N

N

Blow-up for semi-linear parabolic problems with
non-constant coefficients
Michele Grillot, Alice Simon

» To cite this version:

Michele Grillot, Alice Simon. Blow-up for semi-linear parabolic problems with non-constant coeffi-
cients. Differential and integral equations, 2004, vol 17, pp.227-240. hal-00082593

HAL Id: hal-00082593
https://hal.science/hal-00082593
Submitted on 28 Jun 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00082593
https://hal.archives-ouvertes.fr

BLOW-UP FOR SEMI-LINEAR PARABOLIC PROBLEMS
WITH NON CONSTANT COEFFICIENTS

MICHELE GRILLOT
TUFM d’Orléans-Tours et Université d’Orléans MAPMO -
BP 6759 - 45 067 Orléans cedex 02 France

ALICE (CHALJUB)-SIMON
Université d’Orléans MAPMO -
BP 6759 - 45 067 Orléans cedex 02 France

Abstract

In this paper we study the solutions of some semi-linear parabolic problems with
non constant coefficients. We prove the existence of solutions which blow up at a
finite time, and give the behavior near a point of blow-up.

1 Introduction : notations and main results
In this paper we consider the problem :

u; + Lu= X\ a(z)f(u) for (z,t) € RN x (0,+00)
u(r,0) = up(z) for ze€ RN (1)
w(z,t) — 0 when |z]|— o0

whith L = —A+¢c% ¢ >0, N > 2 and A > 0. The functions a and w, are continuous,
bounded, strictly positive and tend to zero at infinity. The function f is superlinear. We
also assume that f is C? with nonnegative values, f'(x) > 0 for x > 0 and f”(z) > 0 for
x> 0.

The operator L appeared earlier in some elliptic problems related with the equation
of Klein-Gordon [8] [9]. The first motivation of this work is the study of the relationship
with the elliptic problem. The special form of the right-hand side of (1) is given by sake
of simplicity. More general forms can be considered.

In this paper (1) will be written as :

u; — Au = F(x,u) for (z,t) € RY x (0, +00)
u(x,0) = ug(z) for ze RN (2)
u(z,t) - 0 when |z]|— o0

where F'(z,u) = X a(z)f(u) — c*u. We consider regular solutions of (2) in the sense of

Kaplan [5] : let © be an open regular connected, not necessarily bounded set of IRY and

Qr = Q x (0,T] for T > 0. The function u is C*!(Qr) means that u, %, g—g and 8225;]_

are defined in Q7 and can be continuously continued up to Q x (0, 7.

OAMS Subject Classifications : 35B40, 35K55.



We use extensively the comparison theorem of Kaplan [5] that we denote in the rest
of the paper by Kaplan’s theorem.

In section 2, we study the solutions of (2) which blow up at a finite time, and get
estimates of the time of blow-up. In fact we cannot use the standard methods to (2), due
to the term "a” which tends to zero at infinity. We work in the ball centered at zero of
radius R > 0 denoted by Br and we consider the problem :

u — Au = F(x,u) for (x,t) € Bg x (0,400)
u(z,0) =ug(x) for x € Bpg (3)
u(z,t) =0 when |z|=R.
We prove existence of blow-up for solutions of (3) and then we can conclude with
Kaplan’s theorem. More precisely, define

ap = min a(z), (4)

(A1, ¢) depending on R such that :

—Ap=XM\¢ in Bp

=0 on 0Bpg (5)
>0 in Bp

Ipp @ dz =1

and sg the greatest zero of the function gg defined on [0, 00) by :

gr(s) = X arf(s) — (M + c*)s. (6)
Troughout this paper we denote by T; the time of blow-up of a function b and by

[0,7(b)] (7)

a closed interval on which b is bounded and regular. The main result of this section is the
following :

Theorem 1.1 Fiz R = Ry > 0 such that [{> fcg) < oo for A >0 and min ug > sqg. Then
Br

the solution u of (2) blows up in a finite time T, # 0.

In section 3, we study the blow-up rate and prove that the qualitative properties of
the solutions of (2) near a blow-up point is the same as in the constant coefficient case [2]
[3]. More precisely we prove the following theorem :

Theorem 1.2 Let p > 1 and Ry > 0. For f(t) > t* for allt > 0, we have the estimate :

| u(t) o> [(p = DA am,] 77 (T, = £) 77 (8)
for 0 <t < T, with :
| u(t) [loo=sup u(z,?). (9)
z€RN



We also give an upper bound of a solution of (2) in a neighborhood of a blow-up point.
Let Ry > 0. We introduce the following assumptions :

Aug — Fug + X a(x)f(ug) >0 in  Bg, (10)

and
f'(ryr—f(r)>0 for r>0. (11)

Theorem 1.3 Assume (10) and (11). Let (X, T,) be a blow-up point for a solution u of
(2) and assume that V' is an open neighborhood of X in Bpg, such that u is bounded on
IV x [0,T,,). Then for everyn € (0,T1,), there exists a constant 6 = §(u,n) such that

u(z,t) < & H—6(T, — )] (12)
forallx € V and t € (n,T,), where @1 is the inverse function of a primitive ® of f.

We precise both last theorems in particular cases :

Theorem 1.4 Under the assumptions of theorems 1.2 and 1.3, for f(u) = u? or f(u) =
(1 4+ u)? with p > 1, the function w defined by :

w(z,t) = (T, — t)7 Tu(z, t) (13)
is bounded on RN x (0,T,).

In section 4, we give the asymptotic behavior of the solution u of (2) near a blow-up
point.

Theorem 1.5 Assume that 1 < p < 32 and f(u) = u? or f(u) = (1 + u)? with p > 1.

Let (X,T,) be a blow-up point for u satisfying (2). Then

lim (T, — )7 Tu(X + y(T, — t)2,t) = (A (p— Da(X)) 77. (14)

t—Ty

The limit is independent of y € RN and it is uniform on each compact set |y |< C.

2 Existence of blow-up for solutions of (2)

2.1 Upper bound for urp and u

We assume there exists a regular solution up of (3). We have

a(z) <[l a [l -

Consider the differential problem :



=A llalle f(z) =

) > sg}gNUO( x) (15)
) >

dz
dt
2(0
2(t
By the change z(t) = e~<tv(t)

d?J 2 —c2?
2 = lalle fle o(t) 2 0

5(0) > sup wole)
zeRN

and then v(¢) > 0 and z(¢) > 0 on their interval of definition. We use the notation
introduced in (7). Choosing z(0) > sup,cp~ uo(z), we get a solution z of (15) regular and
bounded on [0, 7(z)]. By Kaplan’s theorem, we obtain :

ur(z,t) < 2(t) forall z€ Bg and te€ (0,min(T(ug),T(2))). (16)

As z does not depend on R, the inequality (16) is true for every R. Now we look at
u. Assume there exists a regular solution of (2). In Bg, u satisfies

— Au = F(z,u)
u(z,0) = ug(x)
u(z,t) >0 for |z|=R

By Kaplan’s theorem in Br we have :
u>up in Bgx (0,min(T(u),T(ug))). (17)

As ug(z,t) = 0 outside of Bg, the inequality (17) is true in IRY. On the other side,
Kaplan’s theorem gives :

u(z,t) < z(t) in RN x [0, min(T(u), T(z)].
Finally we get :

Foral R>0 ugp<u<z in RY x (0,min(T(u), T(ug),T(z)). (18)

2.2 Existence of blowing up solutions
2.2.1 Blow-up for ug
Following the original idea of Kaplan [5], we show that sup ug(z,t) is bounded from

r€BR
below. This estimate allows us to prove the existence of blow-up for ugz. We assume that

up exists as a regular solution of (3). Define

in(t) = [ un(x.)o(a) da (19)
where ¢ is defined in (5). Then



ur(0) = %1: ug (). (20)

Multiplying the equation (3) of ur by ¢ and integrating over Bg, we find :

duR

—_)\/ af (up)d de — (M + Aig

Ippaf(ur)d dv > ag [z, f(ur)e dx
> anf (Jp, un ¢ do)

with ap defined in (4), and by use of Jensen’s inequality. Finally we find a differential
inequality for ug :

~

W Z /\O(Rf(ﬂR) — (/\1 + CQ)ZALR (21)
with (20). Consider the differential problem :
d
% = )\OéRf(CR) - ()\1 + CQ)CR (22)
Gl0) = inf uola).
z€BR
Kaplan’s theorem gives @i (t) > (r(t) fort € [0, min(T'(ir), T'(Cr))]. Astg(t) < sup ugr(z,t),
zeB
we get : )
sup ugr(w,t) > (r(t). (23)
r€BR

Inequality (23) is true for bounded functions; now if (g blows up for Ty, > T'(Cg), b
continuity we get blow-up results for ug. Recall that sy and gg are defined in (6). Then

Proposition 2.1 If f+°° ds < oo and if inf ug > sq, then (g blows up at a finite time

Br

_/+oo dS
T Jer) Aagf(s) — (A +2)s’

T

Note that the integral is convergent as f is superlinear. The second condition says
that wy must be "big enough”. Now the inequality (23) shows that ug must blow up
for a finite time 7)., if (g does. Using the function z introduced in (15), we know that

ur(z,t) < z(t) for t € (0, min(T(ur), T(2)). Let h(s) = A || a || f(s) — ¢*s, and denote
by s; the greatest zero of h. We get :

Proposition 2.2 If z(0) > sy, then z blows up in a finite time

T, = / .
(0) /\||a||oo ()—028



We can choose z(0) > s;, and then get a function z wich blows up at ¢ = T,. Finally
we get :

Proposition 2.3 Under the conditions of propositions 2.1 and 2.2, we get blow-up for
ug n a finite time T,,,, satifying

<T, < .
0 Ala|e f(s)—c2s = % 7 Jinfuy Aagf(s) — (A + 2)s

Br

/+OO ds +oo dS

2.2.2 Blow-up for u

We can deduce from the preceding subsection conditions for the explosion of u. We assume
that the conditions of proposition 2.3 are satisfied for R = Ry. We have :

ugy(z,t) <u(z,t) <z2(t) for (x,t) € Br, x (0,min(T(ug,), T(u), T(2)))
and
sup U(ZL‘,t) > sup uR0($7t)‘
xeB—RO xEB—RO

Then theorem 1.1 results from the inequality T, < T, < TCRO-

2.2.3 Special cases

First we consider f(u) = u? with p > 1. Then (22) becomes

d
d—i = )\OCRCP — ()\1 + CQ)C
£0) = inf wo(o)
By the change ((t) = e #tg(t) with u = \; + %, (22) becomes :

@ — )\aRe—(p—l)utgp (24)
g(0) = xIEIgR up().

Integrating the differential equation (24) between 0 and ¢, and taking ¢t = T}, we get :

l—e DTy — _ H
AargP~1(0)
which gives the condition for existence of blow-up for g :

1

)\O(R ‘|F

)\1+62

r€BR

inf uo(z) = g(0) > [

and the time of blow-up for g and (y :



1 Iz
T,=T;) =———n|l — ———|.
T - 1) l Acmg”‘l(o)l
We proceed in a similar way for z. In (15) we make the change : z(t) = e~ <o (t) and get:

d
B Ml e

v(0) > sup uy.
RN

Integrating this differential equation between 0 and ¢ and taking ¢t = T, we get :

Moalleo]™
0> [Pl
and
1 2
T,=T,=————1In{1— .
@—1%2“( Awuuvwwm>
Then

L <1 ¢ ) <T, < L <1 S )
T - up > —— < 1n — .
(p—1)e? Mialleo 22740)) =™ = plp = 1) Aargr=1(0)

Next, if f(u) = (1 +u)? or f(u) = 1+ u? with p > 1, we have f(u) > u? for u > 0
and so we get the same bound from below of up and the same bound from above of 7}, ..
On the other side, if f(¢) = (1 4+ ¢)” we can integrate the associated differential equation
to get a bound from above of ur and a bound from below of 7},,,. Precisely, we have :

d 2 2 2
B Ml 1+ €0 < A (14 0
v(0) > sup uy.
RN
Considering
d
Y Ma e
v(0) = v(0)
we get :

c? y 1
(P=DAale  [L+v(O)p
Let us notice that no necessary condition for the blow-up of v appears in this proof.
Finally we have :

2 2
ecTyzecTU:1+

2
c 1 <1 1 W

Rﬁ‘mmll‘m]'

1
—In |1+ X
2 T DA alle " TE (0P



3 Estimate of blow-up rate

In this section we give an estimate of a solution u of (2) with respect to (T, — t).

3.1 Lower bound

Proof of theorem 1.2 : First we give a minoration of ug,. Recall that @p, defined in
(19) satisfies (20)-(21).

First we study the case : f(u) = u?. We consider the differential problem (22) with
the change : ((t) = e #g(t), p = A\ + %, we get :

@ — )\aRoe—(p—l)utgp

9(0) = inf ug

Bg,

By integration :

1
g(t) = < K ) {e—(p—l)ut _ 6—(p—1)uTg} =1

)\OZRO

for 0 <t < T, and by the mean-value theorem :

g(t) = [(p— DAag,) 7 (T, —t) 71e" (1 <0 <T))

for 0 <t < T,. Now

. 1 1
URy <t> > [(p - 1)/\@30] Pl (Tg - t) Pl
As TﬁRO > T,, we obtain :

1

UiRy(t) > [(p — 1))\01}%0]7”_;(1—‘@120 —t) 1

for 0 <t < Ty, . As zlép URy (T, 1) > Uy (1) with To,, < Tgp, , we get :
r€BR,,
[ urg (1) lloo> [(p = VAR, 77 (Tup, — ) 71 (25)

for 0 <t < Ty - As u(z,t) > ugy(,1) for x € IRY | we finally obtain :
[u(,t) [z [(p = DAaug, ] 7T (T — 1) 71 (26)
for 0 <t <T,.
Now if f(u) > uP for u > 0, we get again :

g
et ) > Aag(tig, )P — (M + ¢?)iig,

ipy(0) = inf ug(x)
IGBRO

(27)

and the proof is still valid.



3.2 Lower bound of a solution of (2) in a neighborhood of a
blow-up point

In this section we prove theorems 1.3 and 1.4. Let us consider a solution u of (2), we
restrict ourselves to Bp, as the blow-up occurs in Bg,. We assume (10). For instance if
ug = Up, where Uy is a positive constant, and if f(¢) = t*, we find that (10) is verified if

1
p—1
2

c
Vo2 A inf a(x)
z€BR,

and furthermore Uy must satisfy the condition of proposition 2.1. It is possible to choose
Up in such a way. In the case f(t) = (141¢)?, it is easy to see that we can choose uy = Uy
constant satifying (10), but the value of Uy is not explicit.

Now we give here a proof widely inspired by Friedmann and Mac Leod [2]. Let § be
a positive real and consider the function J defined for (z,t) € Bg, x (0,7T,,) by :

J(x,t) = wy(x,t) — 6 f (u(x,t)).
Because of (10), we have : us(x,t) > 0 in Bg, x (0,T3,) (see [7]).

Lemma 3.1 Under the condition (11), J satisfies in Bg, x (0,T,) the differential in-
equality

Ji— AJ + AT — da(x)f'(u)] > 0. (28)
Proof : A direct computation gives :

Jy— AT+ AT = da(x)f (u)] = 0f (w)|Vul* + 5[ f (u)u — f(u)]
and the result holds.

The condition (11) says that f is greater than a linear function. In fact, the solutions
of the equation f’(u)u — f(u) = 0 are the linear functions (in particular f(0) = 0). We
can say also that = f'(x) — f(x) > 0 is equivalent to the following : the function x — %,
for z > 0, is an increasing function.

We see also that f(x) = z? satisfies the inequality (11) for x > 0, and that f(z) =

(1 + x)P satisfies (11) for = > 1.

Lemma 3.2 Let (X, T,) be a blow-up point for u solution of (2) and assume that V is an
open neighborhood of X in Bgr, such that u is bounded on OV x [0,T,). Then for every
n € (0,7T,), there exists § = §(n,u) > 0 such that J >0 in'V x (n,T,).

Proof : Asu, > 0in V x (0,7,) , there exists a constant C, > 0 such that u, > C, > 0
in V x (0,7,). As u is bounded on 9V x [0,T5,), so is f(u), and there exists §; such that :

ur — 01 f(u) > Cy — 01 f(u) >0



on JV x[0,T,). On the other hand, let  be in V and nin (0, 7,). The function x — u(x,n)
is bounded on V' by definition of T;,. Then there exists a constant do(u,n) > 0 such that :

J(:C,?]) = Ut<$C,?7) - 52f(u(x777>> >0

for z € V. By Kaplan’s theorem, comparing J and 0 on V x [, T(u)], T(u) < T, we
conclude that J > 0in V x [n, T'(u)] and the result holds by continuity.

Proof of Theorem 1.3 : By lemma 3.2, we get : u; > 6 f(u); assuming f(u) # 0, we
have

Ut
f(u)
By integration in the interval (¢,t') C (0,T,), and taking ¢’ = T,,, we get :

> 0.

O(u(t)) < =6(T, —t).
® is a monotone function, which has an inverse function ®!, and the result holds.

Proof of Theorem 1.4 : If f(r) = r?, then ®(r) = —1/[(p — 1)r?7!] and &~ !(r) =
[—(p — V)] Y=Y < 0.

If f(r) = (1+7)?, then ®(r) = —1/[(p — 1)(1 +r)P7!] and @7 1(r) = =1 + [~ (p —
1)r]~ Y@= < 0.

4 Asymptotic behavior

To prove theorem 1.5 we follow the idea of Giga and Kohn [3]. To study w near a point
(X, T,), we introduce the rescaled function w of theorem 1.4 :

wly, s) = (Ty — )7 Tu(x, 1) (29)
with
- X = (T, 1)
{ T,—t=e". ’ (30)

For f(u) =u?, p > 1, the function w solves :
1 1 2 _3
ws — —V.(pVw) + ——qwtce ‘w= (X + e 2y)w” (31)
p p—

in IRY x (0g, +00) where 09 = —InT,, and p(y) = exp(—|y|?>/4). And for f(u) = (1+u)?,
p > 1, equation (31) is replaced by :

1 1 . s
ws — —V.(pVw) + e + e w = Aa(X + e 2y)(e 7T +w)P. (32)
P b—

Before proving theorem 1.5, we establish two lemmas wich concern L2-estimates of w;
and Vw. Note that in lemma 4.1 the condition p < (N + 2)/(N — 2) is not needed. We
denote by M a bound from above of w,which exists by preceding theorem.

10



Lemma 4.1 There exists a real number L > 0 which only depends on p,c, \,a,T,, M and
Jrx [Vw[P(y, 00)p(y)dy, such that :

+o0
20 dy ds < L . 33
/UO /RNwsp y ds < (33)

Proof : Case 1: f(u) = uP, p > 1. Multiplying equation (31) by wsp and integrating
on any ball Bg, we obtain for s > oy :

1
/ w?p dy +/ l—wsv.(pr) + (— + c%e S) wwsp] dy
Br Br p—1

(34)
] o e e i,
Br
Since
/ —w;V.(pVw)dy :/ —wV.(pVwy) +/ Vws.vwpdo — Vw.vwspdo
Br Br 0BR OBR
this implies when R tends to infinity :
/IRN —w,V.(pVw)dy = /]RN —wV.(pVws)dy.
Then
Ld Vuwl’pdy | = V.(pVw)d
soo ([ 1vulody) == [ 9.5y
This and relation (34) lead us to :
/ d+1d</ \V\2d>+/ 1 e d
wip dy + 57 wlpdy) + [\ T wwap dy
= A [ alx + eyt dy
Now consider 7 > ¢ and integrate this relation on [og, 7] :
/ / wp dy + 2/ [Vwl*(y, 7)pdy = 2/ [Vwl*(y, 00) pdy
(35)

// —+ce )wwspdyds+)\// a(X + e 2y)wPw,p dy ds .
oo JRN D oo JIRN

To obtain (33), we have to bound the second and third terms of the right hand side of
(35). Using an integration by parts, we have :

11



1 ) w* ", w?
= — — =) — — *S—d d
BN([(p_lece ) QLO c/ooe s | pdy

(36)

Finally, we also have :

)\/T/ a(X + e 2y wPw,p dy ds

_)\/ l X te zy);”p:]

ey vl

wb Tl
5/ </ e 2Va(X + e 2y). p+1ds>pdy
e~ 7 Mt

< Mlal|s
ol o

P Iy|pdy :

(37)
Combining (35)-(36) and (37) we derive (33).

Case 2: f(u) = (1 +u)?, p > 1. The only difference is that (37) is replaced by :
)\/T/ (X + e 3y)(e 7T + w)Pw,p dy d
5 A +ey)(e w)Pwsp dy ds
A [ [ alX + e iy (e T (-
0'0

—1/ /JRN a(X + e 2y)(e 7T +w)Pe 71p dy ds .
—1 Jo

The first term can be treated integrating by parts as in (37) and the second term is
bounded.

1 s
16_ﬁ + ws)p dy ds

Now we give an estimate of the gradient of w. We only treat the case f(u) = u?,
p > 1. The other case can be treated similarly, as in the previous lemma. We introduce
the energy function E for w as follows : for s > oy :

1 1 s w2 A _s
Elw](s) = /IRN <§|Vw|2 + (ﬁ +e) 5 - " Ja(X +e Qy)pr) plyl*dy
1

1
—3 IRN(§|?/|2 — N)w?pdy.

Lemma 4.2 Assume that 1 < p < (N +2)/(N — 2). Then there exists a real number
L > 0 which only depends on p,c, \,a,T,, M and E[w|(0y), such that :

400 ~
L] IVl yiedy ds < L. (39

12



The proof follows the idea of propositions 4.1, 4.2 and 4.3 of [3] and we only give the
derivative of F :

d A
— Ew](s) = —/ wllyPpdy — —e / w?ly|*pdy
]RN 2 s BN

ds \
e 2 s
- S.di/ X + e 3y).yuw Yy ?pd
(p+3)/]R]Iw (Vuiy)p TPy o ValX ez y).yw y " pdy
p_
[ Bl SV 2= p(V = 2))| [V Pady
p_ 1 —s 1 J-) _s
e /ﬂum(§|y|2—N)uﬂpdy—Ae Q/RNVG(X+6 2y).yw” ™ pdy .

Proof of theorem 1.5 : Let (s;) be any sequence tending to infinity. Consider the
function w; defined on IRY X (o¢ — s, +00) by : w;(y,s) = w(y, s+ s;). The function w;
is bounded by M and it is a respective solution of

s+s,
4 p

1 1
Wjs — ;V.(prj) + ij + e w; = Aa(X + e 7 y)uwl

for f(u) = u? and

1 1 s+s; s+s; p
Wjs — ;V.(prj) + ﬁwj + e w = Ma(X + e T y) <6P_1L + wj)

for f(u) = (1 4 u)P. Using the Li-regularity theory for parabolic equations (see [6]), we
deduce that Vw;, D*w; and w;s are bounded in LY(Bg X (—R, 400)) for each g € (1, +00)
and R > 0 (when s; is large enough), the bound being independent of j. By Sobolev’s
inequality and Schauder’s estimates (see [1]) we obtain that (D?w;) and (w;s) are Holder
continuous on each Br X (—R, +00), uniformally with respect to j.

By the Arzela-Ascoli theorem and a diagonal argument, there exists a subsequence,
still denoted by w;, converging uniformly to a function ! on each B x (—R,+00). This
function [ is in C*!'(IRV*!) and it is solution of

1 1
ls — =V.(pVIl) + ——1 = da(X)I" .
V(091) + 1 = da(X)

Because of lemmas 4.1 and 4.2, we have :

+oo +oo
/ / |Vw,|?pdyds = / / |Vw|*pdyds — 0
—-R Br —R+s; JBRr

+oo 9 +o0 9
/ / wi pdyds = / wispdyds — 0
R Bgr —R+8j Bpr

as j — +oo, for all R > 0. Thus, [ is independent of both y and s and satisfies

1
——I=Xa(X)? .
p—1

Finally because of theorem 2.1 of [4], the limit (14) holds.

13
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