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Abstract

In this paper we study the solutions of some semi-linear parabolic problems with

non constant coefficients. We prove the existence of solutions which blow up at a

finite time, and give the behavior near a point of blow-up.

1 Introduction : notations and main results

In this paper we consider the problem :











ut + Lu = λ a(x)f(u) for (x, t) ∈ IRN × (0, +∞)
u(x, 0) = u0(x) for x ∈ IRN

u(x, t) → 0 when | x |→ ∞
(1)

whith L = −∆ + c2, c > 0, N > 2 and λ > 0. The functions a and u0 are continuous,
bounded, strictly positive and tend to zero at infinity. The function f is superlinear. We
also assume that f is C2 with nonnegative values, f ′(x) > 0 for x > 0 and f”(x) > 0 for
x > 0.

The operator L appeared earlier in some elliptic problems related with the equation
of Klein-Gordon [8] [9]. The first motivation of this work is the study of the relationship
with the elliptic problem. The special form of the right-hand side of (1) is given by sake
of simplicity. More general forms can be considered.

In this paper (1) will be written as :











ut − ∆u = F (x, u) for (x, t) ∈ IRN × (0, +∞)
u(x, 0) = u0(x) for x ∈ IRN

u(x, t) → 0 when | x |→ ∞
(2)

where F (x, u) = λ a(x)f(u) − c2u. We consider regular solutions of (2) in the sense of
Kaplan [5] : let Ω be an open regular connected, not necessarily bounded set of IRN and
QT = Ω × (0, T ] for T > 0. The function u is C2,1(QT ) means that u, ∂u

∂t
, ∂u

∂xi
and ∂2u

∂xi∂xj

are defined in QT and can be continuously continued up to Ω × (0, T ].

0AMS Subject Classifications : 35B40, 35K55.
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We use extensively the comparison theorem of Kaplan [5] that we denote in the rest
of the paper by Kaplan’s theorem.

In section 2, we study the solutions of (2) which blow up at a finite time, and get
estimates of the time of blow-up. In fact we cannot use the standard methods to (2), due
to the term ”a” which tends to zero at infinity. We work in the ball centered at zero of
radius R > 0 denoted by BR and we consider the problem :











ut − ∆u = F (x, u) for (x, t) ∈ BR × (0, +∞)
u(x, 0) = u0(x) for x ∈ BR

u(x, t) = 0 when | x |= R.
(3)

We prove existence of blow-up for solutions of (3) and then we can conclude with
Kaplan’s theorem. More precisely, define

αR = min
x∈BR

a(x), (4)

(λ1, φ) depending on R such that :



















−∆φ = λ1φ in BR

φ = 0 on ∂BR

φ > 0 in BR
∫

BR
φ dx = 1

(5)

and s0 the greatest zero of the function gR defined on [0,∞) by :

gR(s) = λ αRf(s) − (λ1 + c2)s. (6)

Troughout this paper we denote by Tb the time of blow-up of a function b and by

[0, T (b)] (7)

a closed interval on which b is bounded and regular. The main result of this section is the
following :

Theorem 1.1 Fix R = R0 > 0 such that
∫ +∞

A
ds

f(s)
< ∞ for A > 0 and min

BR

u0 > s0. Then

the solution u of (2) blows up in a finite time Tu 6= 0.

In section 3, we study the blow-up rate and prove that the qualitative properties of
the solutions of (2) near a blow-up point is the same as in the constant coefficient case [2]
[3]. More precisely we prove the following theorem :

Theorem 1.2 Let p > 1 and R0 > 0. For f(t) ≥ tp for all t ≥ 0, we have the estimate :

‖ u(., t) ‖∞≥ [(p − 1)λ αR0
]−

1

p−1 (Tu − t)−
1

p−1 (8)

for 0 < t < Tu with :

‖ u(., t) ‖∞= sup
x∈IRN

u(x, t). (9)
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We also give an upper bound of a solution of (2) in a neighborhood of a blow-up point.
Let R0 > 0. We introduce the following assumptions :

∆u0 − c2u0 + λ a(x)f(u0) ≥ 0 in BR0
(10)

and

f ′(r)r − f(r) ≥ 0 for r ≥ 0. (11)

Theorem 1.3 Assume (10) and (11). Let (X, Tu) be a blow-up point for a solution u of

(2) and assume that V is an open neighborhood of X in BR0
such that u is bounded on

∂V × [0, Tu). Then for every η ∈ (0, Tu), there exists a constant δ = δ(u, η) such that

u(x, t) ≤ Φ−1[−δ(Tu − t)] (12)

for all x ∈ V and t ∈ (η, Tu), where Φ−1 is the inverse function of a primitive Φ of f .

We precise both last theorems in particular cases :

Theorem 1.4 Under the assumptions of theorems 1.2 and 1.3, for f(u) = up or f(u) =
(1 + u)p with p > 1, the function w defined by :

w(x, t) = (Tu − t)
1

p−1 u(x, t) (13)

is bounded on IRN × (0, Tu).

In section 4, we give the asymptotic behavior of the solution u of (2) near a blow-up
point.

Theorem 1.5 Assume that 1 < p < N+2
N−2

and f(u) = up or f(u) = (1 + u)p with p > 1.
Let (X, Tu) be a blow-up point for u satisfying (2). Then

lim
t→Tu

(Tu − t)
1

p−1 u(X + y(Tu − t)
1

2 , t) = (λ (p − 1)a(X))−
1

p−1 . (14)

The limit is independent of y ∈ IRN and it is uniform on each compact set | y |≤ C.

2 Existence of blow-up for solutions of (2)

2.1 Upper bound for uR and u

We assume there exists a regular solution uR of (3). We have

a(x) ≤‖ a ‖∞ .

Consider the differential problem :
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dz

dt
= λ ‖ a ‖∞ f(z) − c2z

z(0) ≥ sup
x∈IRN

u0(x)

z(t) ≥ 0

(15)

By the change z(t) = e−c2tv(t)















dv

dt
= ec2tλ ‖ a ‖∞ f(e−c2tv(t)) ≥ 0

v(0) ≥ sup
x∈IRN

u0(x)

and then v(t) ≥ 0 and z(t) ≥ 0 on their interval of definition. We use the notation
introduced in (7). Choosing z(0) ≥ supx∈IRN u0(x), we get a solution z of (15) regular and
bounded on [0, T (z)]. By Kaplan’s theorem, we obtain :

uR(x, t) ≤ z(t) for all x ∈ BR and t ∈ (0, min(T (uR), T (z))). (16)

As z does not depend on R, the inequality (16) is true for every R. Now we look at
u. Assume there exists a regular solution of (2). In BR, u satisfies











ut − ∆u = F (x, u)
u(x, 0) = u0(x)
u(x, t) ≥ 0 for | x |= R.

By Kaplan’s theorem in BR we have :

u ≥ uR in BR × (0, min(T (u), T (uR))). (17)

As uR(x, t) = 0 outside of BR, the inequality (17) is true in IRN . On the other side,
Kaplan’s theorem gives :

u(x, t) ≤ z(t) in IRN × [0, min(T (u), T (z)].

Finally we get :

For all R > 0 uR ≤ u ≤ z in IRN × (0, min(T (u), T (uR), T (z)). (18)

2.2 Existence of blowing up solutions

2.2.1 Blow-up for uR

Following the original idea of Kaplan [5], we show that sup
x∈BR

uR(x, t) is bounded from

below. This estimate allows us to prove the existence of blow-up for uR. We assume that
uR exists as a regular solution of (3). Define

ûR(t) =
∫

BR

uR(x, t)φ(x) dx (19)

where φ is defined in (5). Then
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ûR(0) ≥ inf
BR

u0(x). (20)

Multiplying the equation (3) of uR by φ and integrating over BR, we find :

dûR

dt
= λ

∫

BR

af(uR)φ dx − (λ1 + c2)ûR.

As

∫

BR
af(uR)φ dx ≥ αR

∫

BR
f(uR)φ dx

≥ αRf
(

∫

BR
uR φ dx

)

with αR defined in (4), and by use of Jensen’s inequality. Finally we find a differential
inequality for ûR :

dûR

dt
≥ λαRf(ûR) − (λ1 + c2)ûR (21)

with (20). Consider the differential problem :











dζR

dt
= λαRf(ζR) − (λ1 + c2)ζR

ζR(0) = inf
x∈BR

u0(x).
(22)

Kaplan’s theorem gives ûR(t) ≥ ζR(t) for t ∈ [0, min(T (ûR), T (ζR))]. As ûR(t) ≤ sup
x∈BR

uR(x, t),

we get :

sup
x∈BR

uR(x, t) ≥ ζR(t). (23)

Inequality (23) is true for bounded functions; now if ζR blows up for TζR
> T (ζR), by

continuity we get blow-up results for uR. Recall that s0 and gR are defined in (6). Then

Proposition 2.1 If
∫ +∞

A
ds

f(s)
< ∞ and if inf

BR

u0 > s0, then ζR blows up at a finite time

TζR
=
∫ +∞

ζR(0)

ds

λαRf(s) − (λ1 + c2)s
.

Note that the integral is convergent as f is superlinear. The second condition says
that u0 must be ”big enough”. Now the inequality (23) shows that uR must blow up
for a finite time TuR

, if ζR does. Using the function z introduced in (15), we know that
uR(x, t) ≤ z(t) for t ∈ (0, min(T (uR), T (z)). Let h(s) = λ ‖ a ‖∞ f(s) − c2s, and denote
by s1 the greatest zero of h. We get :

Proposition 2.2 If z(0) > s1, then z blows up in a finite time

Tz =
∫ +∞

z(0)

ds

λ ‖ a ‖∞ f(s) − c2s
.
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We can choose z(0) > s1, and then get a function z wich blows up at t = Tz. Finally
we get :

Proposition 2.3 Under the conditions of propositions 2.1 and 2.2, we get blow-up for

uR in a finite time TuR
satifying

∫ +∞

z(0)

ds

λ ‖ a ‖∞ f(s) − c2s
≤ TuR

≤
∫ +∞

inf
BR

u0

ds

λαRf(s) − (λ1 + c2)s
.

2.2.2 Blow-up for u

We can deduce from the preceding subsection conditions for the explosion of u. We assume
that the conditions of proposition 2.3 are satisfied for R = R0. We have :

uR0
(x, t) ≤ u(x, t) ≤ z(t) for (x, t) ∈ BR0

× (0, min(T (uR0
), T (u), T (z)))

and

sup
x∈BR0

u(x, t) ≥ sup
x∈BR0

uR0
(x, t).

Then theorem 1.1 results from the inequality Tz ≤ Tu ≤ TζR0
.

2.2.3 Special cases

First we consider f(u) = up with p > 1. Then (22) becomes











dζ

dt
= λαRζp − (λ1 + c2)ζ

ζ(0) = inf
x∈BR

u0(x)

By the change ζ(t) = e−µtg(t) with µ = λ1 + c2, (22) becomes :











dg

dt
= λαRe−(p−1)µtgp

g(0) = inf
x∈BR

u0(x).
(24)

Integrating the differential equation (24) between 0 and t, and taking t = Tg, we get :

1 − e−(p−1)µTg =
µ

λαRgp−1(0)

which gives the condition for existence of blow-up for g :

inf
x∈BR

u0(x) = g(0) >

[

λαR

λ1 + c2

]
1

p−1

and the time of blow-up for g and ζR :
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Tg = TζR
= −

1

µ(p − 1)
ln

[

1 −
µ

λαRgp−1(0)

]

.

We proceed in a similar way for z. In (15) we make the change : z(t) = e−c2tv(t) and get:











dv

dt
= λ ‖ a ‖∞ e−(p−1)c2tvp

v(0) ≥ sup
IRN

u0.

Integrating this differential equation between 0 and t and taking t = Tv, we get :

v(0) >

[

λ ‖ a ‖∞
c2

]
1

p−1

and

Tz = Tv = −
1

(p − 1)c2
ln

(

1 −
c2

λ ‖ a ‖∞ vp−1(0)

)

.

Then

−
1

(p − 1)c2
ln

(

1 −
c2

λ ‖ a ‖∞ zp−1(0)

)

≤ TuR
≤ −

1

µ(p − 1)
ln

(

1 −
µ

λαRgp−1(0)

)

.

Next, if f(u) = (1 + u)p or f(u) = 1 + up with p > 1, we have f(u) > up for u > 0
and so we get the same bound from below of uR and the same bound from above of TuR

.
On the other side, if f(t) = (1 + t)p we can integrate the associated differential equation
to get a bound from above of uR and a bound from below of TuR

. Precisely, we have :











dv

dt
= λ ‖ a ‖∞ ec2t(1 + e−c2tv)p ≤ λ ‖ a ‖∞ ec2t(1 + v)p

v(0) ≥ sup
IRN

u0.

Considering







dν

dt
= λ ‖ a ‖∞ ec2t(1 + ν)p

ν(0) = v(0)

we get :

ec2Tν = ec2Tv = 1 +
c2

(p − 1)λ ‖ a ‖∞
×

1

[1 + ν(0)]p−1
.

Let us notice that no necessary condition for the blow-up of ν appears in this proof.
Finally we have :

1

c2
ln

[

1 +
c2

(p − 1)λ ‖ a ‖∞
×

1

[1 + ν(0)]p−1

]

≤ TuR
≤ −

1

(p − 1)µ
ln

[

1 −
µ

λαRgp−1(0)

]

.
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3 Estimate of blow-up rate

In this section we give an estimate of a solution u of (2) with respect to (Tu − t).

3.1 Lower bound

Proof of theorem 1.2 : First we give a minoration of uR0
. Recall that ûR0

defined in
(19) satisfies (20)-(21).

First we study the case : f(u) = up. We consider the differential problem (22) with
the change : ζ(t) = e−µtg(t), µ = λ1 + c2, we get :















dg

dt
= λαR0

e−(p−1)µtgp

g(0) = inf
BR0

u0

By integration :

g(t) =

(

µ

λαR0

)

[

e−(p−1)µt − e−(p−1)µTg

]

−
1

p−1

for 0 < t < Tg and by the mean-value theorem :

g(t) = [(p − 1)λαR0
]−

1

p−1 (Tg − t)−
1

p−1 eµθ (t < θ < Tg)

for 0 < t < Tg. Now

ûR0
(t) ≥ [(p − 1)λαR0

]−
1

p−1 (Tg − t)−
1

p−1 .

As TûR0
≥ Tg, we obtain :

ûR0
(t) ≥ [(p − 1)λαR0

]−
1

p−1 (TûR0
− t)−

1

p−1

for 0 < t < TûR0
. As sup

x∈BR0

uR0
(x, t) ≥ ûR0

(t) with TuR0
≤ TûR0

, we get :

‖ uR0
(., t) ‖∞≥ [(p − 1)λαR0

]−
1

p−1 (TuR0
− t)−

1

p−1 (25)

for 0 < t < TuR0
. As u(x, t) ≥ uR0

(x, t) for x ∈ IRN , we finally obtain :

‖ u(., t) ‖∞≥ [(p − 1)λαR0
]−

1

p−1 (Tu − t)−
1

p−1 (26)

for 0 < t < Tu.

Now if f(u) > up for u ≥ 0, we get again :















dûR0

dt
≥ λαR(ûR0

)p − (λ1 + c2)ûR0

ûR0
(0) ≥ inf

x∈BR0

u0(x)
(27)

and the proof is still valid.
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3.2 Lower bound of a solution of (2) in a neighborhood of a
blow-up point

In this section we prove theorems 1.3 and 1.4. Let us consider a solution u of (2), we
restrict ourselves to BR0

as the blow-up occurs in BR0
. We assume (10). For instance if

u0 = U0, where U0 is a positive constant, and if f(t) = tp, we find that (10) is verified if

U0 ≥









c2

λ inf
x∈BR0

a(x)









1

p−1

and furthermore U0 must satisfy the condition of proposition 2.1. It is possible to choose
U0 in such a way. In the case f(t) = (1 + t)p, it is easy to see that we can choose u0 = U0

constant satifying (10), but the value of U0 is not explicit.
Now we give here a proof widely inspired by Friedmann and Mac Leod [2]. Let δ be

a positive real and consider the function J defined for (x, t) ∈ BR0
× (0, Tu) by :

J(x, t) = ut(x, t) − δf(u(x, t)).

Because of (10), we have : ut(x, t) > 0 in BR0
× (0, Tu) (see [7]).

Lemma 3.1 Under the condition (11), J satisfies in BR0
× (0, Tu) the differential in-

equality

Jt − ∆J + c2J − λa(x)f ′(u)J ≥ 0. (28)

Proof : A direct computation gives :

Jt − ∆J + c2J − λa(x)f ′(u)J = δf”(u)|∇u|2 + δc2[f ′(u)u − f(u)]

and the result holds.

The condition (11) says that f is greater than a linear function. In fact, the solutions
of the equation f ′(u)u − f(u) = 0 are the linear functions (in particular f(0) = 0). We

can say also that xf ′(x)− f(x) ≥ 0 is equivalent to the following : the function x 7→ f(x)
x

,
for x > 0, is an increasing function.

We see also that f(x) = xp satisfies the inequality (11) for x ≥ 0, and that f(x) =
(1 + x)p satisfies (11) for x ≥ 1.

Lemma 3.2 Let (X, Tu) be a blow-up point for u solution of (2) and assume that V is an

open neighborhood of X in BR0
such that u is bounded on ∂V × [0, Tu). Then for every

η ∈ (0, Tu), there exists δ = δ(η, u) > 0 such that J ≥ 0 in V × (η, Tu).

Proof : As ut > 0 in V × (0, Tu) , there exists a constant Cu > 0 such that ut ≥ Cu > 0
in V × (0, Tu). As u is bounded on ∂V × [0, Tu), so is f(u), and there exists δ1 such that :

ut − δ1f(u) ≥ Cu − δ1f(u) ≥ 0
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on ∂V ×[0, Tu). On the other hand, let x be in V and η in (0, Tu). The function x 7→ u(x, η)
is bounded on V by definition of Tu. Then there exists a constant δ2(u, η) > 0 such that :

J(x, η) = ut(x, η) − δ2f(u(x, η)) ≥ 0

for x ∈ V . By Kaplan’s theorem, comparing J and 0 on V × [η, T (u)], T (u) < Tu, we
conclude that J ≥ 0 in V × [η, T (u)] and the result holds by continuity.

Proof of Theorem 1.3 : By lemma 3.2, we get : ut ≥ δf(u); assuming f(u) 6= 0, we
have

ut

f(u)
≥ δ.

By integration in the interval (t, t′) ⊂ (0, Tu), and taking t′ = Tu, we get :

Φ(u(t)) ≤ −δ(Tu − t).

Φ is a monotone function, which has an inverse function Φ−1, and the result holds.

Proof of Theorem 1.4 : If f(r) = rp, then Φ(r) = −1/[(p − 1)rp−1] and Φ−1(r) =
[−(p − 1)r]−1/(p−1), r < 0.

If f(r) = (1 + r)p, then Φ(r) = −1/[(p − 1)(1 + r)p−1] and Φ−1(r) = −1 + [−(p −
1)r]−1/(p−1), r < 0.

4 Asymptotic behavior

To prove theorem 1.5 we follow the idea of Giga and Kohn [3]. To study u near a point
(X, Tu), we introduce the rescaled function w of theorem 1.4 :

w(y, s) = (Tu − t)
1

p−1 u(x, t) (29)

with

{

x − X = (Tu − t)
1

2 y
Tu − t = e−s.

(30)

For f(u) = up, p > 1, the function w solves :

ws −
1

ρ
∇.(ρ∇w) +

1

p − 1
w + c2e−sw = λa(X + e−

s
2 y)wp (31)

in IRN × (σ0, +∞) where σ0 = − ln Tu and ρ(y) = exp(−|y|2/4). And for f(u) = (1 + u)p,
p > 1, equation (31) is replaced by :

ws −
1

ρ
∇.(ρ∇w) +

1

p − 1
w + c2e−sw = λa(X + e−

s
2 y)(e−

s
p−1 + w)p. (32)

Before proving theorem 1.5, we establish two lemmas wich concern L2-estimates of ws

and ∇w. Note that in lemma 4.1 the condition p < (N + 2)/(N − 2) is not needed. We
denote by M a bound from above of w,which exists by preceding theorem.
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Lemma 4.1 There exists a real number L > 0 which only depends on p, c, λ, a, Tu, M and
∫

IRN |∇w|2(y, σ0)ρ(y)dy, such that :

∫ +∞

σ0

∫

IRN
w2

sρ dy ds ≤ L . (33)

Proof : Case 1 : f(u) = up, p > 1. Multiplying equation (31) by wsρ and integrating
on any ball BR, we obtain for s > σ0 :

∫

BR

w2
sρ dy +

∫

BR

[

−ws∇.(ρ∇w) +

(

1

p − 1
+ c2e−s

)

wwsρ

]

dy

= λ
∫

BR

a(X + e−
s
2 y)wpwsρ dy .

(34)

Since

∫

BR

−ws∇.(ρ∇w)dy =
∫

BR

−w∇.(ρ∇ws) +
∫

∂BR

∇ws.νwρdσ −
∫

∂BR

∇w.νwsρdσ ,

this implies when R tends to infinity :
∫

IRN
−ws∇.(ρ∇w)dy =

∫

IRN
−w∇.(ρ∇ws)dy.

Then

1

2

d

ds

(
∫

RN
|∇w|2ρdy

)

= −
∫

IRN
ws∇.(ρ∇w)dy .

This and relation (34) lead us to :

∫

IRN
w2

sρ dy +
1

2

d

ds

(
∫

RN
|∇w|2ρdy

)

+
∫

IRN

(

1

p − 1
+ c2e−s

)

wwsρ dy

= λ
∫

IRN
a(X + e−

s
2 y)wpwsρ dy .

Now consider τ > σ0 and integrate this relation on [σ0, τ ] :

∫ τ

σ0

∫

IRN
w2

sρ dy +
1

2

∫

RN
|∇w|2(y, τ)ρdy =

1

2

∫

RN
|∇w|2(y, σ0)ρdy

−
∫ τ

σ0

∫

IRN
(

1

p − 1
+ c2e−s)wwsρ dy ds + λ

∫ τ

σ0

∫

IRN
a(X + e−

s
2 y)wpwsρ dy ds .

(35)

To obtain (33), we have to bound the second and third terms of the right hand side of
(35). Using an integration by parts, we have :

11



−
∫ τ

σ0

∫

IRN

(

1

p − 1
+ c2e−s

)

wwsρdyds

= −
∫

IRN

([(

1

p − 1
+ c2e−s

)

w2

2

]τ

σ0

− c2
∫ τ

σ0

e−s w2

2
ds

)

ρdy

≤
∫

IRN

(

1

p − 1
+ c2Tu

)

w2

2
(y, σ0)ρdy + c2M2

2
Tu

∫

IRN
ρdy

≤

(

1

2(p − 1)
+ c2Tu

)

M2
∫

IRN
ρdy .

(36)

Finally, we also have :

λ
∫ τ

σ0

∫

IRN
a(X + e−

s
2 y)wpwsρ dy ds

= λ
∫

IRN

[

a(X + e−
s
2 y)

wp+1

p + 1

]τ

σ0

ρ dy +
λ

2

∫

IRN

(

∫ τ

σ0

e−
s
2∇a(X + e−

s
2 y).y

wp+1

p + 1
ds

)

ρdy

≤ λ||a||∞
Mp+1

p + 1

∫

IRN
ρdy +

λ

2
||∇a||∞

e−
σ0
2

2

Mp+1

p + 1

∫

IRN
|y|ρdy .

(37)
Combining (35)-(36) and (37) we derive (33).

Case 2 : f(u) = (1 + u)p, p > 1. The only difference is that (37) is replaced by :

λ
∫ τ

σ0

∫

IRN
a(X + e−

s
2 y)(e−

s
p−1 + w)pwsρ dy ds

= λ
∫ τ

σ0

∫

IRN
a(X + e−

s
2 y)(e−

s
p−1 + w)p(−

1

p − 1
e−

s
p−1 + ws)ρ dy ds

+
λ

p − 1

∫ τ

σ0

∫

IRN
a(X + e−

s
2 y)(e−

s
p−1 + w)pe−

s
p−1 ρ dy ds .

The first term can be treated integrating by parts as in (37) and the second term is
bounded.

Now we give an estimate of the gradient of w. We only treat the case f(u) = up,
p > 1. The other case can be treated similarly, as in the previous lemma. We introduce
the energy function E for w as follows : for s ≥ σ0 :

E[w](s) =
∫

IRN

(

1

2
|∇w|2 + (

1

p − 1
+ c2e−s)

w2

2
−

λ

p + 1
a(X + e−

s
2 y)wp+1

)

ρ|y|2dy

−
1

2

∫

IRN
(
1

2
|y|2 − N)w2ρdy.

Lemma 4.2 Assume that 1 < p < (N + 2)/(N − 2). Then there exists a real number

L̃ > 0 which only depends on p, c, λ, a, Tu, M and E[w](σ0), such that :

∫ +∞

σ0

∫

IRN
|∇w|2(1 + |y|2)ρdy ds ≤ L̃ . (38)
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The proof follows the idea of propositions 4.1, 4.2 and 4.3 of [3] and we only give the
derivative of E :

d

ds
E[w](s) = −

∫

IRN
w2

s |y|
2ρdy −

c2

2
e−s

∫

IRN
w2|y|2ρdy

−(p + 3)
∫

IRN
ws(∇w.y)ρdy +

λe−
s
2

2(p + 1)

∫

IRN
∇a(X + e−

s
2 y).ywp+1|y|2ρdy

−
∫

IRN

[

p − 1

4
|y|2 +

1

2
(N + 2 − p(N − 2))

]

|∇w|2ρdy

−
p − 1

2
c2e−s

∫

IRN
(
1

2
|y|2 − N)w2ρdy − λe−

s
2

∫

IRN
∇a(X + e−

s
2 y).ywp+1ρdy .

Proof of theorem 1.5 : Let (sj) be any sequence tending to infinity. Consider the
function wj defined on IRN × (σ0 − sj, +∞) by : wj(y, s) = w(y, s + sj). The function wj

is bounded by M and it is a respective solution of

wjs −
1

ρ
∇.(ρ∇wj) +

1

p − 1
wj + c2e−s−sjwj = λa(X + e−

s+sj

2 y)wp
j

for f(u) = up and

wjs −
1

ρ
∇.(ρ∇wj) +

1

p − 1
wj + c2e−s−sjwj = λa(X + e−

s+sj

2 y)
(

e−
s+sj

p−1 + wj

)p

for f(u) = (1 + u)p. Using the Lq-regularity theory for parabolic equations (see [6]), we
deduce that ∇wj, D2wj and wjs are bounded in Lq(BR×(−R, +∞)) for each q ∈ (1, +∞)
and R > 0 (when sj is large enough), the bound being independent of j. By Sobolev’s
inequality and Schauder’s estimates (see [1]) we obtain that (D2wj) and (wjs) are Hölder
continuous on each BR × (−R, +∞), uniformally with respect to j.

By the Arzela-Ascoli theorem and a diagonal argument, there exists a subsequence,
still denoted by wj, converging uniformly to a function l on each BR × (−R, +∞). This
function l is in C2,1(IRN+1) and it is solution of

ls −
1

ρ
∇.(ρ∇l) +

1

p − 1
l = λa(X)lp .

Because of lemmas 4.1 and 4.2, we have :

∫ +∞

−R

∫

BR

|∇wj|
2ρdyds =

∫ +∞

−R+sj

∫

BR

|∇w|2ρdyds → 0

∫ +∞

−R

∫

BR

w2
jsρdyds =

∫ +∞

−R+sj

∫

BR

w2
jsρdyds → 0

as j → +∞, for all R > 0. Thus, l is independent of both y and s and satisfies

1

p − 1
l = λa(X)lp .

Finally because of theorem 2.1 of [4], the limit (14) holds.

13



References

[1] A. Friedmann, Partial differential equations of parabolic type, Prentice Hall, Engle-
wood Cliffs, NJ (1964).

[2] A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equa-

tions, Indiana Univ. Math. J. 34 (1985), 425-447.

[3] Y. Giga and R. V. Kohn, Characterizing blow-up using similarity variables, Indiana
Univ. Math. J. 36 (1987), 1-40.

[4] Y. Giga and R. V. Kohn, Nondegeneregy of blow-up for semilinear heat equations,
Comm. Pure Appl. Math. 42 (1989), 845-884.

[5] S. Kaplan, On the growth of solutions of quasilinear parabolic equations, Comm. Pure
Appl. Math. 16 (1963), 305-333.

[6] O. A. Ladyzenskaia, V. A. Solonnikov and N. N. Uralceva, Linear and quasilinear
equations of parabolic type, AMS, Providence, RI (1968).

[7] D. Sattinger, Topics in stability and bifurcation theory, Lect. notes math. 309,
Springer, New York (1973).

[8] A. Simon (A. Chaljub-Simon) and P. Volkmann, Existence of ground states with expo-

nential decay for semi-linear elliptic equations in IRN , J. Diff. Eq. 76 (1988), 374-390.

[9] A. Simon (A. Chaljub-Simon) and P. Volkmann, Existence de deux solutions positives
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