1, .. k − 1, we have

j − pri ∈ [0, 1]. Hence one has

∀p = Z∗i,j , Z
∗
i,j + 1, .. k − 1, ψaijp = ψsijp

Case 3 : k = Z∗ij

In this case, both costs are zero.

Therefore, according to the definition of the costs, one has

Caijk = Csijk

in all the three cases. Hence, the lemma holds. 2

Proof of Theorem 1
The function f(x) = |x2 − (x− 1)2 | − ||x| − |x − 1|| is non negative. We
therefore obtain

∀i, j, k, Cai,j,k ≤ Csi,j,k
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Hence, for any feasible solution y of the JIT problem

n∑

i=1

di∑

j=1

D∑

k=1

Csi,j,k yi,j,k ≥
n∑

i=1

di∑

j=1

D∑

k=1

Cai,j,k yi,j,k (17)

Let y∗ ∈ P be an optimal solution of the sum-abs problem. Since for any
y ∈ P , yi,j,k = 1⇒ Csi,j,k = Cai,j,k one has

n∑

i=1

di∑

j=1

D∑

k=1

Csi,j,k y
∗
i,j,k =

n∑

i=1

di∑

j=1

D∑

k=1

Cai,jk y
∗
i,j,k ≤

n∑

i=1

di∑

j=1

D∑

k=1

Cai,jk yi,j,k

(18)
Combining (17) and (18), we obtain for any feasible solution y,

n∑

i=1

di∑

j=1

D∑

k=1

Csi,j,k yi,j,k ≥
n∑

i=1

di∑

j=1

D∑

k=1

Csi,j,k y
∗
i,j,k

and hence y∗ is an optimal solution of the sum-sqr problem. 2

Corollary 1 Any instance such that a pair of optimal solutions (y∗, Y ∗) of
the sum-abs and sum-sqr problems respectively verifies

n∑

i=1

di∑

j=1

D∑

k=1

Csi,j,k Y
∗
i,j,k >

n∑

i=1

di∑

j=1

D∑

k=1

Cai,j y
∗
i,j,k

is such that the sum-abs problem has no optimal solution with maximum
deviation lower or equal to 1.

Proof
Directly from the proof of Theorem 1. 2

The following statement proves that the converse implication of Theorem 1
is not true : one cannot reverse the roles of sum-abs and sum-sqr problems.
It also refutes the following conjecture of Steiner and Yeomans :
Conjecture 2 [12] The 1-bounded sum-abs problem and the sum-abs pro-
blem are equivalent.

Proposition 10 There are instances of the JIT problem such that the sum-
sqr problem has an optimal solution in P and the sum-abs problem has no
optimal solution in P .
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Example
For the instance d = (1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6) the sum-sqr problem has
a solution in P . This solution is represented on the graph Figure 6. The thick
edges are the matching solution edges, the italic numbers are the costs of the
edges as defined in Section 4.2, the thick numbers are the values of a dual
solution verifying conditions (12) and (13). Note that the costs and the dual
solution have been multiplied by D in order to obtain integers. All edges
have not been represented, but all important ones are drawn. Proposition
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0
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(jklm,1)

-66

(jklm,2)

0

(jklm,3)

77

Fig. 6 – Bipartite graph for da = db = ...di = 1, dj = dk = ...dm = 6 and
weights for the min-sum-sqr problem

4 implies that this solution is indeed optimal. Denote that solution Y ∗.
It is in P as maximum of the deviations is 30

33 . Consider the sequence S =
(j, k, l,m, j, k, l,m, a, b, c, j, k, l,m, d, e, f, j, k, l,m, g, h, i, j, k, l,m, j, k, l,m) and
the corresponding assignment variable y. One has

n∑

i=1

di∑

j=1

D∑

k=1

Csi,j,k Y
∗
i,j,k >

n∑

i=1

di∑

j=1

D∑

k=1

Cai,j yi,j,k

Therefore, for any optimal solution y∗ of the sum-abs problem, one has

n∑

i=1

di∑

j=1

D∑

k=1

Csi,j,k Y
∗
i,j,k >

n∑

i=1

di∑

j=1

D∑

k=1

Cai,j y
∗
i,j,k

Hence by Corollary 1, no optimal solution of the sum-abs problem is in P .
2

The following proposition proves that Theorem 1 in [5] is not exact. However
this fact has been notified to us by one of the authors who sent us a counter
example of this theorem with a total demand D = 100. Here we give an
instance with D = 33 and we explain how we found that counter-example.

23



Proposition 11 The sum-abs and sum-sqr objective functions cannot be
optimised simultaneously for all instance of the JIT problem.

Proof
To show that the set of sum-sqr and sum-abs optimal solutions are disjoint
for the instance d = (1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6), we first obtain the opti-
mal objective value for both problems, say Ss and Sa and then add in the
sum-sqr problem a constraint fixing the sum-abs objective to its optimal
value. If the optimal objective value of the problem

minimise
∑D

k=1

∑n
i=1

∑di
j=1 C

s
i,j,k yi,j,k

st
∑D

k=1

∑n
i=1

∑di
j=1 C

a
i,j,k yi,j,k = Sa∑n

i=1

∑di
j=1 yi,j,k = 1, ∀k = 1, 2, .. D∑D

k=1 yi,j,k = 1, ∀i = 1, 2, .. n, ∀j = 1, 2, .. di
(19)

is Ss, then sum-abs and sum-sqr problems can be optimised simultaneously.
As it is not the case for the instance d = (1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6), it is
indeed a counter-example. 2

Theorem 1 proves that sum-abs and sum-sqr problems are simultaneously
optimised if an optimal solution of the sum-abs problem is in P . The follo-
wing proposition states that it is not a necessary condition.

Proposition 12 There are instances such that sum-abs and sum-sqr objec-
tive functions can be simultaneously optimised and the sum-abs and sum-sqr
problems have no optimal solution in P .

Example
For a bound B = 1 of the maximum deviation, the graph corresponding
to the instance d = (1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6) is on Figure 7. As the costs
for sum-abs and sum-sqr problems are identical for B ≤ 1, the solution
represented is optimal for each problem. This solution is not optimal for any
of the unbounded total deviation problems. An optimal solution for both
problems and their dual is represented on the graphs Figure 8 and 9.

2

7 Sum-sqr and max-abs problems

As the optimal objective value of the max-abs problem is always lower than
1 (as proved in [11, 2]), Theorem 1 implies the following statement :
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Proposition 13 If there is a solution x∗ that is optimal for the max-abs
and the sum-abs objective functions then x∗ is also optimal for the sum-sqr
objective function.

The converse implication does not hold.

Proposition 14 There are instances such that the max-abs and the sum-
sqr objective functions can be optimised simultaneously but the sum-abs and
the max-abs objective functions cannot be optimised simultaneously.

Proof
Consider the instance d = (1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7). For this instance the
optimal value for the max-abs problem is B∗ = 26

30 . Using Proposition 4,
one can verify that the matching on the graph on Figure 10 represents an
optimal solution denoted Y ∗ of the sum-sqr problem. For this solution the
maximum deviation is B∗. An optimal solution y∗ of the sum-abs problem
is represented on the graph Figure 11. One has

n∑

i=1

di∑

j=1

D∑

k=1

Csi,j,k Y
∗
i,j,k >

n∑

i=1

di∑

j=1

D∑

k=1

Cai,j y
∗
i,j,k

Hence, according to Corollary 1, the sum-abs problem has no optimal solu-
tion such that the maximum deviation is lower than 1. Therefore the sum-abs
problem has no solution such that the maximum deviation is B∗. 2

Note that this result implies Proposition 10.

The example of the proof of Proposition 14 allows to prove several statements
on the set of all solutions of the sum-sqr problems. First, remark that the
optimal sum-abs sequence represented on Figure 11 is also optimal for the
sum-sqr problem. It leads to the following statement :

Proposition 15 There are instances such that the set of all optimal solu-
tions of the sum-abs and sum-sqr problems have common elements but are
not identical.

Proof
Consider the instance d = (1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7). An optimal solution
y∗ of the sum-abs problem is represented on the graph Figure 11. This
solution is also optimal for the sum sqr problem and therefore, the sets of all
optimal solutions of sum-abs and sum-sqr problems have at least a common
element. The optimal solution of sum-sqr problem represented on Figure 10
is optimal for the sum-sqr problem, but not for the sum-abs problem. Hence,
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the sets of optimal solutions of the sum-abs and sum-sqr problems are not
identical. 2

The sequence represented on Figure 11 has a maximum deviation higher
than 1 and that of Figure 10 a maximum deviation lower than 1. As both are
optimal solutions of the sum-sqr problem, one has the following statement :

Proposition 16 There are instances such that an optimal solution of sum-
sqr problem is in P but not all optimal solutions of sum-sqr problem are in
P .

8 Convex non-negative objective functions

When the max-abs and the sum-abs objective functions can be optimised
simultaneously, the sum-sqr objective function is also optimised by the com-
mon solution of both problems. We have tested whether it was true for other
objective functions.

Proposition 17 There are instances such that the max-abs and the sum-abs
objective functions can be optimised simultaneously, but not all pair convex
functions can be optimised simultaneously to both objective functions.

Proof
Consider the objective function Fi(x) = x4. One can prove, using the method
described in the proof of Proposition 11, that for d = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 8),
sequences that simultaneously optimise max-abs and sum-abs are not opti-
mal for this function. 2

Remark Denote a, b, .. l the part types. The sequence
S = (k, l, a, k, l, b, c, k, l, d, k, l, e, f, k, l, g, k, l, h, i, k, l, j, k, l) optimises max-
abs and Fi(x) = x4. Our testing did not allow us to find an example where
max-abs and sum-abs objective functions where simultaneously optimised
and not max-abs and the min-sum objective function with Fi(x) = x4. It is
nonetheless likely than some exist.

9 Practical resolution

To find the examples of this document, we have used exhaustive testing of
all instances for given values of the total demand D or all instances for given
values of D and of the number of part types n. We have used the software
CPLEX to solve the linear programs and we have adopted for them efficient
formulations.
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9.1 Resolution of total deviation problems

The CPLEX program has no difficulty to solve the total deviation problems
as they need not to be handled as integer linear programs. In fact, the
polyhedron (20) of the assignment constraints is integer.

P = {y;∑n
i=1

∑di
j=1 yi,j,k = 1, ∀k = 1, 2, .. D∑D

k=1 yi,j,k = 1, ∀i = 1, 2, .. n, ∀j = 1, 2, .. di}
(20)

Therefore, in our programs, y was real most of the time and we obtained the
optimal value of sum-sqr or sum-abs objective functions for the assignment
problems, but not the optimal sequences.

9.2 Resolution of max-abs problem

The max-abs problem can be formulated as follow :

minimise maxi,k |xi,k − kri|
st

∑n
i=1 xi,k = k, k = 1, 2, .. D

xi,D = di, i = 1, 2, .. n
0 ≤ xi,k − xi,k−1, i = 1, 2, .. n; k = 2, 3, .. D
xi,k ∈ N, i = 1, 2, .. n; k = 1, 2, .. D

(21)

This problem is non-linear but is easily transformed in the following integer
linear program :

minimise B
st

∑n
i=1 xi,k = k, k = 1, 2, .. D (22.a)

xi,D = di, i = 1, 2, .. n (22.b)
0 ≤ xi,k − xi,k−1, i = 1, 2, .. n; k = 2, 3, .. D (22.c)
xi,k − kri ≤ B, i = 1, 2, .. n; k = 1, 2, .. D (22.d)
−xi,k + kri ≤ B, i = 1, 2, .. n; k = 1, 2, .. D (22.e)
xi,k ∈ N, i = 1, 2, .. n; k = 1, 2, .. D (22.f)

(22)

Inequality (22.d) and (22.e) state that B is greater than any deviation and
as the objective is to minimise B, both problems are equivalent.

This formulation is not satisfactory since the polyhedron defined by the
constraints (22.a) - (22.c) is not integer. CPLEX can solve it very efficiently
most of the time. However, for some instances with many demands equal
to 1, it may take several hours to obtain the solution using our computer.
Therefore, we do not try and solve the max-abs problem directly, but use
dichotomy and solve several max-abs decision problems as described in [11].
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In fact, a max-abs decision problem can be described as a total deviation
assignment problem. It consists in computing for the given B the intervals
[E(i, j) .. L(i, j)] for all i = 1, 2, .. n, j = 1, 2, .. di and to consider the costs :

Ci,j,k =

{
0 if k ∈ [E(i, j) .. L(i, j)]
1 otherwise

(23)

The max-abs decision problem has a solution if and only if the min-sum
problem with those costs has an optimal objective value equal to 0.

Using dichotomy, we find the minimum value of B such that the max-abs
decision problem has a solution in few steps and gain a lot of time as each
resolution takes less than 0.2 seconds.

9.3 Comparison of B-bounded and unbounded total devia-
tion problems

The method described in Section 9.1 does not work for the B-bounded pro-
blems as the polytope (24) is not integer.

PB = {y;∑n
i=1

∑di
j=1 yi,j,k = 1, ∀k = 1, 2, .. D∑D

k=1 yi,j,k = 1, ∀i = 1, 2, .. n, ∀j = 1, 2, .. di∑k
p=1

∑di
j=1 yi,j,p − kri ≤ B, ∀i = 1, 2, .. n

kri −
∑k

p=1

∑di
j=1 yi,j,p ≤ B, ∀i = 1, 2, .. n}

(24)

In this case, one has to impose y integer. The resolution is nonetheless very
fast. This linear program allows to obtain the optimal objective value for
B-bounded min-sum problems. When comparing objective values of unboun-
ded and B-bounded problems, we do not need in a first time the effective
optimal objective value of the B-bounded problem, but only to know if the
optimal of the unbounded problem can be attained over PB. In this case,
it is possible to formulate the problem with y real. We first compute the
optimal objective value of the unbounded problem as in Section 9.1. Denote
S the optimal value of the min-sum objective function. To the polytope P
of (20) we add the constraint

∑
(i,j,k)C

s
i,j,kyi,j,k = S with Cs the cost matrix

for the min-sum problem. Denote PS the polytope obtained. As an objec-
tive function we take a total deviation objective function with costs defined
by (23). As previously, if the minimal objective value is 0, then there is a
solution in PS with maximum deviation lower than B. In this case, both
problems have the same optimal solution. Otherwise, no element of PB is
optimal for the unbounded total deviation problem.
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9.4 Generation of instances

In order to find counter-examples for the conjectures we wanted to tackle, we
applied exhaustive search, i.e. we generated all instances for given values of
D and tested if they verified the chosen statement. The recursive procedure
perm generates all vectors of demands such that for all i, j ∈ [1 .. n]

i ≤ j =⇒ di ≤ dj (25)

In addition, it produces the vectors of demands in the inverse lexicographic
order. For example, for D = 16, it will produce the vectors d = (16), d =
(8, 8), d = (7, 9), d = (6, 10), d = (5, 11), d = (5, 5, 6), etc. Since it saves
memory not to give all vectors α and d the maximum size possible, we use
vectors with dynamic memory allocation, i.e. vectors with a size null at their
initialisation and that have a function pushback(v,k) which adds the element
k at the end of the vector v and makes the memory allocation. Note that
– all vectors are integer.
– the pth element of a vector v is denoted v(p).
– the result of the division of integer a by the integer b is the quotient of

the Euclidean division of a by b.
In the perm procedure, the vector d is the vector of demands of the instance
that will be tested. To obtain it, we use the auxiliary vector α that contains a
different formulation of vector d : for all i ∈ [1 .. sizeof(α)], α(i) represents
the number of part types of demand equal to i. At the first call of the
procedure, the vector α is empty and D is equal to the sum of all demands.

perm(int D, vector α) {
If D = 0 Then

vector d ;
For i = 1, 2, .. sizeof(α) Do

For j = 1, 2, .. α(i) Do
pushback(d, i) ;

End
End

// One can use the instance generated by adding code here
Return ;

End

If D < sizeof(α) + 1 Then
Return ;

End

pushback(α, 0) ;
For i = 1, 2, .. D/(sizeof(α) + 1) Do
α(sizeof(α)) = i ;
perm(D − i ∗ sizeof(α), α) ;
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End
}
Example
Consider we want to obtain all vectors with total demand D = 4. The tree of
calls is represented on Figure 12. The vertices are named after the parameters
D and α and the edges represent the calls made for those parameters. The
sign∅ appears under the name of a vertexD,α when no instance is produced
by perm(D,α). If an instance is produced, the demands are represented
together with D and α. 2

4,()

4,(0) 3,(1) 2,(2) 1,(3)
∅

0,(4)
d=(1,1,1,1)

4,(0,0) 2,(0,1)
∅

0,(0,2)
d=(2,2)

3,(1,0) 1,(1,1)
∅

2,(2,0)
∅

0,(2,1)
d=(1,1,2)

4,(0,0,0) 1,(0,0,1)
∅

3,(1,0,0)
∅

0,(1,0,1)
d=(1,3)

4,(0,0,0,0)
∅

0,(0,0,0,1)
d=(4)

Fig. 12 – Parameters for the calls of perm for D = 4

10 Conclusion and extensions

Three objective functions for the JIT scheduling problem have been exami-
ned. Existing tools to prove the optimality of total deviation solutions have
also been completed. Extensive testing has allowed us to conclude regarding
several questions about total deviation objective functions and maximum
deviation bounded problems as well as to refute several recent conjectures.
We have proved that the 1-bounded sum-abs and the 1-bounded sum-sqr
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a∗//m∗ a∗//m ≤ 1 a∗//s∗

s∗//m∗ s∗//m ≤ 1

r
d = (1)

r
d = (1, 1, 4, 4)

r
d = (1, 1, 1, 1, 1,

1, 1, 6, 6, 6, 6)

rd = (1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7)

r
d = (1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 10, 10)

r
d = (1, 1, 1, 1,

1, 1, 1, 1, 1,
6, 6, 6, 6)

FIG 13: Instances optimising simultaneously different criteria
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problems were equivalent but could have no common optimal solutions with
the sum-abs and the sum-sqr problems.

Figure 13 is a summary of the results obtained for sum-abs, sum-sqr and
max-abs objective functions. The notations a∗, s∗ and m∗ indicate that the
sum-abs, sum-sqr and max-abs objective functions respectively are optimi-
sed by the instances of the set where it appears. The symbol // means that
the criteria of each side are optimised simultaneously. When m ≤ 1 appears
in the right-hand-side, sequences can be found with maximum deviation
lower than 1 that optimise the left-hand-side objective function.

Still, our testing has not allowed us to conclude regarding the following
question :

Conjecture 3 For n = 3 there are instances such that the sum-abs problem
has no optimal solution such that the maximum deviation is lower than 1.

This conjecture has been tested for all instances with D ≤ 100 and no
example has been found.

Further researches can be undertaken regarding the set of all solutions of the
different problems. We proved that sum-abs and sum-sqr problems are not
always equivalent when they have a common optimal solution but we have no
result concerning 1-bounded sum-abs problems. It is likely that if an optimal
solution of the sum-abs problem has maximum deviation lower than 1, it
will not imply that all sum-abs optimal solution have maximum deviation
lower or equal to 1, but this question has not been studied here. Since sum-
abs and sum-sqr problems can have no 1-bounded solution, computational
improvement proposed by Steiner and Yeomans in [12] cannot be applied to
the general case, but studying 1-bounded solutions may reveal that they can
approximate the solutions of the unbounded problems with a low ration.
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