
HAL Id: hal-00082592
https://hal.science/hal-00082592v2

Submitted on 24 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New algorithms for adaptive optics point-spread
function reconstruction

E Gendron, Y Clénet, T Fusco, G Rousset

To cite this version:
E Gendron, Y Clénet, T Fusco, G Rousset. New algorithms for adaptive optics point-spread func-
tion reconstruction. Astronomy & Astrophysics - A&A, 2006, 457 (1), pp.359-363. �10.1051/0004-
6361:20065135�. �hal-00082592v2�

https://hal.science/hal-00082592v2
https://hal.archives-ouvertes.fr


A&A 457, 359–363 (2006)
DOI: 10.1051/0004-6361:20065135
c© ESO 2006

Astronomy
&

Astrophysics

New algorithms for adaptive optics point-spread
function reconstruction

E. Gendron1, Y. Clénet1, T. Fusco2, and G. Rousset1

1 Observatoire de Paris, LESIA, 5 place Jules Janssen, 92195 Meudon Cedex, France
e-mail: [eric.gendron;yann.clenet;gerard.rousset]@obspm.fr

2 ONERA, BP 52, 29 avenue de la Division Leclerc, 92320 Châtillon Cedex, France
e-mail: thierry.fusco@onera.fr

Received 3 March 2006 / Accepted 20 June 2006

ABSTRACT

Context. The knowledge of the point-spread function compensated by adaptive optics is of prime importance in several image restora-
tion techniques such as deconvolution and astrometric/photometric algorithms. Wavefront-related data from the adaptive optics real-
time computer can be used to accurately estimate the point-spread function in adaptive optics observations. The only point-spread
function reconstruction algorithm implemented on astronomical adaptive optics system makes use of particular functions, named Ui j.
These Ui j functions are derived from the mirror modes, and their number is proportional to the square number of these mirror modes.
Aims. We present here two new algorithms for point-spread function reconstruction that aim at suppressing the use of these Ui j func-
tions to avoid the storage of a large amount of data and to shorten the computation time of this PSF reconstruction.
Methods. Both algorithms take advantage of the eigen decomposition of the residual parallel phase covariance matrix. In the first
algorithm, the use of a basis in which the latter matrix is diagonal reduces the number of Ui j functions to the number of mirror modes.
In the second algorithm, this eigen decomposition is used to compute phase screens that follow the same statistics as the residual
parallel phase covariance matrix, and thus suppress the need for these Ui j functions.
Results. Our algorithms dramatically reduce the number of Ui j functions to be computed for the point-spread function reconstruction.
Adaptive optics simulations show the good accuracy of both algorithms to reconstruct the point-spread function.

Key words. techniques: high angular resolution – methods: numerical

1. Introduction

Since the advent of adaptive optics (AO), it has been possible
to perform imaging with a spatial resolution very close to the
diffraction limit. Despite this large improvement, the correction
of the atmospheric turbulence by an AO system is only partial,
and point source images are for example still affected by a halo
that surrounds them.

Such effects of the partial AO correction can be corrected
by image restoration techniques such as deconvolution algo-
rithms. Except in the “blind” deconvolution case (Fusco et al.
1999; Christou et al. 1999), these algorithms need an estimation
of the point-spread function (PSF), or its corresponding optical
transfer function (OTF) derived from the PSF by a Fourier trans-
form, to restore the image unaffected by the atmospheric turbu-
lence. In addition, astrometric and photometric algorithms, e.g.,
StarFinder (Diolaiti et al. 2000) or DAOPHOT (Stetson 1987),
usually also need an estimation of the PSF.

Wavefront-related data delivered by the AO real-time com-
puter can help to accurately estimate the PSF. Véran et al. (1997)
have been the first to develop such a PSF reconstruction algo-
rithm. Implemented on the CFHT curvature sensing AO sys-
tem PUEO (Arsenault et al. 1994), it has been routinely deliv-
ering reconstructed on-axis PSFs for more than 8 years now. A
first attempt to transpose this algorithm to the Shack-Hartmann
(SH) wavefront sensor has been undertaken by Harder & Chelli
(2000).

Based on the Véran et al. (1997) algorithm, PSF reconstruc-
tion has been developed for three AO systems, equipped this

time with SH wavefront sensors, and tested during a few runs
of observations, leading to good results:

– Weiss (2003) has written a piece of PSF reconstruction soft-
ware for ALFA (Kasper et al. 2000), the SH AO system of
the Calar Alto 3.5 m telescope;

– Jolissaint et al. (2004) has written OPERA, a piece of PSF
reconstruction software for Altair (Herriot et al. 2000), the
4-quadrant SH AO system of the Gemini North telescope;
and

– Fitzgerald et al. (2004) have written a piece of PSF recon-
struction software for the SH AO system of the UCO/Lick
Observatory’s 3 m Shane Telescope (Bauman et al. 2002).

These current existing algorithms use particular functions, usu-
ally named Ui j, computed from the mirror modes. The number
of Ui j functions is proportional to the square number of mirror
modes, which leads to gigabytes of data to handle for systems
with 150 to 200 actuators, and thus limits the efficiency of the
PSF reconstruction process.

The goal of this article is to propose two new algorithms
that avoid the use of these Ui j functions. The global scheme of
the PSF reconstruction is not affected; we have simply replaced
the steps involving the Ui j functions. We also provide, as a by-
product, a way to estimate the PSF likelihood. The latter may
be crucial for image deconvolution algorithms, which currently
lack this kind of information.

We present the main points of the PSF reconstruction al-
gorithm developed by Véran et al. (1997), as well as their dif-
ferent assumptions in Sect. 2. In Sect. 3, we describe the two
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algorithms we propose, and in Sect. 4, the tests from AO simu-
lations. We discuss the choice and use of each algorithm in the
last section.

2. The current Uij algorithm

2.1. The long-exposure AO-corrected PSF expression

In the PSF reconstruction algorithm developed by Véran et al.
(1997), assuming that the phase structure function defined in
Eq. (4) below is stationary over the pupil, the AO-corrected
monochromatic long-exposure OTF is decomposed as follows:

〈
OTF

(
ρ/λ

)〉
=

〈
OTFφε

(
ρ/λ

)〉
× OTFtel

(
ρ/λ

)
, (1)

where:

–
〈
OTFφε

(
ρ/λ

)〉
is the attenuation of the long-exposure OTF

due to the partial correction of AO; and
– OTFtel

(
ρ/λ

)
is the perfect telescope OTF.

The phase φε can be split into two parts: φε‖ , which belongs to
the vector space spanned by the mirror modes, and φε⊥ , which is
orthogonal to the former space.
〈
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(
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(2)

and, this expression can be written
〈
OTF

(
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)〉
≈ exp

(
− 1
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D̄φε‖ (ρ)

)
× exp

(
− 1

2
D̄φε⊥ (ρ)

)
× OTFtel

(
ρ/λ

)
, (3)

where:

–
〈
OTFφε‖

(
ρ/λ

)〉
is the attenuation of the long-exposure OTF

due the mirror component of the phase, i.e., the “residual
parallel phase”;

–
〈
OTFφε⊥

(
ρ/λ

)〉
is the attenuation of the long-exposure OTF

due the component of the phase belonging to the space
perpendicular to the mirror space, i.e., the “perpendicular
phase”;

– D̄φε‖ (ρ) is the mean structure function of the residual parallel
phase;

– D̄φε⊥ (ρ) is the mean structure function of the perpendicular
phase;

– ρ is a pupil plane coordinate vector; and
– λ is the wavelength of observation.

This decomposition is based on several assumptions (cf. Véran
et al. 1997):

1. the complex field amplitude is uniform over the pupil (scin-
tillation is neglected);

2. the residual parallel phase φε‖(x) and the perpendicular
phase φε⊥(x) follow Gaussian statistics;

3. the phase structure function is stationary over the telescope
pupil; and

4. the correlation between the mirror component and the per-
pendicular component of the phase is negligible.

From the expression of the structure function of the residual
parallel phase:

Dφε‖ (x, ρ) =
〈(
φε‖ (x) − φε‖(x + ρ)

)2
〉

(4)

and the decomposition of the phase on the basis of the mirror
modes {Mi(x)}i=1...N :

φε‖ (x, t) =
N∑

i=1

ε‖i(t) Mi(x), (5)

one obtains:

Dφε‖ (x, ρ)=
N∑

i=1

N∑
j=1

〈ε‖iε‖ j〉
(
Mi(x)−Mi(x+ρ)

)(
M j(x)−M j(x+ρ)

)
.(6)

The mean structure function of the residual parallel
phase D̄φε‖ (ρ) is the mean of Dφε‖ (x, ρ) over x:

D̄φε‖ (ρ) =

∫
Dφε‖ (x, ρ)P(x)P(x + ρ)dx
∫

P(x) P(x + ρ)dx
· (7)

The expression of D̄φε⊥ (ρ) is similarly derived from Dφε⊥ (x, ρ).
The corresponding AO-corrected monochromatic long expo-

sure PSF is derived as the Fourier transform of the OTF.

2.2. The Uij (ρ) functions

Equations (6) and (7) lead to:

D̄φε‖ (ρ) =
N∑

i=1

N∑
j=1

〈ε‖iε‖ j〉Ui j(ρ). (8)

The Ui j(ρ) functions are defined by:∫ (
Mi(x)−Mi(x+ρ)

)(
M j(x)−M j(x+ρ)

)
P(x)P(x+ρ)dx

∫
P(x) P(x+ρ)dx

, (9)

where P(r) is the pupil function and x a coordinate vector in the
pupil plane.

In practice, using the Fourier transform and the properties of
the correlation function (Véran et al. 1997), the Ui j(ρ) functions
are computed as:

Ui j(ρ)=

F −1

(
2�

(
F (Mi M jP)F ∗(P)−F (MiP)F (M jP)

))

F −1
(
| F (P) |2

) , (10)

where F is the Fourier transform function and � the complex
number real part function.

Equation (8) is a key one for the experimental reconstruc-
tion of PSFs. The covariance matrix 〈ε‖ε‖t〉 has to be measured
experimentally on the AO system itself, by averaging the cross-
products of wavefront measurements obtained during the time of
the image exposure.

In the current PSF reconstruction algorithms, derived from
Véran et al. (1997), the matrix 〈ε‖ε‖t〉 is the basic entry point
from which one can deduce successively the phase structure
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function, the OTF, and then the PSF. Additionally, one has to
compute, store once for all, and also read the Ui j(ρ) functions
during the reconstruction process.

In Eq. (8), the i and j indices play a symmetric role, so that
there are actually N × (N + 1)/2 “useful” Ui j(ρ) functions. As
an example, in the case of the VLT AO system NAOS (Rousset
et al. 2000), the 159 compensated modes lead to 12 720 “use-
ful” Ui j(ρ) functions. Today, the large number of Ui j(ρ) hence
represents, depending on the array size and data type, several
gigabytes of data to compute, store, and read. Even if in prac-
tice, Eq. (8) can be efficiently implemented by Fourier transform
(cf. Eq. (10)), this leads to a heavy PSF reconstruction process,
which will turn out to be impossible to handle in the future since
the next AO systems are expected to have a largely increased
number of modes: about 1370 actuators for the VLT-Planet
Finder AO system (Fusco et al. 2005) and several tens of thou-
sands for extremely large telescopes. In the following, we pro-
pose a way to achieve this computation, starting from the same
covariance matrix 〈ε‖ε‖t〉, without using the Ui j(ρ).

3. Theory of the proposed algorithms

3.1. The Vii algorithm

Let us consider the vector ε‖(t), hereafter ε‖, made of the
{ε‖i}i=1...N coefficients, i.e., the vector representing φε‖ (x, t)
in the basis of the mirror modes Mi(x). The eigen decomposi-
tion of the residual parallel phase covariance matrix is:

Λ = Bt〈ε‖ε‖t〉B, (11)

where Λ is a diagonal matrix that contains the {λi}i=1...N eigen-
values and B is the matrix of eigenvectors: BtB = BBt = Id.

Equation (11) can be written:

Λ =
〈
(Btε‖)(Btε‖)t

〉
. (12)

The vector η equal to Btε‖ represents φε‖(x, t) in the basis that
diagonalizes the residual parallel phase covariance matrix. Its
coefficients are noted {ηi}i=1...N . From Eq. (12), the covariance
matrix 〈ηηt〉 is diagonal, i.e., in this new basis, the residual par-
allel phase covariance matrix is diagonal, and the mean residual
parallel phase structure function reduces to:

D̄φε‖ (ρ) =
N∑

i=1

〈ηiηi〉Vii(ρ) =
N∑

i=1

λi Vii(ρ), (13)

where the Vi j(ρ) functions are the equivalent in the new basis
to the Ui j(ρ) functions (Eq. (8)). Similarly to Eq. (9), the Vi j(ρ)
functions are defined by∫ (

M′i (x)−M′i (x+ρ)
)(

M′j(x)−M′j(x+ρ)
)
P(x)P(x+ρ)dx

∫
P(x) P(x + ρ)dx

, (14)

such that M′, the matrix made of the eigenvector
modes {M′i (x)}i=1...N is given by M′ = BtM, M being the
matrix made of the mirror modes {Mi(x)}i=1...N .

Using the Vii algorithm, the computation of the residual par-
allel phase OTF only requires the computation of a number N of
functions Vii(ρ). However, these Vii(ρ) functions have to be com-
puted on the fly for each estimation of the mean residual parallel
phase structure function.

3.2. The “instantaneous PSF” algorithm

The solution we propose here is similar to the algorithm pre-
sented by Roddier (1990) to simulate atmospherically distorted
wavefronts, calculated from the covariance matrix of the coeffi-
cients of their expansion in Zernike modes. We extend this al-
gorithm to any modal basis and covariance matrix, and use it to
reconstruct AO-corrected PSFs.

Let us consider again the eigen decomposition of the residual
parallel phase covariance matrix:

〈ε‖ε‖t〉 = BΛBt. (15)

If one generates a vector η whose coefficients are independent
Gaussian random variables with zero mean and variance equal
to the eigenvalue λi, i.e., 〈ηηt〉 = Λ, then the vector β = Bη
is a set of correlated random variables whose covariance matrix
is 〈ε‖ε‖t〉:
〈ββt〉 = 〈BηηtBt〉 = BΛBt = 〈ε‖ε‖t〉. (16)

The phase represented by the vector β is:

φ(x, t) =
N∑

i=1

βi(t) Mi(x), (17)

and the “instantaneous” PSF corresponding to that phase is:

PSF‖(x, t) =
∥∥∥∥F (

exp(iφ(x, t)
)∥∥∥∥2
. (18)

Then, by generating random η vectors such that 〈ηηt〉 = Λ, we
build instantaneous PSFs that, on average, converge to the long-
exposure PSF of the mirror space. Note that the latter is not
the “full PSF” that would be observed at the telescope since it
does not include the uncorrected part of the phase (cf. Eq. (2)).
Finally:

〈
OTFφε‖

(
x/λ

)〉
× OTFtel

(
x/λ

)
= F

⎛⎜⎜⎜⎜⎜⎝
∑

t

PSF‖(x, t)

⎞⎟⎟⎟⎟⎟⎠ . (19)

4. Test of the algorithms

4.1. Description of the simulation

To test our algorithms, we have used a Monte Carlo-based
AO simulation software developed at ONERA. It is a complete
end-to-end AO simulator divided into four main modules (cali-
bration, propagation, closed-loop, and focal plane imaging mod-
ules) that make it as close as possible to an actual system. The
complete algorithm is fully described in Conan et al. (2004) and
has been used extensively for the design of AO systems, espe-
cially the future Planet Finder System for the VLT (Fusco et al.
2005), as well as for the tests and validations of existing AO sys-
tems (NAOS for instance).

We have tested our algorithms in the simple case of a NAOS-
like AO system (Rousset et al. 2000): a 14× 14 subpupil Shack-
Hartmann wavefront sensor with 8 × 8 pixels per sub-aperture,
a read-out noise of 3 e− per pixel, and a sampling frequency
of 500 Hz, 2048 loop iterations. The correction was performed
with a 185 actuator piezostack deformable mirror plus a tip-tilt
mirror. The wavefront sensing and observation wavelengths of
the simulation were 0.65 and 2.2 µm, respectively. The seeing
was 0.85′′ at 0.5 µm.

Since we aimed at testing our algorithms with different con-
ditions of correction, we ran the simulation with a guide star
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Fig. 1. Strehl ratio at 2.2 µm vs. guide star visual magnitude for a
NAOS-like AO system.

Fig. 2. Circular mean of the “atmospheric” OTFs for different condi-
tions of correction: from top to bottom, the guide star magnitude is 7.3,
12.3, and 13.6. For each guide star magnitude, the solid line is obtained
with the Ui j/Vii and the crosses with the “instantaneous PSF” algorithm.

magnitude ranging from 7 to 15 so that the resulting Strehl ratio
ranged from ∼70% down to ∼0.2% (Fig. 1). For a given guide
star magnitude, we stored all the values ε‖(t) obtained from the
simulation to compute the covariance matrix 〈ε‖ε‖t〉 and ran the
Ui j, Vii, and “instantaneous PSF” algorithms (code detailed in
Appendix A) from this covariance matrix to derive the corre-
sponding OTFs for comparison.

4.2. Results of the simulations

Figure 2 represents the circular mean of the residual “atmo-
spheric” OTFs (i.e., not multiplied by the telescope OTF) pro-
duced by the different algorithms in three cases: good, moderate
and poor correction (7.3th, 12.3th, and 13.6th magnitude guide
stars, respectively). Within the numerical uncertainties, the Ui j

and Vii algorithms produce exactly the same OTFs, which is
not unexpected since they mathematically do the same compu-
tations, but in a different modal basis. Their corresponding PSF
profiles in Fig. 3 are consequently also the same.

This is of course not the case for the “instantaneous PSF”
algorithm, which needs a large enough number of iterations to
converge. However, even in the poor correction case, the OTF
profile obtained with the “instantaneous PSF” algorithm well
reproduces the Ui j profile (Fig. 2) with a maximum error of a
few 10−2 around 0.05 D/λ. This is also confirmed with the PSF
profiles that are almost superimposed, even in the poor correc-
tion case (Fig. 3).

Fig. 3. Circular mean of the PSFs for different conditions of correction:
from top to bottom, the guide star magnitude is 13.6, 12.3, and 7.3. For
each guide star magnitude, the solid line is obtained with the Ui j/Vii and
the crosses with the “instantaneous PSF” algorithm. Note that the PSFs
considered here only correspond to the residuals and do not include the
perpendicular part of the phase.

5. Discussion

The Ui j and Vii algorithms mathematically produce the same
OTFs. In practice, the Ui j algorithm requires reading each of the
N × (N + 1)/2 Ui j functions (where N is the number of modes),
which have been computed and stored previously, once. In com-
parison, the Vii algorithm requires to diagonalize the covariance
matrix, to compute the new modes {M′i (x)}i=1...N , and to compute
each Vii function. This latter step is composed of calls to these
functions (cf. Appendix A):

– 2 FFTs;
– 1 square function;
– 1 real part of a complex number; and
– 1 modulus of a complex number.

As an example, the Vii algorithm took ∼8 s in our simula-
tion: ∼2 s to diagonalize the covariance matrix and compute the
modes (the former taking a negligible time), and ∼6 s to compute
the N Vii functions. This is ∼25 times faster than the Ui j algo-
rithm (∼191 s). In addition to this huge gain in computation time,
a large amount of disk space is saved. This causes the Vii algo-
rithm to always be preferred to the Ui j one.

As noticed by Conan (1994), averaging short-exposure
OTFs, as we do in the “instantaneous PSF” algorithm, is a pro-
cess that converges very slowly, especially at large D/r0 or a
low correction level. In addition, it does not lead to the infinitely
long exposure OTF since a given number of short exposures are
averaged. Besides, Conan (1994) has shown that in the poor cor-
rection case, the error in computing the long-exposure OTF of
such an algorithm is larger than for the Ui j algorithm, and then
the Vii algorithm as well.

Though, we emphasize that, in addition to the OTF computa-
tion itself, the “instantaneous PSF” algorithm can provide an es-
timation about the variability of the OTF, which can help a lot in
some deconvolution algorithms. The estimation of the infinitely
long exposure OTF that results from the convergence of our “in-
stantaneous PSF” algorithm and that corresponds to a given co-
variance matrix 〈ε‖ε‖t〉 is unique: let us call it OTF∞(ρ/λ). The
dispersion in the random generation of OTFs can be computed as

σ2(ρ/λ) =
〈∥∥∥OTF∞(ρ/λ) − OTFi(ρ/λ)

∥∥∥2
〉

i
, (20)

where OTFi is the ith draw of a randomly-generated OTF. If
we call OTFobs(ρ/λ) the OTF actually observed on the instru-
ment during the given, non infinite, observing time Tint, when
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the given covariance matrix 〈ε‖ε‖t〉 was measured, we can evalu-
ate how far our estimation OTF∞ is from OTFobs by writing:

〈∥∥∥OTF∞(ρ/λ) − OTFobs(ρ/λ)
∥∥∥2

〉
=
σ2(ρ/λ)

n
, (21)

where n is the equivalent number of independent realisations of
PSFs, whose sum has resulted in the final PSF observed by the
instrument during the given, non infinite integration time Tint. An
estimation of n could be obtained for example from a full simu-
lation of the AO system under the same atmospheric conditions
as during the observation. It is also be reasonable to consider
that the impact of the correction by the AO system is to shorten
the image correlation time compared to the image correlation
time τ0(λ) of the atmospheric seeing (Rigaut et al. 1991). We
can then find a lower bound given by n > Tint/τ0(λ).

Appendix A: IDL codes

A.1. Common parts

cbmes = readfits(’cbmes.fits’)
s2m = readfits(’slopes2modes.fits’)
modes = readfits(’modalbasis.fits’)
nmodes=(size(modes))(3)
lambda_im=2.2d-6
lambda_aso=0.65d-6
ratio_lambda=lambda_aso/lambda_im

; Telescope OTF computation and corresponding mask
apert=readfits(’pupille.fits’)
dim=(size(apert))(1)
dim2=2*dim
pup=dblarr(dim2,dim2)
pup(0,0)=apert
pupfft=fft(double(pup))
conjpupfft=conj(pupfft)
otftel = real_part(fft(pupfft*conjpupfft,/inverse))
den=1/(otftel)
den(where(finite(den) eq 0))=0
mask=fltarr(dim2,dim2)+1
mask(where(otftel lt 1e-5))=0
otftel=otftel/max(otftel)

;Computation of the covariance matrix over the modes
cbmode = cbmes##transpose(s2m)
nbcb = (size(cbmode))(2)
covmode = (cbmode#transpose(cbmode))/nbcb

A.2. The Uij algorithm

; Computation and storage of the Uij functions
modei = dblarr(dim2,dim2)
modej = dblarr(dim2,dim2)
for i=0,nmodes-1 do begin

modei(0,0) = modes(*,*,i)*apert
for j=i,nmodes-1 do begin

modej(0,0) = modes(*,*,j)*apert
term1 = real_part(fft(modei*modej)*conjpupfft)
term2 = real_part(fft(modei)*conj(fft(modej)))
uij = real_part(fft(2*(term1-term2),/inverse))*den*mask
writefits,’Uij/u_’+string(i,format=’(i2.2)’)+’_’+$

string(j,format=’(i2.2)’)+’.fits’,uij
endfor

endfor
; Computation of the OTF with the Uij

dph1 = dblarr(dim2,dim2)
for i=0,nmodes-1 do begin

for j=i,nmodes-1 do begin
uij = readfits(’Uij/u_’+string(i,format=’(i2.2)’)+’_’+$

string(j,format=’(i2.2)’)+’.fits’,/silent)
fac = double((i ne j)+1)
dph1 = dph1+(fac*covmode(i,j)*uij)

endfor
endfor
otf1 = exp(-0.5*dph1*ratio_lambda^2)*mask
otf1 = otf1/max(otf1)

A.3. The Vii algorithm

; New modes that diagonalize the covariance matrix
l = (eigenql(covmode,eigenvectors=b))>0
s = b#diag_matrix(sqrt(l))
newmodes = reform((reform(modes,dim^2,nmodes))#b,$

dim,dim,nmodes)
; Computation of the OTF with the Vii

newmodei = dblarr(dim2,dim2)
temp = dblarr(dim2,dim2)
for i=0,nmodes-1 do begin

newmodei(0,0) = newmodes(*,*,i)*apert
term1 = real_part(fft(newmodei^2)*conjpupfft)
term2 = (abs(fft(newmodei)))^2
temp = temp+((term1-term2)*l(i))

endfor
otf2 = exp(-0.5*real_part(fft(2*temp,/inverse))*den$

*ratio_lambda^2)*mask
otf2 = otf2/max(otf2)

A.4. The “instantaneous PSF” algorithm

psf = dblarr(dim2,dim2)
tmp = ratio_lambda*reform(modes,dim^2,nmodes)
for i=0,nbcb-1 do begin
phi(0,0)= reform((s#randomn(seed,nmodes))##tmp,dim,dim)
psf = psf+(abs(fft(pup*exp(dcomplex(0,phi)))))^2

endfor
psf = psf/nbcb
otf3 = real_part(fft(psf))
otf3 = otf3/max(otf3)/otftel*mask
otf3(where(finite(otf3) eq 0))=0
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