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Homogenization of Lamination Stacks in Linear
Magnetodynamics

Laurent Krähenbühl, Patrick Dular, Tarek Zeidan, and François Buret

Abstract—An effective numerical modeling of devices with
lamination stacks cannot be done without replacing the lamina-
tions by an equivalent solid region. So far, no convincing model
has been proposed, even in the “simple” case of linear magne-
todynamics—particularly if the resultant current in each sheet
does not cancel. In this paper, we define the homogenized fields,
and the related material properties. The noteworthy precision
of the theoretic homogenized solution is shown and discussed by
comparing it with the exact solution of the problem with lamina-
tions in the case of a simple “1.5-D” analytical test problem. The
three-dimensional finite element solutions—real description of the
sheets, refined mesh/homogenized region, coarser mesh—for the
same test problem show also a perfect agreement.

Index Terms—Eddy currents, finite element methods, homoge-
nization, lamination stack, magnetodynamics.

I. INTRODUCTION

TWO papers published over the last three years propose new
ideas concerning the homogenization of lamination stacks,

to lead to simplified but accurate models for finite elements. In
[1] a static anisotropic problem is first solved, then the eddy
currents are processed as a second-order effect. The analytical
space and time changes of fields and current are correctly taken
into account; however, this method cannot be applied if the eddy
currents have a perceptible effect on the static solution. Very re-
cently in [2], the same analytical one-dimensional (1-D) solu-
tions have been a priori integrated into the test functions of the
finite element (FE) formulation. The results obtained in this way
are valid for a very large frequency range; on the other hand,
only situations with a symmetrical magnetic flux density distri-
bution in the normal direction of the iron sheets (i.e., with an odd
distribution of the current density) have been taken into account.
In this paper, the validity of these formulations is extended.

II. HOMOGENIZATION

A. Analytical Form Functions and Characteristic Function

The well-known analytical solutions in a linear and con-
ducting iron sheet concern the values of the tangential
components of the magnetic flux density and magnetic field (in
a direction ) on one hand, of the current density and electric
field (in the direction perpendicular to ) on the other hand.
All these quantities vary in the direction normal to the sheets,
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Fig. 1. Characteristic function as a function of the relative skin depth, and
its asymptotic values.

following the same shape functions et , which are,
respectively, odd and even functions:

(1)

(2)

where is the plate thickness and is equal to zero at the mid-
thickness of the plate.

The integral value of will also be used in this paper
(Fig. 1):

(3)

If these particular variations in the sheets are accepted, the
values of the tangential component of each field ( , , or

) on the surfaces of the sheets define it everywhere; we get for
any tangential quantity

(4)

B. Homogenized Functions and for

If the function is continuous at the limit between two sheets
(typically the tangential magnetic field), we can build a new
function , which is equal to on these limits and varies linearly
in the sheets [Fig. 2(a)]. Then we get

and (5)

for sheet (6)

If is not continuous at the limit (the typical example for
such a noncontinuous function is the tangential electric field), it
remains possible to built a continuous function in respect to
(5) and varying linearly between the centers of two consecutives
sheets. The slope of depends on the four limit values of for

0018-9464/04$20.00 © 2004 IEEE



KRÄHENBÜHL et al.: HOMOGENIZATION OF LAMINATION STACKS IN LINEAR MAGNETODYNAMICS 913

Fig. 2. Homogenized function of (a) a continuous or (b) discontinuous
function , and values of their slopes.

Fig. 3. Ampère’s theorem and Lenz’s law in the sheets.

these two sheets: (6) is no more valid [Fig. 2(b)]. is a possible
homogenization of .

We could also build a homogenized function from the mean
value of through the sheet

(7)

C. Ampère’s Law

The homogenization requires to write again the Maxwell’s
equations—here, the Ampère’s theorem and the Lenz’s law—in
an integral form, on a scale greater than (or equal to) the thick-
ness of the sheets (Fig. 3, ):

(8)

With notations (6) and (7), we get a partial differential equa-
tion in the direction parallel to the lamination, and a difference
equation in the normal direction (the upper index marks the
number of the concerned sheet)

(9)

D. Lenz’s Law

Starting with (Fig. 3, for the sheet ( ) and for ):

(10)

(11)

we can write

and (12)

The Lenz’s law written between the two iron sheets (Fig. 3, ,
where is supposed to be zero in the sheets, but not between
them) gives

(13)

Then, defining the mean electric field in direction by1

(14)

neglecting the right-hand term in (13) and using (12), we get

(15)

is the thickness of the insulating between two iron
sheets.2 The Lenz’s law can now be rewritten as a mixed partial
differential/difference equation:

(16)

E. Homogenized Properties and

It remains to be written the phenomenological relations be-
tween the homogenized quantities. It can be seen that (3), (4),
(5), and (7) lead to ; using the relations between the
local fields and we get3

and with and (17)

In the normal direction , we will simply write

and that means: and (18)

Consequently, the homogenized permeability and conductivity
are defined as complex tensors: and .

F. Homogenized Maxwell-Like Equations

At this stage of our chain of reasoning, the homogenized
fields and properties that we have defined, coupled with the
shape functions and , are just another way to write the an-
alytical solutions in the normal direction of the laminated stack.
The size of the problem has been reduced to one unknown per
sheet in the normal direction, and it no longer depends on the
relative skin depth.

The homogenization principle itself consists in assuming that
the homogenized fields are a continuum following—as a first
step—(9) and (16) with [refer to Fig. 2(a) for and Fig. 2(b)
for ]

and (19)

1That means that the circulations of the homogenized and actual fields and
are equal in the direction .
2Compared with , the thickness of the insulation will be neglected in this

paper: It could easily be taken into account in the homogenized properties (11)
and (12), which just become more complicated.

3As far as possible, the notations of paper [2] are used here. Even if it is not
obvious, it can be shown that the term of paper [2] is equal to : Both
approaches are consistent.
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and, more generally speaking, the Maxwell-like equations

(20)

Replacing a system of difference equations by a continuous one,
we clearly do an approximation: however, this is necessary if
we want to introduce the homogenization in standard FEM soft-
ware, with meshes much larger than the thickness of the sheets.
Will the method be more and more accurate, as far as the number
of sheets increases? We will show that this condition is not suf-
ficient to make the real solution compatible with the approxi-
mation done in (19).

III. ENERGETIC INTERPRETATION

In the real system, the losses are solely due to the eddy-cur-
rents, and depend on . For one sheet, the mean value of these
losses (“macroscopic” active power density) is

(21)

After some (difficult) calculations, we can express it from the
homogenized fields

(22)

In the same way, the imaginary part in (22) can be expressed as
the mean value of ; it represents the macroscopic reactive
power density

(23)

This confirms the relevance of our choices for the homoge-
nized quantities and properties.

The first term (a) in (21) and (22) is linked to the even part of
the local current density ; it will be represented in the con-
tinuous model by the losses of the homogenized current den-
sity , which could be regarded as the macroscopic current den-
sity. The term (b) is linked to the odd part of the local current,
which cannot be observed on a macroscopic level; it will be rep-
resented by the losses due to the difference of phase between the
homogenized fields et .

IV. TESTING THE MODEL

Manifold tests could be managed in 2-D or 3-D to compare
FE solutions obtained either with the “sheet-by-sheet” descrip-
tion of a laminated region, or with the homogenized model.

A. Effect of the Homogenization Approximation

In this section, we will present some tests pointing out the
accuracy of the homogenized equations (17), (18), and (20) in
comparison with the real solution of the difference equations:
the aim is to show the effect of the approximation (19).

We define a simple lamination stack configuration with
nonzero mean field and current in the sheets (Fig. 4). The test
device is excited on its front and back faces by a harmonic

Fig. 4. Definition of the test device.

Fig. 5. Comparison of the homogenized partial differential equation solution
(lines) with the exact solution of the difference equation (points) for the homo-
genized magnetic field , and corresponding local variations of .

tangential magnetic field in direction . The global current
(direction ) in each sheet is controlled by circuit equations,
equivalent to resistances (all identical and connected to a
common point).4

The exact solutions for this “1.5-D” problem exist, for the
“real” stack (solution of a difference equation, easily obtained
with a simple spreadsheet), as for the homogenized equivalent
system: in this case, the homogenized system of equations can
be written in terms of magnetic field:

(24)

It is, therefore, possible to show the error due to the homoge-
nization itself, independently of any FE formulation.

For the results presented in Fig. 5, we chose to obtain
nonzero global currents in each sheet, however, a solution very
different from that of the simple short circuit. The comparison
shows how the solution of the homogenized equations repre-
sents the real laminated device.

This practically perfect agreement was also verified for all
the configurations we have processed, as long as the real solu-
tion does not vary too suddenly in the first sheets. We present
such a case in Fig. 6. Note that the resultant nonlocal skin effect
[related to (24)] depends on the external conditions ( ) and not
directly on the skin depth ( is the same for cases of Fig. 5 and
Fig. 6): it will not be possible to predict the validity of the ho-
mogenized formulation using intrinsic criteria (frequency, con-
ductivity, permeability).

B. Test of the 3-D Finite Element Implementation

Two 3-D FE models have been developed and applied to this
study of lamination stacks with nonzero global currents. Both

4For , each sheet is completely insulated from the others; the solution
is the same for all the sheets, with a zero global current. For (short circuit)
the lamination has no more effect, and the solution is that of a solid conductor;
as a consequence, the global current in each sheet is not zero.
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Fig. 6. Example of nonconvergence of the partial differential equation to the
solution of the difference equation .

Fig. 7. Tangential field values: 3-D FE solutions (actual continuum) and
comparison with the exact solution obtained by the difference equation.

models are based on the magnetic vector potential magnetody-
namic formulation.

The first model directly considers the stack as a set of massive
conductors separated by insulating layers [3]. In view of the
large number of laminations encountered in iron cores, such a
model is generally unfeasible and is only applied here to simple
local problems for validation.

The second model considers the lamination stack as a source
conductor through a precalculated current density distribution
corresponding to the eddy currents in the laminations, as well as
the actual distribution of the magnetic flux density. Both current
density and magnetic flux density distributions in each lamina-
tion can be obtained by considering the analytical solution of
the Maxwell equations governing the eddy currents while ne-
glecting their fringing effects. Such distributions have been con-
sidered in [2] for zero global currents and can be expressed in
terms of the mean magnetic flux density. They can be extended
for nonzero global currents constraints, which aims at adding
dependence with the mean current density. The actual current
and magnetic flux density distributions are then integrated in
the FE formulation, as done in [2], leaving their mean values as
the unknowns of the problem. In this way, the lamination stack
is transformed into a continuum, equivalent to what has been
presented in Section II.

To lighten the computational work for the test problem and to
focus on the main part of interest, the studied domain is reduced
to the lamination stack. The magnetomotive force is fixed as a
weak global quantity associated with the global magnetic flux,
of which the distribution is obtained through the FE analysis
[3]. A nonzero flux crossing the lateral boundary of the stack is
defined through the use of a surface scalar potential associated
with the surface magnetic vector potential [4]. This scalar po-

Fig. 8. Local values of the current density. Comparison between FEM (actual
continuum) and exact solution (difference equation).

tential is multivalued and has to undergo discontinuities along
lines making the lateral surface simply connected. Such con-
straints define the boundary conditions.

The direct model needs to mesh each lamination separately,
while the mesh is coarser for the continuous model. We con-
sider conductive volume regions in contact with the lamination
ends (direction ), in order to obtain a solution with a nonzero
homogenized current density. Both FE solutions are in perfect
agreement, and coincide also perfectly with the corresponding
1.5-D difference equation solution (Figs. 7 and 8).

V. CONCLUSION

The tests of the homogenization have been done separately
from its numerical FE implementation. The limit of validity has
been shown: it runs perfectly only if the global skin effect is not
prevailing inside the external sheets. Two ways could be then in-
vestigated to deal with this situation: either to solve directly the
difference equations (9) and (16) in the direction perpendicular
to the lamination, or to apply the surface impedance method to
the external sheets [5], [6], in association with the homogeniza-
tion technique for the other sheets.

The implementation of the homogenized equations in FE
software does not pose any technical problem, because the
form of the classical equations is preserved. Only complex
tensors have to be used for the material properties, instead of
real numbers; the post-processing may be modified, if local
values are required in the laminations.

REFERENCES

[1] K. Hollaus and O. Biro, “Estimation of 3-D eddy-currents in conducting
laminations by an anisotropic conductivity and a 1-D analytical model,”
COMPEL, vol. 18, no. 3, pp. 496–499, 1999.

[2] P. Dular et al., “A 3-D magnetic vector potential formulation taking eddy
currents in lamination stacks into account,” IEEE Trans. Magn., vol. 39,
pp. 1147–1150, May 2003.

[3] , “Modeling of thin insulating layers with dual 3-D magnetody-
namic formulations,” IEEE Trans. Magn., vol. 39, pp. 1139–1142, May
2003.

[4] , “Complementary finite element magnetodynamic formulations
with enforced magnetic fluxes,” COMPEL, vol. 18, no. 4, pp. 656–667,
1999.

[5] L. Krähenbühl and D. Muller, “Thin layers in electrical engineering,”
IEEE Trans. Magn., vol. 29, pp. 1450–1455, Mar. 1993.

[6] H. Igarashi, A. Kost, and T. Honma, “A 3-D analysis of magnetic fields
around a thin magnetic conductive layer using vector potential,” IEEE
Trans. Magn., vol. 34, pp. 2539–2542, Sept. 1998.


