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A Multiobjective Methodology for Evaluating
Genetic Operators

Ricardo H. C. TakahashMember, IEEEJ. A. Vasconcelos, Jaime A. Ramirez, and L. Krahenbuhl

Abstract—This paper is concerned with the problem of evalu- is known, however, that specific operator structure and operator
ating genetic algorithm (GA) operator combinations. Each GAop-  parameter tuning should be employed for each class of prob-
erator, like crossover or mutation, can be implemented according lems, in order to get computational efficiency. The choices of
to several different formulations. This paper shows that: 1) the ’ . . ’
performances of different operators are not independent and 2) each operator instance and I_tS paramgter values should b? per-
different merit figures for measuring a GA performance are con- formed, therefore, on the basis of empirical previous evaluations
flicting. In order to account for this problem structure, a multiob-  [8], [14].
jective analysis methodology is proposed. This methodology is em-  There is not, up to now, any integrative information source
ployed for the evaluation of a new crossover operatorréal-biased for guiding such a choice by the user. The usual kind of infor-

crossove) that is shown to bring a performance enhancement. A - . . L . .
GA that was found by the proposed methodology is applied in an mation that is available in literature fall into the categories. 1)

electromagnetic (EM) benchmark problem. Tutorial: Some common operator alternatives are presented and
Index Terms—Genetic algorithm (GA), multiobjective perfor- Sr(])mfe ValufeT for their para][netler settings fre. recommended, in
mance evaluation. the form of large ranges of values. See, for instance, [7], [6].

2) One-algorithm evaluatior-ollows the basic scheme of pre-
senting a new algorithm and evaluating it against some algo-
|. INTRODUCTION rithm that is considered to be “classical,” or “usual,” see, for

ENETIC algorithms (GAs) are reaching increasing iminstance, [10]. 3)One-operator comparisorCompares some
portance in several fields of optimization. This class dilternatives of implementation for one operator, like selection

algorithms is characterized by the “evolution” of a set of terl13]. 4) Application-specific comparisoMakes comparisons
tative solutions gopulatior). The algorithm evolves with some @nd recommendations that are specifically directed toward an
stochastic search and combinatorial rules that, being appliecplication, see for instance [5].
one population, lead to the next one. The existence of thgee  SOMe concerns about what should be an “integrative informa-
netic Operatorqu'”es) defines a GA: 1) arossover Operator tion source” for ChOOSing GA algorithms are: 1) the more recent
that combines the information of two or more tentative solutior@'d complex operator structures should be considered as alter-
(individualg, generating another individual; 2)rautation op- natives to be analyzed, either against the conventional structures
erator that, using the information contained in one individuaRnd one against the other one; 2) it should be also recognized
stochastically generates another one; ands@)ection operator that some problems may present strong sensibility to parameter
that, using the objective function evaluation of all individuals i#ning, what prevents the “usability” of large ranges of values
the population, replicates some of them, and eliminates ot @ tuning guide [5]; and 3) it should be recognized too that
ones, generating the next population. A GA may be built witdifferent operators are not independent, what means that, for in-
these three rules only, or may contain other kinds of rulehg stance, a crossover operator that presents the best performance
local search for instance). with some mutation operator, can be outperformed by another

There is a large number of meaningful operators that can lég@ssover operator when the mutation operator is changed [2].
to suitable GAs. The basic GA operators can be implementedlie choice of suitable GAs for specific applications is a com-
a growing Variety of ways (See, forinstance, [4], [14])' and themex task that should be structured in a SyStematiC meth0d0|ogy,
is a growing variety of additional operators (see, for instanc®, order to: a) allow the usage of the most recent knowledge for
[10], [12]), since the study of operator structures is now an alfie construction of efficient problem-specific GAs and b) keep
tive research area. In most of the cases, there is not any analytiég| effort for reaching efficient algorithms in a feasible level.
justification for the choice of a specific operator structure; forhis paper discusses this problem and proposes a systematic
some discussion on the difficulties associated to the task of aR#ethodology for approaching it.
lytically predicting the performance of a specific GA, see [9]. It
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As the AEP is defined in terms of two objectives, its solution TABLE |
is defined as a solution of a multiobjective problem, and has USUAL OPERATORALTERNATIVES
the form of aPareto-setThis set is defined with the concept of ssga factor 1 1
dominancea solution is said to be dominated if it is worse than 2 038
another solution in at least one objective, while not being better i 0(')5
than that solution in any other objective [3]. The Pareto-set is mutation 1 each bit
the set that does not contain any dominated solution. A formal 2 bit per variable
definition is given in (2). 3 | bit per individual
L . . crossover 1 one-point
Definition 2: New Algorithm Evaluation Problem 2 two-point
(NAEP) Given a new algorithm and a class of problems, com- 3 | one point per variable
pare it with the AEP best algorithms for that class, assigning - 4 uniform
. . selection 1 roulette
to the new algorithm the status of amhanced solutioror 2 | deterministic sampling
of a dominated solutionpossibly updating the set of “best 3 | stochastic remaining s.
i ” elitism 1 simple
solutions. - _ O 2 Hlobal
The new algorithm, in the NAEP, must be compared only population size | 1 30
with thePareto-sebf algorithms, that was found with AEP. This 2 100
means that the comparison database may discard most of alter- 3 300

natives that were considered in the former problem, and keep

only the Pareto-set ones. After the NAEP, three things can oCqytiip|e This is a simple prototype of multimodal functions with
1) The new algorithm is not better than the “usual” ones. It [Srge-scale tendencies and coupled coordinates.

discarded, and the Pareto-set is kept with the same former com-

position. 2) The new algorithm reveals to be nondominated, Wit Database of GAs

it also does not dominate any “usual” algorithm that was alread : . , .
. : y 9 . L YA set of operator alternatives is defined in Table I. The alter-
in the Pareto-set. In this case, the new algorithm is mCIUdedﬁ%ives are essentially the ones described in [14], Each version
the Pareto-set, that grows. 3) The new algorithm dominates oor} GA is tested with all the functions of the representative set,

or more solutions that were in the Pareto-set. It is included in o .
. . with two merit figures: 1) the mean number of function eval-

the Pareto-set, and the dominated solutions are excluded. . - . .
uations for finding the global minimum and 2) the fraction of

The computational effortin NAEP is associated only with the” " ) ; -

: . .., algorithm executions that finds the global minimum. Each such
evaluation of the test functions performed by the new algorlthnr;].erit figure is evaluated for a number (say, 100) of algorithm
The effort associated with the construction of the Pareto-set In 9 Y. 9

AEP is implicitly reused. executions.

; . . . . There are 864 different instances of GAs as combinations of
The following subsections discuss in detail the steps of the - !
these parameters. The merit figures are determined for each al-
proposed methodology.

gorithm and each representative function. A database is com-

. . . . posed, with the structure
A. Selection of Representative Analytical Functions

The class of problems of interest is possibly constituted of ‘ 11 ‘ ) ‘ ‘ ik ‘ f ‘ my ‘ ma ‘
functions that are not expressed in the form of analytical fun:l:—

tions but, instead, are given by simulation models that are h rlc]e indexed, ..., 4 point to the different alternatives of the
' ! 9 y % operator alternatives that are under study. Inflékentifies a

to be evaluated. This is the case, for instance, of electromag- . - . .
’ ; O"F;ﬁepresentatwe function,” anet; andm; are the resulting merit

netic (EM? device m(_)dels [11]_._The problem of evaluation igures that come from the application of the algorithm defined
the usability of GAs in a specific class of problems, howeveig it i 10 its optimization. In the case studied here, index
i r 3ttty 'm . )

does not depend on actually using one function of the class | for instance. means the mutation operator. &and 3 Means

evaluating the algorithm, but only on using some function thLo’ne bit per inciividual” mutation P 8

keeps some fundamental characteristics of the actual function?) i o .
efining m; andmy for all instances off as the objec-

[8]. With this procedure, a function that is fast to evaluate cahr\v% functions of a multiobjective analysis problem, ahd=
S 1

be used, which makes feasible executing a large number Of%, ..., in] the vector of indices that identifies an instance of

. . 7
runs for algorlthm eyaluatlon PUrposes. The_work (8] prese A, the database is “pruned” according to the law
procedures for tailoring analytical functions with some specifie

properties. Other possible way for building analytical model™ = {I*| AT # I" such thaim,, f)(I) < (my, f)(I")
that present the properties of more complex systems is via an and(ma, f)(I) < (ma, /)I*)}. (2)
approximation technique [11].

In the present paper, tHeotated Rastrigin functiois em-
ployed, in order to present the methodology proposed here

After this procedure, the resultirareto-setdatabaset’™ be-
comes much smaller than the initial database. In this database,
only thenondominatealgorithms are kept.
f(z) =27 AT Az —10[1 --- 1] cos(2w Az) 1) The rotated Rastrigin function was tested with all 864 GA in-
stances. The resulting merit figures are plotted in Fig. 1. This
in which f(-): R® — R, A € R"*™ is positive definite and figure shows that, among these algorithms that employ “usual”
the remaining variables are such that the dimensions are caperators, there are relatively few ones that can be considered
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000 ‘ ' ' ‘ obvious: evaluate it with the same test function, computing the
< two merit figures. After that, reevaluate the Pareto-set, using (2)
8000 « IV to include the information about the new algorithm.
ot *x& For testing newoperators the question becomes subtle: an
2500 LW i:%x - x‘f x operator (for instance, crossover) must be combined with other
AT - B . operators (mutation and selection, at least), in order to give rise
2000} ) :ix";f}* %x?*xxé e * to an executable GA. Is it a reasonable heuristic for performing
- § xyx* *;X » @;%& * x the test choosing “good” formerly known algorith_ms (that be-
ool ”‘%@%;3;%%@& x}s%}*xg . T long to the Pareto-s_et ofual ope_rator}s and repla_cmg the op-
%xxg&x%% : &gﬁ < AR " erator to be tested in them? This would mean, in some ext(_an_t,
ool % ® :f?ii =% xx S % § that the operators are “independent” one to each other. Or it is
xx gk x Tk ”@ FER necessary to test the new operator within other operator combi-
”X B8 g o x ) nations that did not belong to the former Pareto-set? This ques-
soor L 3’% 5 2 “x x tion is answered below, in the context of the evaluation of a new
e B crossover algorithm that is being presented heregakbiased
% o1 o0z 03 o4 05 08 o7 08 09 crossover This new operator is described in the Appendix.

Fig. 1.

Plot of the merit figures for the algorithms composed of “usual’

~ Thereal biased crossovesperator was tested in all combi-

operator combinations: number of function evaluations up to convergen@_@t'o_nS with the “usual operator set,” Wh'Ch_ means_ 240 Com_'
(vertical) versus fraction of nonconvergence runs (horizontal). The functionldnations. The Pareto-set extracted from this data is shown in

the Rotated Rastrigin.
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Fig. 2, superimposed to the Pareto-set that was obtained with
the “usual” operators only. The Pareto-set is now constituted of
only 15 solutions that are “nondominated.” Comparing now the
two Pareto sets in Fig. 2: The most reliable algorithm among
the “usual ones” fails in 9% of the runs and needs about 1270
function evaluations for reaching the function optimum, while
in the “real biased crossover” set, it fails only 2% of the runs,
and needs less than 1200 function evaluations for reaching the
function optimum. There is one algorithm in the “real biased
crossover” set that needs less than 800 function evaluations, and
fails less than 10% (this algorithm is labeled GA-1, for the pur-
pose of performing further numerical evaluations with it). The
best algorithm that needs less than 800 function evaluations,
in the “usual algorithms” set fails about 30%. Tieal biased
crossovepperator has proved to be an enhancement in this case,
leading to the more reliable and to the faster algorithms, and to
most of the intermediate Pareto solutions (10 of the 15 ones).
Unfortunately, the answer to the question of if operators are

Fig. 2. The Pareto-sets of the “usual operators” only (x) and of theindependent isno. Inspecting the ten new Pareto algorithms
combination including the new operator ‘real-biased crossover” (0). Mefihat \yere constituted with threal-biased crossovesperator, it
figures: number of function evaluations up to convergence (vertical) versus
fraction of nonconvergence runs (horizontal). The function is the Rotatéd found that only two of them could be generated by the re-
Rastrigin. placement of the crossover operator in the initial “usual” 25 al-
gorithms. Almost all the new Pareto algorithms, in this case,
“good,” in the sense that, for instance, they fail in less than 2086e operator combinations that did not lead to former Pareto so-
of the runs, and they need less than 1000 function evaluationslfgtions. This does not mean that an operator cannot be evalu-
finding the optimum of the function. On the other hand, there igted: the data shown earlier clearly shows thatréizé-biased
a large number of algorithms that can be very bad, in the sensessovepperator constitutes an enhancement in relation to for-
forinstance, that they need more than 2000 function evaluationserly known alternatives (at least for the class of problems that
or fail in more than 50% of the runs. This result shows that ahare the features of the Rotated Rastrigin function). However,
algorithm being “usual” does not mean that it can be consithe task of “operator evaluation” should be more carefully stated
ered to be a good comparison standard for new algorithms. Tthen the standard procedure that is reported in most of the papers
Pareto-set is extracted from this data (Fig. 2). This set is cam the subject, that implicitly rely on operator independence.
stituted of only 25 solutions that are “nondominated.” These 25
solutions are sufficient for the purpose of comparison of any
new algorithm, with the same test function. . RESULTS IN AN EM PROBLEM

C. New Operator and New Algorithm Evaluation Procedures  the Ga-1, selected earlier, has the following selection of pa-

For testing newalgorithms(i.e., a specific combination of rameters, in the order of Table I [315 223]. This algorithm has
particular operators), the procedure to be followed is somewhmgen tested in TEAM Workshop problem 22 benchmark with
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three variables (for the definition of the problem, see [1]). The 5) Choose) < ; < 1 and0 < > < 1, both with uniform
objective function to be evaluated is defined as probability.
6) Makeas = (1 + 2€)ﬂ1ﬂ2 —e.
B%.., |Energy — E] _ 2 7) Create two new individuals;] andz3, according to the
Bt g 2(Bloea = Bl law 2? = @iz + (1 - ;).
) The real-biased crossover operator as defined earlier essen-
tially generates new individuals that are located over the line
whereE,.; = 180 MJ andB2,, = 2?31 | B2y, With |.7] = seq‘ment that goe”s from one point to the other one, possil_)Iy with
(=6.4|B|preq + 54.0) A/mm?. The algorithm total number of &" extrapolation out5|de.th|_s_segm.ent, over the same lllne, up
e factor. At least one individual is generated over this seg-

evaluations has been fixed in 2400 (three times the mean numﬁ?e'ih i . . . -
§8nt with uniform probability. The other one, if the crossover is

F(z) =

of necessary evaluations for convergence of GA-1 in the Rotal . : X . .

Rastrigin function). The following optimization parameters th !as_ed, IS gengrated over this segm_e_ntW|th quadratlc probability

were obtainedrs = 3.05 m, hs = 0.492 m, ds = 0.400 m. |stf‘|but|?n,W|th the greater probability of being generated near

The resulting constraint values ake= 179.74 MJ, Bstray = the be“st_ of tr],e two p_arent_s. . .

0.936 1T, and the objective function becomés= 0.122. .The. blased. operathn mimics a tendency search (like agra-

dient information) that is not performed by any conventional

GA operator, while keeping the GA advantage of evaluating the

objective function only (without any derivative computation).
A multiobjective analysis methodology has been proposed figr the case of parent individuals that are near one to another, a

evaluating GAs. This methodology was shown to be suitabd@bgradient-like step is performed. This accelerates local con-

for dealing with the fundamental problem of aggregating theergence to the optimum. In the case of individuals that are dis-

knowledge that is already available in the field of GA theoryant, the search will be interpreted as a “long-range” tendency

leading to answers for questions such as: 1) What are the “goagformation search that has no counterpart in the deterministic

GAs for dealing with some class of problems? 2) What is théigorithms.

tradeoff among these GA alternatives? The question of what

are the bespbperatorshas shown to be more intricate, since the REEERENCES
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