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A Multiobjective Methodology for Evaluating
Genetic Operators

Ricardo H. C. Takahashi, Member, IEEE, J. A. Vasconcelos, Jaime A. Ramírez, and L. Krahenbuhl

Abstract—This paper is concerned with the problem of evalu-
ating genetic algorithm (GA) operator combinations. Each GA op-
erator, like crossover or mutation, can be implemented according
to several different formulations. This paper shows that: 1) the
performances of different operators are not independent and 2)
different merit figures for measuring a GA performance are con-
flicting. In order to account for this problem structure, a multiob-
jective analysis methodology is proposed. This methodology is em-
ployed for the evaluation of a new crossover operator (real-biased
crossover) that is shown to bring a performance enhancement. A
GA that was found by the proposed methodology is applied in an
electromagnetic (EM) benchmark problem.

Index Terms—Genetic algorithm (GA), multiobjective perfor-
mance evaluation.

I. INTRODUCTION

GENETIC algorithms (GAs) are reaching increasing im-
portance in several fields of optimization. This class of

algorithms is characterized by the “evolution” of a set of ten-
tative solutions (population). The algorithm evolves with some
stochastic search and combinatorial rules that, being applied to
one population, lead to the next one. The existence of threege-
netic operators(rules) defines a GA: 1) acrossover operator
that combines the information of two or more tentative solutions
(individuals), generating another individual; 2) amutation op-
erator that, using the information contained in one individual,
stochastically generates another one; and 3) aselection operator
that, using the objective function evaluation of all individuals in
the population, replicates some of them, and eliminates other
ones, generating the next population. A GA may be built with
these three rules only, or may contain other kinds of rules (niche,
local search, for instance).

There is a large number of meaningful operators that can lead
to suitable GAs. The basic GA operators can be implemented in
a growing variety of ways (see, for instance, [4], [14]), and there
is a growing variety of additional operators (see, for instance,
[10], [12]), since the study of operator structures is now an ac-
tive research area. In most of the cases, there is not any analytical
justification for the choice of a specific operator structure; for
some discussion on the difficulties associated to the task of ana-
lytically predicting the performance of a specific GA, see [9]. It

Manuscript received June 18, 2002. This work was supported by CAPES and
CNPq, Brazil, and COFECUB, France.

R. H. C. Takahashi is with the Department of Mathematics, Universidade Fed-
eral de Minas Gerais, Belo Horizonte MG, Brazil (e-mail: rtakahashi@ufmg.br).

J. A. Vasconcelos and J. A. Ramírez are with the Department of Electrical En-
gineering, Universidade Federal de Minas Gerais, Belo Horizonte MG, Brazil.

L. Krahenbuhl is with CEGELY, Ecole Centrale de Lyon, Lyon, France.
Digital Object Identifier 10.1109/TMAG.2003.810371

is known, however, that specific operator structure and operator
parameter tuning should be employed for each class of prob-
lems, in order to get computational efficiency. The choices of
each operator instance and its parameter values should be per-
formed, therefore, on the basis of empirical previous evaluations
[8], [14].

There is not, up to now, any integrative information source
for guiding such a choice by the user. The usual kind of infor-
mation that is available in literature fall into the categories. 1)
Tutorial: Some common operator alternatives are presented and
some values for their parameter settings are recommended, in
the form of large ranges of values. See, for instance, [7], [6].
2) One-algorithm evaluation: Follows the basic scheme of pre-
senting a new algorithm and evaluating it against some algo-
rithm that is considered to be “classical,” or “usual,” see, for
instance, [10]. 3)One-operator comparison: Compares some
alternatives of implementation for one operator, like selection
[13]. 4) Application-specific comparison: Makes comparisons
and recommendations that are specifically directed toward an
application, see for instance [5].

Some concerns about what should be an “integrative informa-
tion source” for choosing GA algorithms are: 1) the more recent
and complex operator structures should be considered as alter-
natives to be analyzed, either against the conventional structures
and one against the other one; 2) it should be also recognized
that some problems may present strong sensibility to parameter
tuning, what prevents the “usability” of large ranges of values
as a tuning guide [5]; and 3) it should be recognized too that
different operators are not independent, what means that, for in-
stance, a crossover operator that presents the best performance
with some mutation operator, can be outperformed by another
crossover operator when the mutation operator is changed [2].
The choice of suitable GAs for specific applications is a com-
plex task that should be structured in a systematic methodology,
in order to: a) allow the usage of the most recent knowledge for
the construction of efficient problem-specific GAs and b) keep
the effort for reaching efficient algorithms in a feasible level.
This paper discusses this problem and proposes a systematic
methodology for approaching it.

II. EVALUATION METHODOLOGY

The problems to be approached here are defined as follows:
Definition 1: Algorithm Evaluation Problem (AEP) Given

a class of problems to be dealt with and a set of genetic oper-
ators, find the best algorithms, considering both the criteria of
maximum convergence rate and minimal convergence failure.
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As the AEP is defined in terms of two objectives, its solution
is defined as a solution of a multiobjective problem, and has
the form of aPareto-set. This set is defined with the concept of
dominance: a solution is said to be dominated if it is worse than
another solution in at least one objective, while not being better
than that solution in any other objective [3]. The Pareto-set is
the set that does not contain any dominated solution. A formal
definition is given in (2).

Definition 2: New Algorithm Evaluation Problem
(NAEP) Given a new algorithm and a class of problems, com-
pare it with the AEP best algorithms for that class, assigning
to the new algorithm the status of anenhanced solutionor
of a dominated solution, possibly updating the set of “best
solutions.”

The new algorithm, in the NAEP, must be compared only
with thePareto-setof algorithms, that was found with AEP. This
means that the comparison database may discard most of alter-
natives that were considered in the former problem, and keep
only the Pareto-set ones. After the NAEP, three things can occur.
1) The new algorithm is not better than the “usual” ones. It is
discarded, and the Pareto-set is kept with the same former com-
position. 2) The new algorithm reveals to be nondominated, but
it also does not dominate any “usual” algorithm that was already
in the Pareto-set. In this case, the new algorithm is included in
the Pareto-set, that grows. 3) The new algorithm dominates one
or more solutions that were in the Pareto-set. It is included in
the Pareto-set, and the dominated solutions are excluded.

The computational effort in NAEP is associated only with the
evaluation of the test functions performed by the new algorithm.
The effort associated with the construction of the Pareto-set in
AEP is implicitly reused.

The following subsections discuss in detail the steps of the
proposed methodology.

A. Selection of Representative Analytical Functions

The class of problems of interest is possibly constituted of
functions that are not expressed in the form of analytical func-
tions but, instead, are given by simulation models that are hard
to be evaluated. This is the case, for instance, of electromag-
netic (EM) device models [11]. The problem of evaluation of
the usability of GAs in a specific class of problems, however,
does not depend on actually using one function of the class for
evaluating the algorithm, but only on using some function that
keeps some fundamental characteristics of the actual functions
[8]. With this procedure, a function that is fast to evaluate can
be used, which makes feasible executing a large number of test
runs for algorithm evaluation purposes. The work [8] presents
procedures for tailoring analytical functions with some specified
properties. Other possible way for building analytical models
that present the properties of more complex systems is via an
approximation technique [11].

In the present paper, theRotated Rastrigin functionis em-
ployed, in order to present the methodology proposed here

(1)

in which , is positive definite and
the remaining variables are such that the dimensions are com-

TABLE I
USUAL OPERATORALTERNATIVES

patible. This is a simple prototype of multimodal functions with
large-scale tendencies and coupled coordinates.

B. Database of GAs

A set of operator alternatives is defined in Table I. The alter-
natives are essentially the ones described in [14], Each version
of GA is tested with all the functions of the representative set,
with two merit figures: 1) the mean number of function eval-
uations for finding the global minimum and 2) the fraction of
algorithm executions that finds the global minimum. Each such
merit figure is evaluated for a number (say, 100) of algorithm
executions.

There are 864 different instances of GAs as combinations of
these parameters. The merit figures are determined for each al-
gorithm and each representative function. A database is com-
posed, with the structure

The indexes point to the different alternatives of the
operator alternatives that are under study. Indexidentifies a

“representative function,” and and are the resulting merit
figures that come from the application of the algorithm defined
by to its optimization. In the case studied here, index

, for instance, means the mutation operator, and means
“one bit per individual” mutation.

Defining and for all instances of as the objec-
tive functions of a multiobjective analysis problem, and

the vector of indices that identifies an instance of
GA, the database is “pruned” according to the law

such that

and (2)

After this procedure, the resultingPareto-setdatabase be-
comes much smaller than the initial database. In this database,
only thenondominatedalgorithms are kept.

The rotated Rastrigin function was tested with all 864 GA in-
stances. The resulting merit figures are plotted in Fig. 1. This
figure shows that, among these algorithms that employ “usual”
operators, there are relatively few ones that can be considered
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Fig. 1. Plot of the merit figures for the algorithms composed of “usual”
operator combinations: number of function evaluations up to convergence
(vertical) versus fraction of nonconvergence runs (horizontal). The function is
the Rotated Rastrigin.

Fig. 2. The Pareto-sets of the “usual operators” only (x) and of their
combination including the new operator “real-biased crossover” (o). Merit
figures: number of function evaluations up to convergence (vertical) versus
fraction of nonconvergence runs (horizontal). The function is the Rotated
Rastrigin.

“good,” in the sense that, for instance, they fail in less than 20%
of the runs, and they need less than 1000 function evaluations for
finding the optimum of the function. On the other hand, there is
a large number of algorithms that can be very bad, in the sense,
for instance, that they need more than 2000 function evaluations,
or fail in more than 50% of the runs. This result shows that an
algorithm being “usual” does not mean that it can be consid-
ered to be a good comparison standard for new algorithms. The
Pareto-set is extracted from this data (Fig. 2). This set is con-
stituted of only 25 solutions that are “nondominated.” These 25
solutions are sufficient for the purpose of comparison of any
new algorithm, with the same test function.

C. New Operator and New Algorithm Evaluation Procedures

For testing newalgorithms(i.e., a specific combination of
particular operators), the procedure to be followed is somewhat

obvious: evaluate it with the same test function, computing the
two merit figures. After that, reevaluate the Pareto-set, using (2)
to include the information about the new algorithm.

For testing newoperators, the question becomes subtle: an
operator (for instance, crossover) must be combined with other
operators (mutation and selection, at least), in order to give rise
to an executable GA. Is it a reasonable heuristic for performing
the test choosing “good” formerly known algorithms (that be-
long to the Pareto-set ofusual operators), and replacing the op-
erator to be tested in them? This would mean, in some extent,
that the operators are “independent” one to each other. Or it is
necessary to test the new operator within other operator combi-
nations that did not belong to the former Pareto-set? This ques-
tion is answered below, in the context of the evaluation of a new
crossover algorithm that is being presented here: thereal-biased
crossover. This new operator is described in the Appendix.

The real biased crossoveroperator was tested in all combi-
nations with the “usual operator set,” which means 240 com-
binations. The Pareto-set extracted from this data is shown in
Fig. 2, superimposed to the Pareto-set that was obtained with
the “usual” operators only. The Pareto-set is now constituted of
only 15 solutions that are “nondominated.” Comparing now the
two Pareto sets in Fig. 2: The most reliable algorithm among
the “usual ones” fails in 9% of the runs and needs about 1270
function evaluations for reaching the function optimum, while
in the “real biased crossover” set, it fails only 2% of the runs,
and needs less than 1200 function evaluations for reaching the
function optimum. There is one algorithm in the “real biased
crossover” set that needs less than 800 function evaluations, and
fails less than 10% (this algorithm is labeled GA-1, for the pur-
pose of performing further numerical evaluations with it). The
best algorithm that needs less than 800 function evaluations,
in the “usual algorithms” set fails about 30%. Thereal biased
crossoveroperator has proved to be an enhancement in this case,
leading to the more reliable and to the faster algorithms, and to
most of the intermediate Pareto solutions (10 of the 15 ones).

Unfortunately, the answer to the question of if operators are
independent is:no. Inspecting the ten new Pareto algorithms
that were constituted with thereal-biased crossoveroperator, it
is found that only two of them could be generated by the re-
placement of the crossover operator in the initial “usual” 25 al-
gorithms. Almost all the new Pareto algorithms, in this case,
use operator combinations that did not lead to former Pareto so-
lutions. This does not mean that an operator cannot be evalu-
ated: the data shown earlier clearly shows that thereal-biased
crossoveroperator constitutes an enhancement in relation to for-
merly known alternatives (at least for the class of problems that
share the features of the Rotated Rastrigin function). However,
the task of “operator evaluation” should be more carefully stated
than the standard procedure that is reported in most of the papers
on the subject, that implicitly rely on operator independence.

III. RESULTS IN AN EM PROBLEM

The GA-1, selected earlier, has the following selection of pa-
rameters, in the order of Table I: [315 223]. This algorithm has
been tested in TEAM Workshop problem 22 benchmark with
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three variables (for the definition of the problem, see [1]). The
objective function to be evaluated is defined as

(3)

where MJ and with
A/mm . The algorithm total number of

evaluations has been fixed in 2400 (three times the mean number
of necessary evaluations for convergence of GA-1 in the Rotated
Rastrigin function). The following optimization parameters that
were obtained m m m .
The resulting constraint values are MJ,

T, and the objective function becomes .

IV. CONCLUSION

A multiobjective analysis methodology has been proposed for
evaluating GAs. This methodology was shown to be suitable
for dealing with the fundamental problem of aggregating the
knowledge that is already available in the field of GA theory,
leading to answers for questions such as: 1) What are the “good”
GAs for dealing with some class of problems? 2) What is the
tradeoff among these GA alternatives? The question of what
are the bestoperatorshas shown to be more intricate, since the
operators have been shown to be performance-dependent one
to another. The multiobjective methodology has shown to be an
effective procedure for dealing with this question too.

A new crossover operator (thereal-biased crossover) has
been presented too. The new operator introduces some direc-
tional search properties that are not available in conventional
GA operators.

The results obtained in the EM problem confirm the predic-
tion that the algorithm GA-1 would converge to a good solution
in a reasonable number of function evaluations.

APPENDIX

REAL-BIASED CROSSOVEROPERATOR

Define the parameters:

• : the probability of the crossover being “biased,”
;

• : the “extrapolation factor,” ;
In the case that was studied in this paper, the values were chosen
as and .

The real-biased crossover operator is defined as

1) Take two individuals, and from the population. If
they are in binary code, they must be put in real coding.

2) Evaluate the objective function values and .
Suppose a minimization problem and, without loss of
generality, suppose .

3) Choose with uniform probability.
4) Decide if the crossover is “biased” or not, with the prob-

ability factor . If no, choose with
uniform probability and go to step 7). If yes, go to step 5).

5) Choose and , both with uniform
probability.

6) Make .
7) Create two new individuals, and , according to the

law .

The real-biased crossover operator as defined earlier essen-
tially generates new individuals that are located over the line
segment that goes from one point to the other one, possibly with
an “extrapolation” outside this segment, over the same line, up
to the factor . At least one individual is generated over this seg-
ment with uniform probability. The other one, if the crossover is
biased, is generated over this segment with quadratic probability
distribution, with the greater probability of being generated near
the “best” of the two parents.

The “biased” operation mimics a tendency search (like a gra-
dient information) that is not performed by any conventional
GA operator, while keeping the GA advantage of evaluating the
objective function only (without any derivative computation).
In the case of parent individuals that are near one to another, a
subgradient-like step is performed. This accelerates local con-
vergence to the optimum. In the case of individuals that are dis-
tant, the search will be interpreted as a “long-range” tendency
information search that has no counterpart in the deterministic
algorithms.

REFERENCES

[1] Team Benchmark Problem 22 Definition (2002, May). [Online]. Avail-
able: http://www-igte.tugraz.ac.at/team/index.htm.

[2] E. Belmont-Moreno, “The role of mutation and population size in ge-
netic algorithms applied to physics problems,”Int. J. Modern Phys. C,
vol. 12, no. 9, pp. 1345–1355, 2001.

[3] V. Chankong and Y. Y. Haimes, Multiobjective Decision
Making—Theory and Methodology. New York: North-Holland, 1983.

[4] D. H. Choi and S. Y. Oh, “A new mutation rule for evolutionary
programming motivated from backpropagation learning,”IEEE Trans.
Evol. Comput., vol. 4, pp. 188–190, July 2000.

[5] A. Jain and D. Zongker, “Feature selection: Evaluation, application, and
small sample performance,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. 19, pp. 153–158, Feb. 1997.

[6] J. M. Johnson and Y. Ramat-Semii, “Genetic algorithms in engineering
electromagnetics,”IEEE Antennas Propagat. Mag., vol. 39, pp. 7–25,
Aug. 1997.

[7] K. F. Man, K. S. Tang, and S. Kwong, “Genetic algorithms: Concepts and
applications,”IEEE Trans. Ind. Electron., vol. 43, pp. 519–534, 1996.

[8] Z. Michalewicz, K. Deb, M. Schmidt, and T. Stidsen, “Test-case gener-
ator for nonlinear continuous parameter optimization techniques,”IEEE
Trans. Evol. Comput., vol. 4, pp. 197–215, Sept. 2000.

[9] B. Naudts and L. Kallel, “A comparison of predictive measures of
problem difficulty in evolutionary algorithms,”IEEE Trans. Evol.
Comput., vol. 4, pp. 1–15, Apr. 2000.

[10] J. C. Potts, T. D. Giddens, and S. B. Yadav, “The development and eval-
uation of an improved genetic algorithm based on migration and artifi-
cial selection,”IEEE Trans. Syst., Man Cybern., vol. 24, pp. 73–86, Jan.
1994.

[11] K. Rashid, J. A. Ramirez, and E. M. Freeman, “A general approach for
extracting sensitivity analysis from a neuro-fuzzy model,”IEEE Trans.
Magn., vol. 36, pp. 1066–1070, July 2000.

[12] B. Sareni and L. Krahenbuhl, “Fitness sharing and niching methods re-
visited,” IEEE Trans. Evol. Comput., vol. 2, pp. 97–106, Sept. 1998.

[13] T. Schell and S. Wegenkittl, “Looking beyond selection probabilities:
Adaptation of the� measure for the performance analysis of selection
methods in GAs,”Evol. Comput., vol. 9, no. 2, pp. 243–256, 2001.

[14] J. A. Vasconcelos, J. A. Ramirez, R. H. C. Takahashi, and R. R. Sal-
danha, “Improvements in genetic algorithms,”IEEE Trans. Magn., vol.
37, pp. 3414–3417, Sept. 2001.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


