Blow-up for semi-linear parabolic problems with non-constant coefficients
 Michèle Grillot, Alice Simon

To cite this version:

Michèle Grillot, Alice Simon. Blow-up for semi-linear parabolic problems with non-constant coefficients. Differential and integral equations, 2004, vol 17, pp.227-240. hal-00082593

HAL Id: hal-00082593

https://hal.science/hal-00082593

Submitted on 28 Jun 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

BLOW-UP FOR SEMI-LINEAR PARABOLIC PROBLEMS
 WITH NON CONSTANT COEFFICIENTS

MICHELE GRILLOT
IUFM d'Orléans-Tours et Université d'Orléans MAPMO -
BP 6759-45067 Orléans cedex 02 France

ALICE (CHALJUB)-SIMON
Université d'Orléans MAPMO -
BP 6759-45 067 Orléans cedex 02 France

Abstract

In this paper we study the solutions of some semi-linear parabolic problems with non constant coefficients. We prove the existence of solutions which blow up at a finite time, and give the behavior near a point of blow-up.

1 Introduction : notations and main results

In this paper we consider the problem :

$$
\left\{\begin{array}{l}
u_{t}+L u=\lambda a(x) f(u) \text { for }(x, t) \in \mathbb{R}^{N} \times(0,+\infty) \tag{1}\\
u(x, 0)=u_{0}(x) \text { for } \quad x \in \mathbb{R}^{N} \\
u(x, t) \rightarrow 0 \text { when } \quad|x| \rightarrow \infty
\end{array}\right.
$$

whith $L=-\Delta+c^{2}, c>0, N>2$ and $\lambda>0$. The functions a and u_{0} are continuous, bounded, strictly positive and tend to zero at infinity. The function f is superlinear. We also assume that f is C^{2} with nonnegative values, $f^{\prime}(x)>0$ for $x>0$ and $f^{\prime \prime}(x)>0$ for $x>0$.

The operator L appeared earlier in some elliptic problems related with the equation of Klein-Gordon [8] [9]. The first motivation of this work is the study of the relationship with the elliptic problem. The special form of the right-hand side of (1) is given by sake of simplicity. More general forms can be considered.

In this paper (1) will be written as :

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=F(x, u) \quad \text { for } \quad(x, t) \in \mathbb{R}^{N} \times(0,+\infty) \tag{2}\\
u(x, 0)=u_{0}(x) \text { for } \quad x \in \mathbb{R}^{N} \\
u(x, t) \rightarrow 0 \quad \text { when } \quad|x| \rightarrow \infty
\end{array}\right.
$$

where $F(x, u)=\lambda a(x) f(u)-c^{2} u$. We consider regular solutions of (2) in the sense of Kaplan [5] : let Ω be an open regular connected, not necessarily bounded set of \mathbb{R}^{N} and $Q_{T}=\Omega \times(0, T]$ for $T>0$. The function u is $C^{2,1}\left(\overline{Q_{T}}\right)$ means that $u, \frac{\partial u}{\partial t}, \frac{\partial u}{\partial x_{i}}$ and $\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}$ are defined in Q_{T} and can be continuously continued up to $\bar{\Omega} \times(0, T]$.

[^0]We use extensively the comparison theorem of Kaplan [5] that we denote in the rest of the paper by Kaplan's theorem.

In section 2, we study the solutions of (2) which blow up at a finite time, and get estimates of the time of blow-up. In fact we cannot use the standard methods to (2), due to the term " a " which tends to zero at infinity. We work in the ball centered at zero of radius $R>0$ denoted by B_{R} and we consider the problem :

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=F(x, u) \text { for } \quad(x, t) \in B_{R} \times(0,+\infty) \tag{3}\\
u(x, 0)=u_{0}(x) \text { for } \quad x \in B_{R} \\
u(x, t)=0 \text { when } \quad|x|=R
\end{array}\right.
$$

We prove existence of blow-up for solutions of (3) and then we can conclude with Kaplan's theorem. More precisely, define

$$
\begin{equation*}
\alpha_{R}=\min _{x \in B_{R}} a(x), \tag{4}
\end{equation*}
$$

$\left(\lambda_{1}, \phi\right)$ depending on R such that:

$$
\left\{\begin{array}{l}
-\Delta \phi=\lambda_{1} \phi \text { in } B_{R} \tag{5}\\
\phi=0 \text { on } \partial B_{R} \\
\phi>0 \text { in } B_{R} \\
\int_{B_{R}} \phi d x=1
\end{array}\right.
$$

and s_{0} the greatest zero of the function g_{R} defined on $[0, \infty)$ by :

$$
\begin{equation*}
g_{R}(s)=\lambda \alpha_{R} f(s)-\left(\lambda_{1}+c^{2}\right) s \tag{6}
\end{equation*}
$$

Troughout this paper we denote by T_{b} the time of blow-up of a function b and by

$$
\begin{equation*}
[0, T(b)] \tag{7}
\end{equation*}
$$

a closed interval on which b is bounded and regular. The main result of this section is the following :

Theorem 1.1 Fix $R=R_{0}>0$ such that $\int_{A}^{+\infty} \frac{d s}{f(s)}<\infty$ for $A>0$ and $\frac{\min }{\overline{B_{R}}} u_{0}>s_{0}$. Then the solution u of (2) blows up in a finite time $T_{u} \neq 0$.

In section 3, we study the blow-up rate and prove that the qualitative properties of the solutions of (2) near a blow-up point is the same as in the constant coefficient case [2] [3]. More precisely we prove the following theorem :

Theorem 1.2 Let $p>1$ and $R_{0}>0$. For $f(t) \geq t^{p}$ for all $t \geq 0$, we have the estimate :

$$
\begin{equation*}
\|u(., t)\|_{\infty} \geq\left[(p-1) \lambda \alpha_{R_{0}}\right]^{-\frac{1}{p-1}}\left(T_{u}-t\right)^{-\frac{1}{p-1}} \tag{8}
\end{equation*}
$$

for $0<t<T_{u}$ with:

$$
\begin{equation*}
\|u(., t)\|_{\infty}=\sup _{x \in \mathbb{R}^{N}} u(x, t) . \tag{9}
\end{equation*}
$$

We also give an upper bound of a solution of (2) in a neighborhood of a blow-up point. Let $R_{0}>0$. We introduce the following assumptions :

$$
\begin{equation*}
\Delta u_{0}-c^{2} u_{0}+\lambda a(x) f\left(u_{0}\right) \geq 0 \quad \text { in } \quad B_{R_{0}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(r) r-f(r) \geq 0 \quad \text { for } \quad r \geq 0 \tag{11}
\end{equation*}
$$

Theorem 1.3 Assume (10) and (11). Let $\left(X, T_{u}\right)$ be a blow-up point for a solution u of (2) and assume that V is an open neighborhood of X in $B_{R_{0}}$ such that u is bounded on $\partial V \times\left[0, T_{u}\right)$. Then for every $\eta \in\left(0, T_{u}\right)$, there exists a constant $\delta=\delta(u, \eta)$ such that

$$
\begin{equation*}
u(x, t) \leq \Phi^{-1}\left[-\delta\left(T_{u}-t\right)\right] \tag{12}
\end{equation*}
$$

for all $x \in V$ and $t \in\left(\eta, T_{u}\right)$, where Φ^{-1} is the inverse function of a primitive Φ of f.
We precise both last theorems in particular cases :
Theorem 1.4 Under the assumptions of theorems 1.2 and 1.3 , for $f(u)=u^{p}$ or $f(u)=$ $(1+u)^{p}$ with $p>1$, the function w defined by:

$$
\begin{equation*}
w(x, t)=\left(T_{u}-t\right)^{\frac{1}{p-1}} u(x, t) \tag{13}
\end{equation*}
$$

is bounded on $\mathbb{R}^{N} \times\left(0, T_{u}\right)$.

In section 4, we give the asymptotic behavior of the solution u of (2) near a blow-up point.

Theorem 1.5 Assume that $1<p<\frac{N+2}{N-2}$ and $f(u)=u^{p}$ or $f(u)=(1+u)^{p}$ with $p>1$. Let $\left(X, T_{u}\right)$ be a blow-up point for u satisfying (2). Then

$$
\begin{equation*}
\lim _{t \rightarrow T_{u}}\left(T_{u}-t\right)^{\frac{1}{p-1}} u\left(X+y\left(T_{u}-t\right)^{\frac{1}{2}}, t\right)=(\lambda(p-1) a(X))^{-\frac{1}{p-1}} . \tag{14}
\end{equation*}
$$

The limit is independent of $y \in \mathbb{R}^{N}$ and it is uniform on each compact set $|y| \leq C$.

2 Existence of blow-up for solutions of (2)

2.1 Upper bound for u_{R} and u

We assume there exists a regular solution u_{R} of (3). We have

$$
a(x) \leq\|a\|_{\infty} .
$$

Consider the differential problem :

$$
\left\{\begin{array}{l}
\frac{d z}{d t}=\lambda\|a\|_{\infty} f(z)-c^{2} z \tag{15}\\
z(0) \geq \sup _{x \in \mathbb{R}^{N}} u_{0}(x) \\
z(t) \geq 0
\end{array}\right.
$$

By the change $z(t)=e^{-c^{2} t} v(t)$

$$
\left\{\begin{array}{l}
\frac{d v}{d t}=e^{c^{2} t} \lambda\|a\|_{\infty} f\left(e^{-c^{2} t} v(t)\right) \geq 0 \\
v(0) \geq \sup _{x \in \mathbb{R}^{N}} u_{0}(x)
\end{array}\right.
$$

and then $v(t) \geq 0$ and $z(t) \geq 0$ on their interval of definition. We use the notation introduced in (7). Choosing $z(0) \geq \sup _{x \in \mathbb{R}^{N}} u_{0}(x)$, we get a solution z of (15) regular and bounded on $[0, T(z)]$. By Kaplan's theorem, we obtain :

$$
\begin{equation*}
u_{R}(x, t) \leq z(t) \quad \text { for all } \quad x \in \overline{B_{R}} \quad \text { and } \quad t \in\left(0, \min \left(T\left(u_{R}\right), T(z)\right)\right) \tag{16}
\end{equation*}
$$

As z does not depend on R, the inequality (16) is true for every R. Now we look at u. Assume there exists a regular solution of (2). In B_{R}, u satisfies

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=F(x, u) \\
u(x, 0)=u_{0}(x) \\
u(x, t) \geq 0 \text { for } \quad|x|=R
\end{array}\right.
$$

By Kaplan's theorem in B_{R} we have :

$$
\begin{equation*}
u \geq u_{R} \quad \text { in } \quad B_{R} \times\left(0, \min \left(T(u), T\left(u_{R}\right)\right)\right) \tag{17}
\end{equation*}
$$

As $u_{R}(x, t)=0$ outside of B_{R}, the inequality (17) is true in \mathbb{R}^{N}. On the other side, Kaplan's theorem gives :

$$
u(x, t) \leq z(t) \quad \text { in } \quad \mathbb{R}^{N} \times[0, \min (T(u), T(z)] .
$$

Finally we get :

$$
\begin{equation*}
\text { For all } R>0 \quad u_{R} \leq u \leq z \quad \text { in } \quad \mathbb{R}^{N} \times\left(0, \min \left(T(u), T\left(u_{R}\right), T(z)\right) .\right. \tag{18}
\end{equation*}
$$

2.2 Existence of blowing up solutions

2.2.1 Blow-up for u_{R}

Following the original idea of Kaplan [5], we show that $\sup _{x \in \bar{B}_{R}} u_{R}(x, t)$ is bounded from below. This estimate allows us to prove the existence of blow-up for u_{R}. We assume that u_{R} exists as a regular solution of (3). Define

$$
\begin{equation*}
\hat{u}_{R}(t)=\int_{B_{R}} u_{R}(x, t) \phi(x) d x \tag{19}
\end{equation*}
$$

where ϕ is defined in (5). Then

$$
\begin{equation*}
\hat{u}_{R}(0) \geq \inf _{\bar{B}_{R}} u_{0}(x) . \tag{20}
\end{equation*}
$$

Multiplying the equation (3) of u_{R} by ϕ and integrating over B_{R}, we find :

$$
\frac{d \hat{u}_{R}}{d t}=\lambda \int_{B_{R}} a f\left(u_{R}\right) \phi d x-\left(\lambda_{1}+c^{2}\right) \hat{u}_{R}
$$

As

$$
\begin{aligned}
\int_{B_{R}} a f\left(u_{R}\right) \phi d x & \geq \alpha_{R} \int_{B_{R}} f\left(u_{R}\right) \phi d x \\
& \geq \alpha_{R} f\left(\int_{B_{R}} u_{R} \phi d x\right)
\end{aligned}
$$

with α_{R} defined in (4), and by use of Jensen's inequality. Finally we find a differential inequality for \hat{u}_{R} :

$$
\begin{equation*}
\frac{d \hat{u}_{R}}{d t} \geq \lambda \alpha_{R} f\left(\hat{u}_{R}\right)-\left(\lambda_{1}+c^{2}\right) \hat{u}_{R} \tag{21}
\end{equation*}
$$

with (20). Consider the differential problem :

$$
\left\{\begin{align*}
\frac{d \zeta_{R}}{d t} & =\lambda \alpha_{R} f\left(\zeta_{R}\right)-\left(\lambda_{1}+c^{2}\right) \zeta_{R} \tag{22}\\
\zeta_{R}(0) & =\inf _{x \in \bar{B}_{R}} u_{0}(x)
\end{align*}\right.
$$

Kaplan's theorem gives $\hat{u}_{R}(t) \geq \zeta_{R}(t)$ for $t \in\left[0, \min \left(T\left(\hat{u}_{R}\right), T\left(\zeta_{R}\right)\right)\right]$. As $\hat{u}_{R}(t) \leq \sup _{x \in \overline{B_{R}}} u_{R}(x, t)$, we get :

$$
\begin{equation*}
\sup _{x \in \overline{B_{R}}} u_{R}(x, t) \geq \zeta_{R}(t) \tag{23}
\end{equation*}
$$

Inequality (23) is true for bounded functions; now if ζ_{R} blows up for $T_{\zeta_{R}}>T\left(\zeta_{R}\right)$, by continuity we get blow-up results for u_{R}. Recall that s_{0} and g_{R} are defined in (6). Then

Proposition 2.1 If $\int_{A}^{+\infty} \frac{d s}{f(s)}<\infty$ and if $\frac{\inf }{\bar{B}_{R}} u_{0}>s_{0}$, then ζ_{R} blows up at a finite time

$$
T_{\zeta_{R}}=\int_{\zeta_{R}(0)}^{+\infty} \frac{d s}{\lambda \alpha_{R} f(s)-\left(\lambda_{1}+c^{2}\right) s}
$$

Note that the integral is convergent as f is superlinear. The second condition says that u_{0} must be "big enough". Now the inequality (23) shows that u_{R} must blow up for a finite time $T_{u_{R}}$, if ζ_{R} does. Using the function z introduced in (15), we know that $u_{R}(x, t) \leq z(t)$ for $t \in\left(0, \min \left(T\left(u_{R}\right), T(z)\right)\right.$. Let $h(s)=\lambda\|a\|_{\infty} f(s)-c^{2} s$, and denote by s_{1} the greatest zero of h. We get:

Proposition 2.2 If $z(0)>s_{1}$, then z blows up in a finite time

$$
T_{z}=\int_{z(0)}^{+\infty} \frac{d s}{\lambda\|a\|_{\infty} f(s)-c^{2} s}
$$

We can choose $z(0)>s_{1}$, and then get a function z wich blows up at $t=T_{z}$. Finally we get :

Proposition 2.3 Under the conditions of propositions 2.1 and 2.2, we get blow-up for u_{R} in a finite time $T_{u_{R}}$ satifying

$$
\int_{z(0)}^{+\infty} \frac{d s}{\lambda\|a\|_{\infty} f(s)-c^{2} s} \leq T_{u_{R}} \leq \int_{\overline{\operatorname{Binf}}_{R}}^{+\infty} \frac{d s}{\lambda \alpha_{0} f(s)-\left(\lambda_{1}+c^{2}\right) s}
$$

2.2.2 Blow-up for u

We can deduce from the preceding subsection conditions for the explosion of u. We assume that the conditions of proposition 2.3 are satisfied for $R=R_{0}$. We have :

$$
u_{R_{0}}(x, t) \leq u(x, t) \leq z(t) \quad \text { for } \quad(x, t) \in \overline{B_{R_{0}}} \times\left(0, \min \left(T\left(u_{R_{0}}\right), T(u), T(z)\right)\right)
$$

and

$$
\sup _{x \in \overline{B_{R_{0}}}} u(x, t) \geq \sup _{x \in \overline{B_{R_{0}}}} u_{R_{0}}(x, t)
$$

Then theorem 1.1 results from the inequality $T_{z} \leq T_{u} \leq T_{\zeta_{R_{0}}}$.

2.2.3 Special cases

First we consider $f(u)=u^{p}$ with $p>1$. Then (22) becomes

$$
\left\{\begin{array}{l}
\frac{d \zeta}{d t}=\lambda \alpha_{R} \zeta^{p}-\left(\lambda_{1}+c^{2}\right) \zeta \\
\zeta(0)=\inf _{x \in B_{R}} u_{0}(x)
\end{array}\right.
$$

By the change $\zeta(t)=e^{-\mu t} g(t)$ with $\mu=\lambda_{1}+c^{2},(22)$ becomes :

$$
\left\{\begin{array}{l}
\frac{d g}{d t}=\lambda \alpha_{R} e^{-(p-1) \mu t} g^{p} \tag{24}\\
g(0)=\inf _{x \in B_{R}} u_{0}(x)
\end{array}\right.
$$

Integrating the differential equation (24) between 0 and t, and taking $t=T_{g}$, we get :

$$
1-e^{-(p-1) \mu T_{g}}=\frac{\mu}{\lambda \alpha_{R} g^{p-1}(0)}
$$

which gives the condition for existence of blow-up for g :

$$
\inf _{x \in B_{R}} u_{0}(x)=g(0)>\left[\frac{\lambda \alpha_{R}}{\lambda_{1}+c^{2}}\right]^{\frac{1}{p-1}}
$$

and the time of blow-up for g and ζ_{R} :

$$
T_{g}=T_{\zeta_{R}}=-\frac{1}{\mu(p-1)} \ln \left[1-\frac{\mu}{\lambda \alpha_{R} g^{p-1}(0)}\right]
$$

We proceed in a similar way for z. In (15) we make the change : $z(t)=e^{-c^{2} t} v(t)$ and get:

$$
\left\{\begin{array}{l}
\frac{d v}{d t}=\lambda\|a\|_{\infty} e^{-(p-1) c^{2} t} v^{p} \\
v(0) \geq \sup _{\mathbb{R}^{N}} u_{0}
\end{array}\right.
$$

Integrating this differential equation between 0 and t and taking $t=T_{v}$, we get :

$$
v(0)>\left[\frac{\lambda\|a\|_{\infty}}{c^{2}}\right]^{\frac{1}{p-1}}
$$

and

$$
T_{z}=T_{v}=-\frac{1}{(p-1) c^{2}} \ln \left(1-\frac{c^{2}}{\lambda\|a\|_{\infty} v^{p-1}(0)}\right)
$$

Then

$$
-\frac{1}{(p-1) c^{2}} \ln \left(1-\frac{c^{2}}{\lambda\|a\|_{\infty} z^{p-1}(0)}\right) \leq T_{u_{R}} \leq-\frac{1}{\mu(p-1)} \ln \left(1-\frac{\mu}{\lambda \alpha_{R} g^{p-1}(0)}\right)
$$

Next, if $f(u)=(1+u)^{p}$ or $f(u)=1+u^{p}$ with $p>1$, we have $f(u)>u^{p}$ for $u>0$ and so we get the same bound from below of u_{R} and the same bound from above of $T_{u_{R}}$. On the other side, if $f(t)=(1+t)^{p}$ we can integrate the associated differential equation to get a bound from above of u_{R} and a bound from below of $T_{u_{R}}$. Precisely, we have :

$$
\left\{\begin{array}{l}
\frac{d v}{d t}=\lambda\|a\|_{\infty} e^{c^{2} t}\left(1+e^{-c^{2} t} v\right)^{p} \leq \lambda\|a\|_{\infty} e^{c^{2} t}(1+v)^{p} \\
v(0) \geq \sup _{\mathbb{R}^{N}} u_{0}
\end{array}\right.
$$

Considering

$$
\left\{\begin{array}{l}
\frac{d \nu}{d t}=\lambda\|a\|_{\infty} e^{c^{2} t}(1+\nu)^{p} \\
\nu(0)=v(0)
\end{array}\right.
$$

we get :

$$
e^{c^{2} T_{\nu}}=e^{c^{2} T_{v}}=1+\frac{c^{2}}{(p-1) \lambda\|a\|_{\infty}} \times \frac{1}{[1+\nu(0)]^{p-1}} .
$$

Let us notice that no necessary condition for the blow-up of ν appears in this proof. Finally we have :

$$
\frac{1}{c^{2}} \ln \left[1+\frac{c^{2}}{(p-1) \lambda\|a\|_{\infty}} \times \frac{1}{[1+\nu(0)]^{p-1}}\right] \leq T_{u_{R}} \leq-\frac{1}{(p-1) \mu} \ln \left[1-\frac{\mu}{\lambda \alpha_{R} g^{p-1}(0)}\right]
$$

3 Estimate of blow-up rate

In this section we give an estimate of a solution u of (2) with respect to $\left(T_{u}-t\right)$.

3.1 Lower bound

Proof of theorem 1.2: First we give a minoration of $u_{R_{0}}$. Recall that $\hat{u}_{R_{0}}$ defined in (19) satisfies (20)-(21).

First we study the case : $f(u)=u^{p}$. We consider the differential problem (22) with the change : $\zeta(t)=e^{-\mu t} g(t), \mu=\lambda_{1}+c^{2}$, we get :

$$
\left\{\begin{array}{l}
\frac{d g}{d t}=\lambda \alpha_{R_{0}} e^{-(p-1) \mu t} g^{p} \\
g(0)=\frac{\inf }{B_{R_{0}}} u_{0}
\end{array}\right.
$$

By integration :

$$
g(t)=\left(\frac{\mu}{\lambda \alpha_{R_{0}}}\right)\left[e^{-(p-1) \mu t}-e^{-(p-1) \mu T_{g}}\right]^{-\frac{1}{p-1}}
$$

for $0<t<T_{g}$ and by the mean-value theorem :

$$
g(t)=\left[(p-1) \lambda \alpha_{R_{0}}\right]^{-\frac{1}{p-1}}\left(T_{g}-t\right)^{-\frac{1}{p-1}} e^{\mu \theta} \quad\left(t<\theta<T_{g}\right)
$$

for $0<t<T_{g}$. Now

$$
\hat{u}_{R_{0}}(t) \geq\left[(p-1) \lambda \alpha_{R_{0}}\right]^{-\frac{1}{p-1}}\left(T_{g}-t\right)^{-\frac{1}{p-1}} .
$$

As $T_{\hat{u}_{R_{0}}} \geq T_{g}$, we obtain:

$$
\hat{u}_{R_{0}}(t) \geq\left[(p-1) \lambda \alpha_{R_{0}}\right]^{-\frac{1}{p-1}}\left(T_{\hat{u}_{R_{0}}}-t\right)^{-\frac{1}{p-1}}
$$

for $0<t<T_{\hat{u}_{R_{0}}}$. As $\sup _{x \in B_{R_{0}}} u_{R_{0}}(x, t) \geq \hat{u}_{R_{0}}(t)$ with $T_{u_{R_{0}}} \leq T_{\hat{u}_{R_{0}}}$, we get:

$$
\begin{equation*}
\left\|u_{R_{0}}(., t)\right\|_{\infty} \geq\left[(p-1) \lambda \alpha_{R_{0}}\right]^{-\frac{1}{p-1}}\left(T_{u_{R_{0}}}-t\right)^{-\frac{1}{p-1}} \tag{25}
\end{equation*}
$$

for $0<t<T_{u_{R_{0}}}$. As $u(x, t) \geq u_{R_{0}}(x, t)$ for $x \in \mathbb{R}^{N}$, we finally obtain :

$$
\begin{equation*}
\|u(., t)\|_{\infty} \geq\left[(p-1) \lambda \alpha_{R_{0}}\right]^{-\frac{1}{p-1}}\left(T_{u}-t\right)^{-\frac{1}{p-1}} \tag{26}
\end{equation*}
$$

for $0<t<T_{u}$.
Now if $f(u)>u^{p}$ for $u \geq 0$, we get again :

$$
\left\{\begin{array}{l}
\frac{d \hat{u}_{R_{0}}}{d t} \geq \lambda \alpha_{R}\left(\hat{u}_{R_{0}}\right)^{p}-\left(\lambda_{1}+c^{2}\right) \hat{u}_{R_{0}} \tag{27}\\
\hat{u}_{R_{0}}(0) \geq \inf _{x \in \overline{B_{R_{0}}}} u_{0}(x)
\end{array}\right.
$$

and the proof is still valid.

3.2 Lower bound of a solution of (2) in a neighborhood of a blow-up point

In this section we prove theorems 1.3 and 1.4. Let us consider a solution u of (2), we restrict ourselves to $B_{R_{0}}$ as the blow-up occurs in $B_{R_{0}}$. We assume (10). For instance if $u_{0}=U_{0}$, where U_{0} is a positive constant, and if $f(t)=t^{p}$, we find that (10) is verified if

$$
U_{0} \geq\left[\frac{c^{2}}{\lambda \inf _{x \in \overline{B_{R_{0}}}} a(x)}\right]^{\frac{1}{p-1}}
$$

and furthermore U_{0} must satisfy the condition of proposition 2.1. It is possible to choose U_{0} in such a way. In the case $f(t)=(1+t)^{p}$, it is easy to see that we can choose $u_{0}=U_{0}$ constant satifying (10), but the value of U_{0} is not explicit.

Now we give here a proof widely inspired by Friedmann and Mac Leod [2]. Let δ be a positive real and consider the function J defined for $(x, t) \in B_{R_{0}} \times\left(0, T_{u}\right)$ by :

$$
J(x, t)=u_{t}(x, t)-\delta f(u(x, t)) .
$$

Because of (10), we have : $u_{t}(x, t)>0$ in $B_{R_{0}} \times\left(0, T_{u}\right)$ (see [7]).
Lemma 3.1 Under the condition (11), J satisfies in $B_{R_{0}} \times\left(0, T_{u}\right)$ the differential inequality

$$
\begin{equation*}
J_{t}-\Delta J+c^{2} J-\lambda a(x) f^{\prime}(u) J \geq 0 \tag{28}
\end{equation*}
$$

Proof : A direct computation gives :

$$
J_{t}-\Delta J+c^{2} J-\lambda a(x) f^{\prime}(u) J=\delta f^{\prime \prime}(u)|\nabla u|^{2}+\delta c^{2}\left[f^{\prime}(u) u-f(u)\right]
$$

and the result holds.
The condition (11) says that f is greater than a linear function. In fact, the solutions of the equation $f^{\prime}(u) u-f(u)=0$ are the linear functions (in particular $f(0)=0$). We can say also that $x f^{\prime}(x)-f(x) \geq 0$ is equivalent to the following : the function $x \mapsto \frac{f(x)}{x}$, for $x>0$, is an increasing function.

We see also that $f(x)=x^{p}$ satisfies the inequality (11) for $x \geq 0$, and that $f(x)=$ $(1+x)^{p}$ satisfies (11) for $x \geq 1$.

Lemma 3.2 Let $\left(X, T_{u}\right)$ be a blow-up point for u solution of (2) and assume that V is an open neighborhood of X in $B_{R_{0}}$ such that u is bounded on $\partial V \times\left[0, T_{u}\right)$. Then for every $\eta \in\left(0, T_{u}\right)$, there exists $\delta=\delta(\eta, u)>0$ such that $J \geq 0$ in $V \times\left(\eta, T_{u}\right)$.

Proof: As $u_{t}>0$ in $\bar{V} \times\left(0, T_{u}\right)$, there exists a constant $C_{u}>0$ such that $u_{t} \geq C_{u}>0$ in $\bar{V} \times\left(0, T_{u}\right)$. As u is bounded on $\partial V \times\left[0, T_{u}\right)$, so is $f(u)$, and there exists δ_{1} such that:

$$
u_{t}-\delta_{1} f(u) \geq C_{u}-\delta_{1} f(u) \geq 0
$$

on $\partial V \times\left[0, T_{u}\right)$. On the other hand, let x be in V and η in $\left(0, T_{u}\right)$. The function $x \mapsto u(x, \eta)$ is bounded on \bar{V} by definition of T_{u}. Then there exists a constant $\delta_{2}(u, \eta)>0$ such that :

$$
J(x, \eta)=u_{t}(x, \eta)-\delta_{2} f(u(x, \eta)) \geq 0
$$

for $x \in \bar{V}$. By Kaplan's theorem, comparing J and 0 on $V \times[\eta, T(u)], T(u)<T_{u}$, we conclude that $J \geq 0$ in $V \times[\eta, T(u)]$ and the result holds by continuity.

Proof of Theorem 1.3: By lemma 3.2, we get : $u_{t} \geq \delta f(u)$; assuming $f(u) \neq 0$, we have

$$
\frac{u_{t}}{f(u)} \geq \delta
$$

By integration in the interval $\left(t, t^{\prime}\right) \subset\left(0, T_{u}\right)$, and taking $t^{\prime}=T_{u}$, we get :

$$
\Phi(u(t)) \leq-\delta\left(T_{u}-t\right)
$$

Φ is a monotone function, which has an inverse function Φ^{-1}, and the result holds.
Proof of Theorem 1.4: If $f(r)=r^{p}$, then $\Phi(r)=-1 /\left[(p-1) r^{p-1}\right]$ and $\Phi^{-1}(r)=$ $[-(p-1) r]^{-1 /(p-1)}, r<0$.

If $f(r)=(1+r)^{p}$, then $\Phi(r)=-1 /\left[(p-1)(1+r)^{p-1}\right]$ and $\Phi^{-1}(r)=-1+[-(p-$ 1) $r]^{-1 /(p-1)}, r<0$.

4 Asymptotic behavior

To prove theorem 1.5 we follow the idea of Giga and Kohn [3]. To study u near a point (X, T_{u}), we introduce the rescaled function w of theorem 1.4 :

$$
\begin{equation*}
w(y, s)=\left(T_{u}-t\right)^{\frac{1}{p-1}} u(x, t) \tag{29}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
x-X=\left(T_{u}-t\right)^{\frac{1}{2}} y \tag{30}\\
T_{u}-t=e^{-s}
\end{array}\right.
$$

For $f(u)=u^{p}, p>1$, the function w solves :

$$
\begin{equation*}
w_{s}-\frac{1}{\rho} \nabla \cdot(\rho \nabla w)+\frac{1}{p-1} w+c^{2} e^{-s} w=\lambda a\left(X+e^{-\frac{s}{2}} y\right) w^{p} \tag{31}
\end{equation*}
$$

in $\mathbb{R}^{N} \times\left(\sigma_{0},+\infty\right)$ where $\sigma_{0}=-\ln T_{u}$ and $\rho(y)=\exp \left(-|y|^{2} / 4\right)$. And for $f(u)=(1+u)^{p}$, $p>1$, equation (31) is replaced by :

$$
\begin{equation*}
w_{s}-\frac{1}{\rho} \nabla \cdot(\rho \nabla w)+\frac{1}{p-1} w+c^{2} e^{-s} w=\lambda a\left(X+e^{-\frac{s}{2}} y\right)\left(e^{-\frac{s}{p-1}}+w\right)^{p} . \tag{32}
\end{equation*}
$$

Before proving theorem 1.5, we establish two lemmas wich concern L^{2}-estimates of w_{s} and ∇w. Note that in lemma 4.1 the condition $p<(N+2) /(N-2)$ is not needed. We denote by M a bound from above of w, which exists by preceding theorem.

Lemma 4.1 There exists a real number $L>0$ which only depends on $p, c, \lambda, a, T_{u}, M$ and $\int_{\mathbb{R}^{N}}|\nabla w|^{2}\left(y, \sigma_{0}\right) \rho(y) d y$, such that :

$$
\begin{equation*}
\int_{\sigma_{0}}^{+\infty} \int_{\mathbb{R}^{N}} w_{s}^{2} \rho d y d s \leq L \tag{33}
\end{equation*}
$$

Proof : Case 1: $f(u)=u^{p}, p>1$. Multiplying equation (31) by $w_{s} \rho$ and integrating on any ball B_{R}, we obtain for $s>\sigma_{0}$:

$$
\begin{align*}
& \int_{B_{R}} w_{s}^{2} \rho d y+\int_{B_{R}}\left[-w_{s} \nabla \cdot(\rho \nabla w)+\left(\frac{1}{p-1}+c^{2} e^{-s}\right) w w_{s} \rho\right] d y \tag{34}\\
& =\lambda \int_{B_{R}} a\left(X+e^{-\frac{s}{2}} y\right) w^{p} w_{s} \rho d y
\end{align*}
$$

Since

$$
\int_{B_{R}}-w_{s} \nabla \cdot(\rho \nabla w) d y=\int_{B_{R}}-w \nabla \cdot\left(\rho \nabla w_{s}\right)+\int_{\partial B_{R}} \nabla w_{s} \cdot \nu w \rho d \sigma-\int_{\partial B_{R}} \nabla w \cdot \nu w_{s} \rho d \sigma
$$

this implies when R tends to infinity :

$$
\int_{\mathbb{R}^{N}}-w_{s} \nabla \cdot(\rho \nabla w) d y=\int_{\mathbb{R}^{N}}-w \nabla \cdot\left(\rho \nabla w_{s}\right) d y .
$$

Then

$$
\frac{1}{2} \frac{d}{d s}\left(\int_{R^{N}}|\nabla w|^{2} \rho d y\right)=-\int_{\mathbb{R}^{N}} w_{s} \nabla \cdot(\rho \nabla w) d y
$$

This and relation (34) lead us to :

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} w_{s}^{2} \rho d y+\frac{1}{2} \frac{d}{d s}\left(\int_{R^{N}}|\nabla w|^{2} \rho d y\right)+\int_{\mathbb{R}^{N}}\left(\frac{1}{p-1}+c^{2} e^{-s}\right) w w_{s} \rho d y \\
& =\lambda \int_{\mathbb{R}^{N}} a\left(X+e^{-\frac{s}{2}} y\right) w^{p} w_{s} \rho d y
\end{aligned}
$$

Now consider $\tau>\sigma_{0}$ and integrate this relation on $\left[\sigma_{0}, \tau\right]$:

$$
\begin{align*}
& \int_{\sigma_{0}}^{\tau} \int_{\mathbb{R}^{N}} w_{s}^{2} \rho d y+\frac{1}{2} \int_{R^{N}}|\nabla w|^{2}(y, \tau) \rho d y=\frac{1}{2} \int_{R^{N}}|\nabla w|^{2}\left(y, \sigma_{0}\right) \rho d y \tag{35}\\
& -\int_{\sigma_{0}}^{\tau} \int_{\mathbb{R}^{N}}\left(\frac{1}{p-1}+c^{2} e^{-s}\right) w w_{s} \rho d y d s+\lambda \int_{\sigma_{0}}^{\tau} \int_{\mathbb{R}^{N}} a\left(X+e^{-\frac{s}{2}} y\right) w^{p} w_{s} \rho d y d s
\end{align*}
$$

To obtain (33), we have to bound the second and third terms of the right hand side of (35). Using an integration by parts, we have :

$$
\begin{align*}
& -\int_{\sigma_{0}}^{\tau} \int_{\mathbb{R}^{N}}\left(\frac{1}{p-1}+c^{2} e^{-s}\right) w w_{s} \rho d y d s \\
& =-\int_{\mathbb{R}^{N}}\left(\left[\left(\frac{1}{p-1}+c^{2} e^{-s}\right) \frac{w^{2}}{2}\right]_{\sigma_{0}}^{\tau}-c^{2} \int_{\sigma_{0}}^{\tau} e^{-s} \frac{w^{2}}{2} d s\right) \rho d y \\
& \leq \int_{\mathbb{R}^{N}}\left(\frac{1}{p-1}+c^{2} T_{u}\right) \frac{w^{2}}{2}\left(y, \sigma_{0}\right) \rho d y+c^{2} \frac{M^{2}}{2} T_{u} \int_{\mathbb{R}^{N}} \rho d y \tag{36}\\
& \leq\left(\frac{1}{2(p-1)}+c^{2} T_{u}\right) M^{2} \int_{\mathbb{R}^{N}} \rho d y .
\end{align*}
$$

Finally, we also have :

$$
\begin{align*}
& \lambda \int_{\sigma_{0}}^{\tau} \int_{\mathbb{R}^{N}} a\left(X+e^{-\frac{s}{2}} y\right) w^{p} w_{s} \rho d y d s \\
& =\lambda \int_{\mathbb{R}^{N}}\left[a\left(X+e^{-\frac{s}{2}} y\right) \frac{w^{p+1}}{p+1}\right]_{\sigma_{0}}^{\tau} \rho d y+\frac{\lambda}{2} \int_{\mathbb{R}^{N}}\left(\int_{\sigma_{0}}^{\tau} e^{-\frac{s}{2}} \nabla a\left(X+e^{-\frac{s}{2}} y\right) \cdot y \frac{w^{p+1}}{p+1} d s\right) \rho d y \\
& \leq \lambda\|a\|_{\infty} \frac{M^{p+1}}{p+1} \int_{\mathbb{R}^{N}} \rho d y+\frac{\lambda}{2}\|\nabla a\|_{\infty} \frac{e^{-\frac{\sigma_{0}}{2}}}{2} \frac{M^{p+1}}{p+1} \int_{\mathbb{R}^{N}}|y| \rho d y . \tag{37}
\end{align*}
$$

Combining (35)-(36) and (37) we derive (33).
Case 2 : $f(u)=(1+u)^{p}, p>1$. The only difference is that (37) is replaced by :

$$
\begin{aligned}
& \lambda \int_{\sigma_{0}}^{\tau} \int_{\mathbb{R}^{N}} a\left(X+e^{-\frac{s}{2}} y\right)\left(e^{-\frac{s}{p-1}}+w\right)^{p} w_{s} \rho d y d s \\
& =\lambda \int_{\sigma_{0}}^{\tau} \int_{\mathbb{R}^{N}} a\left(X+e^{-\frac{s}{2}} y\right)\left(e^{-\frac{s}{p-1}}+w\right)^{p}\left(-\frac{1}{p-1} e^{-\frac{s}{p-1}}+w_{s}\right) \rho d y d s \\
& +\frac{\lambda}{p-1} \int_{\sigma_{0}}^{\tau} \int_{\mathbb{R}^{N}} a\left(X+e^{-\frac{s}{2}} y\right)\left(e^{-\frac{s}{p-1}}+w\right)^{p} e^{-\frac{s}{p-1}} \rho d y d s .
\end{aligned}
$$

The first term can be treated integrating by parts as in (37) and the second term is bounded.

Now we give an estimate of the gradient of w. We only treat the case $f(u)=u^{p}$, $p>1$. The other case can be treated similarly, as in the previous lemma. We introduce the energy function E for w as follows : for $s \geq \sigma_{0}$:

$$
\begin{aligned}
& E[w](s)=\int_{\mathbb{R}^{N}}\left(\frac{1}{2}|\nabla w|^{2}+\left(\frac{1}{p-1}+c^{2} e^{-s}\right) \frac{w^{2}}{2}-\frac{\lambda}{p+1} a\left(X+e^{-\frac{s}{2}} y\right) w^{p+1}\right) \rho|y|^{2} d y \\
& -\frac{1}{2} \int_{\mathbb{R}^{N}}\left(\frac{1}{2}|y|^{2}-N\right) w^{2} \rho d y .
\end{aligned}
$$

$\underset{\sim}{L}$ Lemma 4.2 Assume that $1<p<(N+2) /(N-2)$. Then there exists a real number $\tilde{L}>0$ which only depends on $p, c, \lambda, a, T_{u}, M$ and $E[w]\left(\sigma_{0}\right)$, such that:

$$
\begin{equation*}
\int_{\sigma_{0}}^{+\infty} \int_{\mathbb{R}^{N}}|\nabla w|^{2}\left(1+|y|^{2}\right) \rho d y d s \leq \tilde{L} . \tag{38}
\end{equation*}
$$

The proof follows the idea of propositions 4.1, 4.2 and 4.3 of [3] and we only give the derivative of E :

$$
\begin{aligned}
& \frac{d}{d s} E[w](s)=-\int_{\mathbb{R}^{N}} w_{s}^{2}|y|^{2} \rho d y-\frac{c^{2}}{2} e^{-s} \int_{\mathbb{R}^{N}} w^{2}|y|^{2} \rho d y \\
& -(p+3) \int_{\mathbb{R}^{N}} w_{s}(\nabla w \cdot y) \rho d y+\frac{\lambda e^{-\frac{s}{2}}}{2(p+1)} \int_{\mathbb{R}^{N}} \nabla a\left(X+e^{-\frac{s}{2}} y\right) \cdot y w^{p+1}|y|^{2} \rho d y \\
& -\int_{\mathbb{R}^{N}}\left[\frac{p-1}{4}|y|^{2}+\frac{1}{2}(N+2-p(N-2))\right]|\nabla w|^{2} \rho d y \\
& -\frac{p-1}{2} c^{2} e^{-s} \int_{\mathbb{R}^{N}}\left(\frac{1}{2}|y|^{2}-N\right) w^{2} \rho d y-\lambda e^{-\frac{s}{2}} \int_{\mathbb{R}^{N}} \nabla a\left(X+e^{-\frac{s}{2}} y\right) \cdot y w^{p+1} \rho d y .
\end{aligned}
$$

Proof of theorem 1.5: Let $\left(s_{j}\right)$ be any sequence tending to infinity. Consider the function w_{j} defined on $\mathbb{R}^{N} \times\left(\sigma_{0}-s_{j},+\infty\right)$ by : $w_{j}(y, s)=w\left(y, s+s_{j}\right)$. The function w_{j} is bounded by M and it is a respective solution of

$$
w_{j s}-\frac{1}{\rho} \nabla \cdot\left(\rho \nabla w_{j}\right)+\frac{1}{p-1} w_{j}+c^{2} e^{-s-s_{j}} w_{j}=\lambda a\left(X+e^{-\frac{s+s_{j}}{2}} y\right) w_{j}^{p}
$$

for $f(u)=u^{p}$ and

$$
w_{j s}-\frac{1}{\rho} \nabla \cdot\left(\rho \nabla w_{j}\right)+\frac{1}{p-1} w_{j}+c^{2} e^{-s-s_{j}} w_{j}=\lambda a\left(X+e^{-\frac{s+s_{j}}{2}} y\right)\left(e^{-\frac{s+s_{j}}{p-1}}+w_{j}\right)^{p}
$$

for $f(u)=(1+u)^{p}$. Using the L^{q}-regularity theory for parabolic equations (see [6]), we deduce that $\nabla w_{j}, D^{2} w_{j}$ and $w_{j s}$ are bounded in $L^{q}\left(B_{R} \times(-R,+\infty)\right)$ for each $q \in(1,+\infty)$ and $R>0$ (when s_{j} is large enough), the bound being independent of j. By Sobolev's inequality and Schauder's estimates (see [1]) we obtain that $\left(D^{2} w_{j}\right)$ and ($w_{j s}$) are Hölder continuous on each $B_{R} \times(-R,+\infty)$, uniformally with respect to j.

By the Arzela-Ascoli theorem and a diagonal argument, there exists a subsequence, still denoted by w_{j}, converging uniformly to a function l on each $B_{R} \times(-R,+\infty)$. This function l is in $C^{2,1}\left(\mathbb{R}^{N+1}\right)$ and it is solution of

$$
l_{s}-\frac{1}{\rho} \nabla \cdot(\rho \nabla l)+\frac{1}{p-1} l=\lambda a(X) l^{p} .
$$

Because of lemmas 4.1 and 4.2, we have :

$$
\begin{aligned}
\int_{-R}^{+\infty} \int_{B_{R}}\left|\nabla w_{j}\right|^{2} \rho d y d s & =\int_{-R+s_{j}}^{+\infty} \int_{B_{R}}|\nabla w|^{2} \rho d y d s \rightarrow 0 \\
\int_{-R}^{+\infty} \int_{B_{R}} w_{j s}^{2} \rho d y d s & =\int_{-R+s_{j}}^{+\infty} \int_{B_{R}} w_{j s}^{2} \rho d y d s \rightarrow 0
\end{aligned}
$$

as $j \rightarrow+\infty$, for all $R>0$. Thus, l is independent of both y and s and satisfies

$$
\frac{1}{p-1} l=\lambda a(X) l^{p} .
$$

Finally because of theorem 2.1 of [4], the limit (14) holds.

References

[1] A. Friedmann, Partial differential equations of parabolic type, Prentice Hall, Englewood Cliffs, NJ (1964).
[2] A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-447.
[3] Y. Giga and R. V. Kohn, Characterizing blow-up using similarity variables, Indiana Univ. Math. J. 36 (1987), 1-40.
[4] Y. Giga and R. V. Kohn, Nondegeneregy of blow-up for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), 845-884.
[5] S. Kaplan, On the growth of solutions of quasilinear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305-333.
[6] O. A. Ladyzenskaia, V. A. Solonnikov and N. N. Uralceva, Linear and quasilinear equations of parabolic type, AMS, Providence, RI (1968).
[7] D. Sattinger, Topics in stability and bifurcation theory, Lect. notes math. 309, Springer, New York (1973).
[8] A. Simon (A. Chaljub-Simon) and P. Volkmann, Existence of ground states with exponential decay for semi-linear elliptic equations in \mathbb{R}^{N}, J. Diff. Eq. 76 (1988), 374-390.
[9] A. Simon (A. Chaljub-Simon) and P. Volkmann, Existence de deux solutions positives pour un problme elliptique à paramètre dans \mathbb{R}^{N}, Topological Methods in Nonlin. Anal. 3 (1994), 295-306.

[^0]: ${ }^{0}$ AMS Subject Classifications : 35B40, 35 K 55 .

