
HAL Id: hal-00082670
https://hal.science/hal-00082670

Submitted on 28 Jun 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Critical Path Scheduling Parallel Programs on an
Unbounded Number of Processors

Mourad Hakem, Franck Butelle

To cite this version:
Mourad Hakem, Franck Butelle. Critical Path Scheduling Parallel Programs on an Unbounded Num-
ber of Processors. International Journal of Foundations of Computer Science, 2006, 17, pp.287–301.
�hal-00082670�

https://hal.science/hal-00082670
https://hal.archives-ouvertes.fr


International Journal of Foundations of Computer Science

c© World Scientific Publishing Company

CRITICAL PATH SCHEDULING PARALLEL PROGRAMS ON AN

UNBOUNDED NUMBER OF PROCESSORS

MOURAD HAKEM

LIPN, CNRS-UMR-7030, Université Paris-Nord,

Avenue Jean-Baptiste Clément

93430 Villetaneuse, France.

and

FRANCK BUTELLE

LIPN, CNRS-UMR-7030, Université Paris-Nord,

Avenue Jean-Baptiste Clément

93430 Villetaneuse, France.

Received
Revised

Communicated by

ABSTRACT

In this paper we present an efficient algorithm for compile-time scheduling and
clustering of parallel programs onto parallel processing systems with distributed memory,
which is called The Dynamic Critical Path Scheduling DCPS. The DCPS is superior
to several other algorithms from the literature in terms of computational complexity,
processors consumption and solution quality. DCPS has a time complexity of O(e +
v log v), as opposed to DSC algorithm O((e+v) log v) which is the best known algorithm.
Experimental results demonstrate the superiority of DCPS over the DSC algorithm.

Keywords: Scheduling; clustering; distributed computing; precedence task graphs; di-
rected acyclic graphs DAGs; parallel scheduling

1. Introduction

The efficient execution of tasks, that constitute a parallel program on mul-

tiprocessors systems with distributed memory, highly depends on the scheduling

algorithm used to distribute the tasks into processors. If the scheduling results in

a high degree of parallelism, a greater amount of communication will be required

among the tasks. On the other hand, if communication is restricted, potential paral-

lelism will be lost. The objective of scheduling heuristics is to partition the program

into appropriate size and number of tasks to balance communication overhead and

parallelism so that the schedule length is minimized. The partitioning/scheduling

problem has been shown to be NP-complete for a general task graph [2, 4, 15], and

heuristics are required to find sub-optimal solutions.

1



In this paper we consider the scheduling problem for general parallel programs

which can be represented by a Directed Acyclic Graph (DAG). The problem of

clustering general task graphs with high communication delays (g(G) < 1 see below)

has no good solution today. So, we focus our attention on this challenging case. We

propose a new approach for scheduling DAGs which achieve better schedule lengths

with minimum time complexity and processors consumption. A salient feature of

our algorithm is that it computes the Makespan (schedule length or parallel time) of

the partially scheduled graph incrementally at each refinement step of the scheduling

process.

The remainder of the paper is organized as follows: Section 2 presents the basic

definitions and assumptions adopted in this paper. We recall in Section 3 principles

of the best existing scheduling algorithms. Section 4 describes DCPS algorithm.

Some theoretical results are presented in Section 5 and Section 6 shows that our

heuristic can achieve optimal solutions for Join and Fork DAGs. Before concluding,

we report in Section 7 some experimental results that assess the good behavior of

our algorithm.

2. Basic Definitions and Notations

The execution model for task graphs is called macro-dataflow. In the macro-

dataflow model, a parallel program is represented as a weighted Directed Acyclic

Graph (DAG) which is defined by G = (V, E) where V is the set of task nodes,

v = |V | is the number of nodes, E is the set of edges corresponding to the precedence

relations between the tasks and e = |E| is the number of edges. Let ω be a cost

function on the edges (ω(t1, t2) represents the communication cost between t1 and

t2, which becomes zero if both tasks are mapped on the same processor). Let µ be

a cost function on the nodes (µ(t) is the execution time of a task t). The length

of a path in a DAG is defined as the sum of its edges weights plus the sum of its

nodes weights. In the following we will use terms node or task interchangeably.

In a task graph, a node which does not have any predecessors is called an entry

node while a node which does not have any successors is called an exit(sink) node.

Each task first receives all the needed data from its predecessors, computes without

interruption and then sends the results to its successors. The architecture is a

network of an arbitrary number of homogeneous processors. We do not allow task

duplication here. Several heuristics [1, 14] have been developed that take advantage

of this option.

The objective function is to minimize both the Makespan (denoted by M) and

the processors consumption without violating the precedence constraints among the

tasks.

Let Γ−(tx) and Γ+(tx) denote the sets of immediate predecessors and successors

of tx respectively. We call g(G) the granularity of the task graph. We use the

definition given in [6]:

2



g(G) = min
i=1..v



min







µ(ti)

max
tj∈Γ−(ti)

ω(tj , ti)
,

µ(ti)

max
tk∈Γ+(ti)

ω(ti, tk)











If g(G) ≥ 1 a task graph G is said coarse grain, otherwise fine grain. For coarse

grain DAGs each task receives or sends a small amount of communication compared

to the computation of its adjacent tasks.

3. Related Work

A large number of algorithms for scheduling and partitioning DAGs have been

proposed in the literature. There exist mainly two classes:

List scheduling heuristics [8, 13, 14, 16]: These algorithms assign priorities to

the tasks and schedule them according to a list priority scheme. In each step, a list

scheduler selects one of the tasks in the list, assigns it to a suitable processor, and

update the list.

Another technique is called Critical Path (CP) heuristics [5, 7, 11, 10, 12, 15, 18,

17]: The CP of a task graph (DAG) is defined to be the path having the largest sum

of the weights of both nodes and edges from a source node to a sink node. These

algorithms try to shorten the longest path in the DAG by removing communication

requirements and mapping the adjacent tasks into a cluster (this is called zeroing

an edge). This approach has received the most attention and a taxonomy of these

techniques can be found in [5].

Efe’s [3] article is one of the earliest works to consider task graph clustering in

distributed computing. Kim and Browne [9] studied linear clustering which is an

important special case for clustering. In [10], the Dynamic Critical Path (DCP)

algorithm is proposed. This algorithm uses a look-ahead strategy for the start

times of a node’s children when selecting a processor. The DCP algorithm have

the following features: - It assigns dynamic priorities to the nodes at each step

in the scheduling process, - The start times of the nodes are not fixed until all

nodes have been scheduled, - It selects a processor for a node by looking ahead

the potential start time of the node’s critical child node on that processor. In this

paper, a DCP node is identified by checking for equality of its AEST (Absolute

Earliest Start Time) and ALST (Absolute Earliest Start Time) attributes. The

computation of these values requires the traversal of the entire DAG at each step.

Repeating this computation for all steps will result in at least O(v2) complexity.

Unlike DCP algorithm, the computation of CP node is done incrementally from step

to step in our algorithm (DCPS), in order to reduce the time complexity. The time

complexity of the DCP algorithm is shown to be O(v3). For scheduling arbitrary

task graphs without duplication, the fastest known algorithm to date was proposed

by Gerazoulis and Yong [7] who considered the Dominant Sequence (DS) instead of

CP to represent the longest path of the partially clustered graph. Their algorithm

called DSC (Dominant Sequence clustering), has a low complexity of O((e+v) log v).

Our approach in this paper is based on the principle of Critical Path scheduling.

3



4. DCPS Algorithm

To describe DCPS we need to specify certain constraints and definitions. First

the node types:

• scheduled: A task is scheduled if it has been assigned to a processor.

• free: A task is called free if it is unscheduled and all of its successors are

scheduled.

• partially free: A task is partially free if it is unscheduled and at least one of

its successors is scheduled but not all of them have been scheduled.

During the execution of DCPS, the graph consists of two parts, the examined

(scheduled) tasks S and the unscheduled tasks U . Initially U = V .

Timing values:

• T (tx): top level. It is the length of the longest path from an entry (top)

node to tx (excluding the execution time of tx) in a DAG. Thus, T (tx) is

the starting time of tx prior to any clustering of a DAG. The T values are

computed according to the topological order of a graph. The T value of every

entry node is zero. Let tx be a task such that all of its immediate predecessors

have been assigned T values. Then,

T (tx) = max{T (ti) + µ(ti) + ω(ti, tx) | ti ∈ Γ−(tx)} (1)

• B(tx): bottom level. It is the length of the longest path from the start of

tx to an exit node in the current partially clustered DAG. The B values are

computed according to the reverse topological order of a graph. The B value

of every exit node is equal to its execution time. Let tx be a task such that all

of its immediate successors have been scheduled (and hence been computed

B values). Then,

B(tx) = max{µ(tx) + ω(tx, tj) + B(tj) | tj ∈ Γ+(tx)} (2)

Note that the B value of a partial free task can be computed using only the B

from its immediate scheduled successors. Because only part of successors are

considered, so we define the B value of a partial task:

B(tx) = max
{

µ(tx) + ω(tx, tj) + B(tj) | tj ∈ Γ+(tx) ∩ S
}

(3)

• Using these formulas (1, 2 and 3), we define the priority for tasks in the free

and partial free lists (to be defined in the following) as follows:

P(tx) = T (tx) + B(tx) (4)

4



The constraining successor and the constraining predecessor of a task tx are

defined respectively as the task which determines B(tx) and T (tx) values.

We maintain two priority list’s α and β (that contains respectively free and

partially free tasks) which are implemented respectively by using a balanced search

tree data structure (AVL) and a simple linked list. At the beginning, α and β are

empty. The Head function H(α) returns the first task in the sorted list α, which

is the task with the highest priority (if two tasks have the same priority we choose

one of them randomly). If α = ∅, H(α) = NULL and P(NULL) = 0.

Let Mi be the Makespan at step i. A partially free task t is inserted at the head

of β once and only if P(t) = Mi. When a task of β becomes free, the first task of

this list is deleted.

The DCPS algorithm that we propose in this work consists of a sequence of

refinement steps, where each step creates a new cluster or grows an existing cluster.

In the beginning, DCPS assumes that every task in the DAG is assigned to a

different processor (cluster). Unlike DSC, the DCPS topological traversing order

of the graph is bottom-up, i.e., it constructs the clusters by starting from the sink

task. Our heuristic is guided by an unbounded number of processors scheduling

mechanism. This control mechanism performs v steps and, at each refinement step,

it selects a free task and tries to schedule it by zeroing one of its outgoing edges.

4.1. Policies of task clustering

The policies of task clustering are described below:

The criterion of accepting a zeroing is that the value B of the highest free task

does not increase by such a zeroing, otherwise, we impose some rules (see below)

to allow this increase. By reducing B(tx) values all paths passing through tx could

be compressed and as a result the CP length could be reduced. When an edge is

zeroed then a free task tx is merged to the cluster where its constraining successor

resides. Note that our scheduling scheme adds a pseudo edge from tx to the last

task of this cluster if they are independent.

To describe the following rules we need to specify some definitions and con-

straints: assume that tx is the current task (tx = H(α)) and let δ(t) be the con-

straining predecessor of t. Let F be the future cluster of δ(tx) where it will be

merged when it becomes free and ty be the last task scheduled to F .

Rule 1: Rule 1 can be applied in the case of fork component structure in the DAG

as follows : tx is placed in F if and only if

(

Γ−(tx)
⋂

Γ−(ty) = δ(tx)
)

∧ (L(F) ≤ ω(δ(tx), tx))

is carried out. Where L(F) is the load of the cluster F .

Rule 2: If rule 1 is not carried out, rule 2 can be tested: let C(ty) be the cluster

containing ty (ty is the last task in the cluster) , BC(tx) the B value if tx is scheduled

to C(ty). If |Γ−(tx)| = |Γ−(ty)| = 1 then tx is merged to C(ty) if and only if the

following formula is satisfied:

5



(F(δ(ty)) 6= C(ty)) ∧ (δ(tx) = δ(ty)) ∧
(

BC(tx) + T (tx) ≤ Mi

)

Note that by applying the preceding rules we can reduce considerably the number

of processors used in the scheduling process.

Definition 1 The final Makespan, denoted by M∗, is defined as :

M∗ = max{B(ti) | ti ∈ S}

The value M∗ is simply computed by taking the maximum value across all the B

values of the scheduled tasks. Note that the DCPS algorithm can detect M∗ value

at the intermediate step of the scheduling process (see theorem 5).

Rule 3: If the final schedule length M∗ of the DAG is detected at some step i in

the scheduling process, we try to schedule tx to the cluster used in step i − 1 (let’s

call it Ci−1) provided that the following condition is checked

BCi−1(tx) + T (tx) ≤ M∗

Since M∗ will not change in subsequent clustering steps, we reverse the function

head H(α) in H(α) to return the task with the smallest priority, doing so, the

number of processors used for the DAG will be decreased.

If none of the preceding rules is checked, the task tx remains in its cluster. The

formal description of the DCPS algorithm is given below.

4.2. An application example

Figure 1: DCPS scheduling algorithm steps

6



As an example, a running trace of DCPS is shown in Fig. 1. The thick paths

are the CPs and dashed pseudo edges are the execution order within a cluster. In

the following, the superscript of a task in α or β denotes its priority value.

Initially all the tasks are in a separate unit cluster, M0 = 14.5, α = {t94, t
14.5
5 },

β = ∅. At step 1, t5 is selected, B(t5) = 2, it cannot be reduced so C(t5) remains a

unit cluster. Then M1 = 14.5, α = {t14.5
2 , t4.5

3 , t94}, β = ∅. At step 2, t2 is selected,

B(t2) = 8.5. By zeroing the outgoing edge (t2, t5) of t2, B(t2) reduces to 3.5. This

zeroing is accepted and after that step, M2 = 9.5, α = {t4.5
3 , t94}, β = {t9.5

1 } ( t1 is

inserted into β because P(t1) = 9.5 = M2). At step 3, t4 is examined, B(t4) = 6.

Since none of the rules is satisfied, B(t4) remains the same and C(t4) remains a

unit cluster as shown in Fig. 1. At step 4, t3 is selected, it cannot be merged with

its constraining successor t5 because the increase of its B value as well as rule 1 is

not checked. Therefore according to rule 2, t3 is scheduled to C(t4). Finally t1 is

selected and (t1, t2) is zeroed, so that B(t1) is reduced from 9.5 to 9. As we can see

in Fig. 1 two clusters are generated with M = 9.

5. Fully Detailed Algorithm and Theoretical Results

5.1. Our Algorithm

Algorithm 1 The DCPS Algorithm

1: Compute T (t) for each task t and set B(t) = µ(t) for each exit task ;
2: S = ∅ ; U = V ; (*Mark all tasks as unscheduled*)
3: while U 6= ∅ do

4: tx = H(α) ; (*Select a free task with the highest priority from α *)
5: Try to merge tx with the cluster of its constraining successor ty ;
6: if B(tx) does not increase then

7: Zero the edge (tx, ty) ;
8: else

9: schedule tx by checking one of the rules 1, 2 and 3 in the order ;
10: if none of the rules is satisfied, schedule tx to a new cluster;
11: end if

12: insert tx in S and update the priority values of tx’s predecessors;
13: insert free predecessors of tx in α
14: end while

5.2. Complexity Analysis

Theorem 1 The time complexity of DCPS is O(e + v log v).

Proof. Note that at some step i a partially free task t is inserted in β once

and only if P(t) = Mi, and when a task of β becomes free, the first task of this list

is deleted. Thus the number of partially free tasks that are inserted or deleted from

β is at most equal to v. The cost of each operation (insertion, deletion) is O(1).

The overhead occurs only to maintain the proper order among tasks when a task

7



is inserted or deleted from α. This operation costs O(log |α|) where |α| ≤ v. Since

each task in a DAG is inserted into α once and only once and is removed once and

only once during the entire execution of DCPS, the total complexity for maintaining

α is at most in order of 2v log v. The main computational cost of DCPS is spent in

the while loop (Line 3). The number of loops is v. Line 4 costs O(log v) for finding

the head of α. Line 5 costs O(|Γ+(tx)|) in examining the immediate successors of

task tx. For the whole v loops the cost of this line is
∑v

i=1 O(|Γ+(ti)|) = O(e). Line

12 costs O(|Γ−(tx)|) to update the priority values of the immediate predecessors of

tx, and similarly the cost for the v loops of this line is O(e). Thus the total cost of

DCPS is O(e + v log v). �

5.3. Algorithm Analysis

Theorem 2 For each step i of DCPS, Mi−1 ≥ Mi

Proof. By definition Mi−1 is the length of the critical path at step i−1, assume

that at step i, H(α) = tx. If B(tx) is reduced then it cannot be greater than the

sum of the costs of both tasks execution time and communication time along the

critical path from the sink task to tx. In addition and according to rule 1, 2 and 3,

the intermediate Makespan will not be increased even if B(tx) increases. It follows

that Mi−1 ≥ Mi �

Property 1 For the DCPS algorithm, B(tx) remains constant if tx ∈ S and T (tx)

remains the same if tx ∈ U .

Proof. If tx /∈ S, then the topological traversal implies that all predecessors

of tx are not in S. Since tx is in a separate unit cluster, T (tx) remains unchanged

before it is examined. Also for task’s in S, when a free task is merged to a new

cluster it is always attached to the last task of that cluster. Thus B(tx) remains

unchanged after tx has been scheduled. �

Lemma 1 Assume that tx = H(α) after some step i. If there are CPs which pass

through free tasks in α, then P(tx) = Mi.

Proof. After step i, Mi = P(ty), where ty is a critical task. Assume that no

critical path pass through tx. Then one critical path must pass through another

non-head free task tz. This implies that P(tz) = Mi > P(tx). Since tx = H(α),

there is a contradiction. �

Lemma 2 After some step i, assume that tx = H(α) and there are CPs passing

through not-scheduled task U . If P(tx) < Mi, then these critical paths pass only

through β.

Proof. Assume on the contrary that no critical path pass through β and

by definition, a partially free task (let call it ty) is inserted in β if and only if

P(ty) = Mi. Thus P(β) = 0 < Mi. In addition we have P(tx) < Mi. This

contradicts the assumption that there are CPs passing through not-scheduled task

U . �

Theorem 3 Assume that tx = H(α) and β 6= ∅ after step i and that there is a

critical path passing through not-scheduled tasks U .

8



• if P(tx) = Mi, then a CP passes through tx.

• if P(tx) < Mi, then a CP passes only through β.

Proof. This result follows from the previous lemmas:

• if P(tx) = Mi, then we will show that a critical path passes through tx. First

assume that a Critical Path passes through α or both α and β. Then according

to Lemma 1, it must pass through tx. Next assume that a CP passes only

through β’s tasks and according to Lemma 2 we have P(β) = Mi > P(tx)

which is a contradiction since P(tx) = Mi.

• If P(tx) < Mi, suppose that a CP goes through a free task. Then according

to Lemma 1, P(tx) = Mi ≥ P(β) which is a contradiction. Therefore the

CPs must pass through β by Lemma 2.

�

Theorem 4 The Makespan for the partially scheduled graph after step i is :

Mi = max {P(H(α)),P(β), max{B(ty) | ty ∈ S}}

Proof. There are two cases, either there is a critical path that passes through

U or there is not. If not, that indicates that all CPs have been examined and are

only within S, then by Definition 1 Mi = max{B(ty) | ty ∈ S}, which is the final

schedule length of the partially scheduled graph. If there is a critical path going

through U then a CP must go either through the head of α or the tasks in β if

β 6= ∅. Therefore we have the following two cases:

i) If a CP is going through the head of α, then Mi = P(H(α)) by Lemma 1.

ii) If this CP is only passing through β, then Mi = P(β) by Lemma 2.

�

Theorem 5 Assume that β = ∅ and tx = H(α) after some step i. If P(tx) < Mi,

then Mi = M∗ is the final Makespan of the partially scheduled graph.

Proof. Assume on the contrary that there exist a CP passing through α. Then,

according to lemma 1, it must pass through tx. This implies that P(tx) = Mi,

which contradicts with our assumption that P(tx) < Mi. �

6. Optimality for Fork and Join Graphs

6.1. Join Graphs

Since any task graph can be decomposed into a collection of Fork and Join

graph, it is useful to consider how the algorithms work on these two primitive

graph structures. In the following, we derive the optimal schedule lengths for these

primitive structures. Fig. 2 shows the clustering steps of DCPS for a Join DAG.

Without loss of generality, assume that for the Join structure, we have :

9



(1) Join DAG (2) Initial clustering

(3) t1 is scheduled (4) Step k + 1

Figure 2: Scheduling steps for a Join DAG

µ(t1) + ω(t1, tx) ≥ µ(t2) + ω(t2, tx) ≥ . . . ≥ µ(tm) + ω(tm, tx)

Initially, each task is in a unit cluster as shown in Fig. 2(2). At step 1, tx is the only

free task in U and P(tx) = µ(t1) + ω(t1, tx) + µ(tx) , tx is selected and it remains

in a unit cluster. At step 2 shown in Fig. 2(3), t1, t2, . . . , tm become free and t1 has

the highest priority, P(t1) = µ(t1) + ω(t1, tx) + µ(tx), t1 is selected and merged to

the cluster of tx and ω(t1, tx) = 0. At step k + 1, tk is selected. The edge (tk, tx)

is zeroed only if attaching tk to the begin of a linear chain tk−1, tk−2, . . . , t1, tx
does not increase B(tk). The cluster will keep growing until the following condition

cannot be satisfied:
k−1
∑

i=1

µ(ti) ≤ ω(tk, tx)

So the optimal schedule length for the Join DAG is equal to:

max

{

j
∑

i=1

µ(ti) + µ(tx), µ(tj+1) + ω(tj+1, tx) + µ(tx)

}

10



Where j (the optimal zeroing stopping point) is given by the following conditions:

(

j
∑

i=1

µ(ti) ≤ µ(tj) + ω(tj , tx)

)

∧

(

j+1
∑

i=1

µ(ti) > µ(tj+1) + ω(tj+1, tx)

)

(5)

6.2. Fork Graphs

Assume that for Fork structure we have:

ω(tx, t1) + µ(t1) ≥ ω(tx, t2) + µ(t2) ≥ . . . ≥ ω(tx, tm) + µ(tm)

Then the optimal schedule length for the Fork DAG is equal to:

max

{

µ(tx) +

j
∑

i=1

µ(ti), µ(tx) + ω(tx, tj+1) + µ(tj+1)

}

Where j is given by the following conditions :

(

j
∑

i=1

µ(ti) ≤ ω(tx, tj) + µ(tj)

)

∧

(

j+1
∑

i=1

µ(ti) > ω(tx, tj+1) + µ(tj+1)

)

6.3. Optimality on Fork and Join DAGs

Theorem 6 DCPS achieves optimal solutions for Fork and Join DAGs.

Proof. Let Mopt be the optimal MakeSpan and k be the zeroing stopping point

of DCPS. We will prove that Mopt = MDCPS by contradiction. Suppose that j 6= k

and Mopt < MDCPS . There are two cases :

i) if j < k, then
∑j

i=1 µ(ti) <
∑k

i=1 µ(ti) and µ(tj+1) + ω(tj+1, tx) ≥ µ(tk) +

ω(tk, tx). ¿From condition 5, we have
∑k

i=1 µ(ti) ≤ µ(tk) + ω(tk, tx), this

implies that µ(tj+1) + ω(tj+1, tx) ≥
∑k

i=1 µ(ti).

Thus Mopt = µ(tj+1) + ω(tj+1, tx) + µ(tx) ≥ µ(tk) + ω(tk, tx) + µ(tx) ≥

max
{
∑k

i=1 µ(ti) + µ(tx), µ(tk+1) + ω(tk+1, tx) + µ(tx)
}

= MDCPS .

ii) if j > k, then
∑j

i=1 µ(ti) ≥
∑k+1

i=1 µ(ti) and µ(tj+1) + ω(tj+1, tx) ≤ µ(tk+1) +

ω(tk+1, tx). ¿From condition 5, we have
∑k+1

i=1 µ(ti) > µ(tk+1) + ω(tk+1, tx),

this implies that
∑j

i=1 µ(ti) > µ(tk+1) + ω(tk+1, tx).

Thus Mopt =
∑j

i=1 µ(ti) + µ(tx) ≥

max
{
∑k

i=1 µ(ti) + µ(tx), µ(tk+1) + ω(tk+1, tx) + µ(tx)
}

= MDCPS .

There is a contradiction in both cases. The proof applied in Join structure can be

applied to Fork structure by just reversing the Fork graph into a Join graph. �

11



7. Experimental Results

Due to the NP-completeness of this scheduling problem, the proposed algorithm

cannot always lead to an optimal solution. Thus it is necessary to compare the

performance of different algorithms using randomly generated graphs. So a random

DAG generator has been developed. To generate a random connected DAG, we

begin by generating a random spanning tree in an iterative way. We assume that,

at the step i, tasks tv, tv−1, . . . , ti are in the tree. We then add vertex ti−1 to

the tree by adding the directed edge (ti−1, trand(i,v)) linking from ti−1 to trand(i,v),

where rand(i, v) is a random generator function which generates a integer in the

[i, v] interval. Finally we add additional random edges {(ti, tj), i < j} to produce a

DAG with edges between v−1 and 2v. Task tv is the unique bottom task in a DAG.

This algorithm generates DAGs that are quite close to some of those occurring in

practical applications.

In our study, we compare our algorithm only with DSC because it is the best

known algorithm to date in terms of speed and solution quality of the schedule

length. A comparative study of the various algorithms in the literature can be

found in [7, 10].

We have generated 594 random graphs as follows: we classified the all the

DAGs into 11 groups of 54 DAGs each according to their granularity (g(G) =

0.1, 0.2, . . . , 1.1). In every group we vary the number of tasks from 100 to 1000

with increments of 100 and in each interval we generate 6 different graphs. The

performance comparison is carried out in three contexts:

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0  0.2  0.4  0.6  0.8  1  1.2

M
ak

eS
pa

n

Granularity

DCPS
DSC

Figure 3: Average normalized schedule lengths

First we compare the Makespan produced by each algorithm for various sizes and

types of granularity. Fig. 3, shows that DCPS is better than DSC for g(G) ≤ 0.9

and its performance increases as the DAG becomes increasingly fine grain (the

12



communication delay are high). This is because sequentializing a set of tasks on

the same processor can produce a better Makespan than executing them in parallel

with more processors instead of one. For g(G) > 0.9 we can see that DSC becomes

competitive in terms of solution quality. But for coarse grain DAG there exist a

linear clustering which achieve the best Makespan (see [6]).

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 0  0.2  0.4  0.6  0.8  1  1.2

P
ro

ce
ss

or
s 

C
on

su
m

pt
io

n

Granularity

DCPS
DSC

Figure 4: Average processors consumption

Another quality of measure is the number of processors used. In Fig. 4, we

show the average number of processors used by each algorithm for different kind

of graph sizes and values of granularity. We observe that DSC uses considerably

large number of processors compared to our algorithm. However, this is due to a

deficiency of DSC: it tries to schedule tasks on as much as processors as possible to

minimize the schedule length, thus DSC finds several clusters with only one task. As

a result, the schedules generated by DSC are not well load balanced. Our heuristic

cures this deficiency of DSC and produces better Makespans by performing some

load balancing by minimizing the number of processors. Note that DCPS consumes

also less processors even if g(G) > 1.

Finally, we compare the efficiency of these algorithms which are given in Fig. 5.

Efficiency reveals the average percent of time the processors are active. The defini-

tion of this measure is given by the following formula:

Efficiency =
SpeedUp

Number of Processors
,

where SpeedUp =
SerialTime

ParallelTime

As we can observe, DCPS is much more efficient than DSC because it consis-

tently uses fewer processors than the DSC algorithm.

13



 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0  0.2  0.4  0.6  0.8  1  1.2

E
ffi

ci
en

cy

Granularity

DCPS
DSC

Figure 5: Average efficiency

8. Conclusion

In this paper, we have presented a new algorithm based on a critical path ap-

proach for scheduling parallel programs onto multiprocessors, we have demonstrated

that the solution quality, the number of processors used and the time complexity

of the proposed algorithm makes it a viable choice for compile-time scheduling of

general task graphs.

References

1. F. D. Anger, J.-J. Hwang, and Y.-C. Chow, “Scheduling with sufficient loosely
coupled processors,” Journal of Parallel and Distributed Computing, 9 (1990) 87–
92.

2. P. Chretienne, “Task scheduling over distributed memory machines,” Proc. In-

ternational Workshop on Parallel and Distributed Algorithms, N. Holland, (1989)
165–176.

3. K. Efe, “Heuristic models of task assignment scheduling in distributed systems,”
IEEE Computer, 6 (1982) 50–56.

4. M. Garey and D. Johnson, Computer and Intractability: A guide to the Theory of

NP-Completness. (W.H. Freeman & Co, 1979).

5. A. Gerasoulis and T. Yang, “A comparison of clustering heuristics for schedul-
ing DAGs on multiprocessors,” Journal of Parallel and Distributed Computing, 16

(1992) 276–291.

6. A. Gerasoulis and T. Yang, “On the granularity and clustering of directed acyclic
task graphs,” IEEE Transactions on Parallel and Distributed Systems, 4 (1993)
686–701.

7. A. Gerasoulis and T. Yang, “Dsc: Scheduling parallel tasks on an unbounded number
of processors,” IEEE Transactions on Parallel and Distributed Systems, 5 (1994)

14



951–967.

8. J. J. Hwang, Y. C. Chow, F. D. Anger, and B. Y. Lee, “Scheduling precedence graphs
in systems with interprocessor communication times,” SIAM Journal on Computing,
18 (1989) 244–257.

9. S. J. Kim, J. C. Browne. “A General Approach to Mapping of Parallel Computation
upon Multiprocessor Architectures,” International Conference on Parallel Process-

ing, 3 (1988) 1–8.

10. Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An effective tech-
nique for allocating task graphs to multiprocessors,” IEEE Transactions on Parallel

and Distributed Systems, 7 (1996) 506–521.

11. Y.K. Kwok and I. Ahmad, “Bubble scheduling: A quasi dynamic algorithm for
static allocation of tasks to parallel architectures,” Proc. 7th IEEE Symposium on

Parallel and Distributed Processing, (1995), 36–43.

12. C. Lavarenne and Y. Sorel, “Performance Optimization of Multiprocessor Real-
Time Applications by Graphs Transformations,” Proc. Parallel Computing, Greno-
ble, (1993).

13. Y.-K. Kwok and I. Ahmad, “Towards an architecture-independent analysis of par-
allel algorithms,” SIAM Journal on Computing, 19 (1990) 322–328.

14. H. E. Rewini and T. G.Lewis, “Scheduling parallel program tasks onto arbitrary
target machines,” Journal of Parallel and Distributed Computing, 9 (1990) 138–153.

15. V. Sarkar, Partitionning and Scheduling Parallel Programs for Execution on Mul-

tiprocessors. (MIT Press, 1989).

16. T. Yang and A. Gerasoulis, “List scheduling with and without communication
delays,” Parallel Computing, 19 (1993) 1321–1344.

17. M. Y. Wu and D. Gajski, “A programming aid for hypercube architectures,” Jour-

nal of Supercomputing, 2 (1988) 349–372.

18. M.Y. Wu and D. Gajski, “Hypertool: Aprogramming aid for message-passing sys-
tems,” IEEE Transactions on Parallel and Distributed Systems, 1 (1990) 330–343.

15


