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ABSTRACT

Context. The knowledge of the point-spread function compensated by adaptive optics is of prime importance in several image restoration
techniques such as deconvolution and astrometric/photometric algorithms. Wavefront-related data from the adaptive optics real-time computer
can be used to accurately estimate the point-spread function in adaptive optics observations. The only point-spread function reconstruction
algorithm implemented on astronomical adaptive optics system makes use of particular functions, namedUi j. TheseUi j functions are derived
from the mirror modes, and their number is proportional to the square number of these mirror modes.
Aims. We present here two new algorithms for point-spread function reconstruction that aim at suppressing the use of theseUi j functions to
avoid the storage of a large amount of data and to shorten the computation time of this PSF reconstruction.
Methods. Both algorithms take advantage of the eigen decomposition of the residual parallel phase covariance matrix. In the firstalgorithm,
the use of a basis in which the latter matrix is diagonal reduces the number ofUi j functions to the number of mirror modes. In the second
algorithm, this eigen decomposition is used to compute phase screens that follow the same statistics as the residual parallel phase covariance
matrix, and thus suppress the need for theseUi j functions.
Results. Our algorithms dramatically reduce the number ofUi j functions to be computed for the point-spread function reconstruction. Adaptive
optics simulations show the good accuracy of both algorithms to reconstruct the point-spread function.

Key words. Techniques: high angular resolution – Methods: numerical

1. Introduction

Since the advent of adaptive optics (AO), it has been possible
to perform imaging with a spatial resolution very close to the
diffraction limit. Despite this large improvement, the correction
of the atmospheric turbulence by an AO system is only partial,
and point source images are for example still affected by a halo
that surrounds them.

Such effects of the partial AO correction can be corrected
by image restoration techniques such as deconvolution algo-
rithms. Except in the ”blind” deconvolution case (Fusco et
al. 1999; Christou et al. 1999), these algorithms need an es-
timation of the point-spread function (PSF), or its correspond-
ing optical transfer function (OTF) derived from the PSF by
a Fourier transform, to restore the image unaffected by the at-
mospheric turbulence. In addition, astrometric and photometric
algorithms, e.g., StarFinder (Diolaiti et al. 2000) or DAOPHOT
(Stetson 1987), usually also need an estimation of the PSF.

Send offprint requests to: Y. Clénet

Wavefront-related data delivered by the AO real-time com-
puter can help to accurately estimate the PSF. Véran et al.
(1997) have been the first to develop such a PSF reconstruc-
tion algorithm. Implemented on the CFHT curvature sensing
AO system PUEO (Arsenault et al. 1994), it has been rou-
tinely delivering reconstructed on-axis PSFs for more than8
years now. A first attempt to transpose this algorithm to the
Shack-Hartmann (SH) wavefront sensor has been undertaken
by Harder & Chelli (2000).

Based on the Véran et al. (1997) algorithm, PSF reconstruc-
tion has been developed for three AO systems, equipped this
time with SH wavefront sensors, and tested during a few runs
of observations, leading to good results

– Weiss (2003) has written a piece of PSF reconstruction soft-
ware for ALFA (Kasper et al. 2000), the SH AO system of
the Calar Alto 3.5m telescope;

– Jolissaint et al. (2004) has written OPERA, a piece of PSF
reconstruction software for Altair (Herriot et al. 2000), the
4-quadrant SH AO system of the Gemini North telescope;
and
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– Fitzgerald et al. (2004) have written a piece of PSF recon-
struction software for the SH AO system of the UCO/Lick
Observatorys 3 m Shane Telescope (Bauman et al. 2002).

These current existing algorithms use particular functions,
usually namedUi j, computed from the mirror modes. The num-
ber of Ui j functions is proportional to the square number of
mirror modes, which leads to gigabytes of data to handle for
systems with 150 to 200 actuators, and thus limits the efficiency
of the PSF reconstruction process.

The goal of this article is to propose two new algorithms
that avoid the use of theseUi j functions. The global scheme of
the PSF reconstruction is not affected; we have simply replaced
the steps involving theUi j functions. We also provide, as a by-
product, a way to estimate the PSF likelihood. The latter may
be crucial for image deconvolution algorithms, which currently
lack this kind of information.

We present the main points of the PSF reconstruction al-
gorithm developed by Véran et al. (1997), as well as their dif-
ferent assumptions in Sect. 2. In Sect. 3, we describe the two
algorithms we propose, and in Sect. 4, the tests from AO simu-
lations. We discuss the choice and use of each algorithm in the
last section.

2. The current Ui j algorithm

2.1. The long-exposure AO-corrected PSF expression

In the PSF reconstruction algorithm developed by Véran et
al. (1997), assuming that the phase structure function defined
in Eq. 4 below is stationary over the pupil, the AO-corrected
monochromatic long-exposure OTF is decomposed as follows:

〈

OT F
(

ρ/λ
)

〉

=

〈

OT Fφǫ
(

ρ/λ
)

〉

× OT Ftel

(

ρ/λ
)

, (1)

where:

–
〈

OT Fφǫ
(

ρ/λ
)

〉

is the attenuation of the long-exposure OTF

due to the partial correction of AO, and
– OT Ftel

(

ρ/λ
)

is the perfect telescope OTF.

The phaseφǫ can be split into two parts:φǫ‖ , which be-
longs to the vector space spanned by the mirror modes, and
φǫ⊥ , which is orthogonal to the former space.

〈

OT F
(

ρ/λ
)

〉

=

〈

OT Fφǫ‖
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ρ/λ
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〉

×
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〉
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ρ/λ
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(2)

and, this expression can be written

〈

OT F
(

ρ/λ
)

〉

≈ exp
(

−
1
2

D̄φǫ‖ (ρ)
)

× exp
(

−
1
2

D̄φǫ⊥ (ρ)
)

× OT Ftel

(

ρ/λ
)

, (3)

where:

–
〈

OT Fφǫ‖
(

ρ/λ
)

〉

is the attenuation of the long-exposure OTF

due the mirror component of the phase, i.e., the ”residual
parallel phase”,

–
〈

OT Fφǫ⊥
(

ρ/λ
)

〉

is the attenuation of the long-exposureOTF

due the component of the phase belonging to the space
perpendicular to the mirror space, i.e., the ”perpendicular
phase”,

– D̄φǫ‖ (ρ) is the mean structure function of the residual paral-
lel phase,

– D̄φǫ⊥ (ρ) is the mean structure function of the perpendicular
phase,

– ρ is a pupil plane coordinate vector, and
– λ is the wavelength of observation.

This decomposition is based on several assumptions (cf.
Véran et al. 1997):

1. the complex field amplitude is uniform over the pupil (scin-
tillation is neglected),

2. the residual parallel phaseφǫ‖(x) and the perpendicular
phaseφǫ⊥ (x) follow Gaussian statistics,

3. the phase structure function is stationary over the telescope
pupil, and

4. the correlation between the mirror component and the per-
pendicular component of the phase is negligible.

From the expression of the structure function of the residual
parallel phase:

Dφǫ‖ (x, ρ) =
〈

(

φǫ‖(x) − φǫ‖(x + ρ)
)2
〉

(4)

and the decomposition of the phase on the basis of the mirror
modes{Mi(x)}i=1...N:

φǫ‖(x, t) =
N

∑

i=1

ǫ‖i(t) Mi(x), (5)

one obtains:

Dφǫ‖ (x, ρ) =
N

∑

i=1

N
∑

j=1

〈ǫ‖iǫ‖ j〉
(

Mi(x)−Mi(x+ρ)
)(

M j(x)−M j(x+ρ)
)

.(6)

The mean structure function of the residual parallel phase
D̄φǫ‖ (ρ) is the mean ofDφǫ‖ (x, ρ) overx:

D̄φǫ‖ (ρ) =

∫

Dφǫ‖ (x, ρ)P(x)P(x + ρ)dx
∫

P(x) P(x + ρ)dx
. (7)

The expression ofD̄φǫ⊥ (ρ) is similarly derived from
Dφǫ⊥ (x, ρ).

The corresponding AO-corrected monochromatic long ex-
posure PSF is derived as the Fourier transform of the OTF.
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2.2. The Ui j(ρ) functions

Equation 6 can be rewritten:

D̄φǫ‖ (ρ) =
N

∑

i=1

N
∑

j=1

〈ǫ‖iǫ‖ j〉Ui j(ρ) (8)

TheUi j(ρ) functions are defined by:
∫

(

Mi(x) − Mi(x + ρ)
)(

M j(x) − M j(x + ρ)
)

P(x)P(x + ρ)dx
∫

P(x) P(x + ρ)dx
, (9)

whereP(r) is the pupil function andx a coordinate vector in
the pupil plane.

In practice, using the Fourier transform and the properties
of the correlation function (Véran et al. 1997), theUi j(ρ) func-
tions are computed as:

Ui j(ρ) =

F −1

(

2ℜ
(

F (MiM jP)F ∗(P) − F (MiP)F (M jP)
)

)

F −1
(

| F (P) |2
) , (10)

whereF is the Fourier transform function andℜ the complex
number real part function.

Equation 8 is a key one for the experimental reconstruc-
tion of PSFs. The covariance matrix〈ǫ‖ǫ‖t〉 has to be measured
experimentally on the AO system itself, by averaging the cross-
products of wavefront measurements obtained during the time
of the image exposure.

In the current PSF reconstruction algorithms, derived from
Véran et al. (1997), the matrix〈ǫ‖ǫ‖t〉 is the basic entry point
from which one can deduce successively the phase structure
function, the OTF, and then the PSF. Additionally, one has to
compute, store once for all, and also read theUi j(ρ) functions
during the reconstruction process .

In Eq. 8, thei and j indices play a symmetric role, so that
there are actuallyN×(N+1)/2 ”useful” Ui j(ρ) functions. As an
example, in the case of the VLT AO system NAOS (Rousset et
al. 2000), the 159 compensated modes lead to 12720 ”useful”
Ui j(ρ) functions. Today, the large number ofUi j(ρ) hence rep-
resents, depending on the array size and data type, several gi-
gabytes of data to compute, store, and read. Even if in practice,
Eq. 8 can be efficiently implemented by Fourier transform (cf.
Eq. 10), this leads to a heavy PSF reconstruction process, which
will turn out to be impossible to handle in the future since the
next AO systems are expected to have a largely increased num-
ber of modes: about 1370 actuators for the VLT-Planet Finder
AO system (Fusco et al. 2005) and several tens of thousands for
extremely large telescopes. In the following, we propose a way
to achieve this computation, starting from the same covariance
matrix 〈ǫ‖ǫ‖t〉, without using theUi j(ρ).

3. Theory of the proposed algorithms

3.1. The Vii algorithm

Let us consider the vectorǫ‖(t), hereafterǫ‖, made of the
{ǫ‖i}i=1...N coefficients, i.e., the vector representingφǫ‖(x, t) in

the basis of the mirror modesMi(x). The eigen decomposition
of the residual parallel phase covariance matrix is:

Λ = Bt〈ǫ‖ǫ‖
t〉B, (11)

whereΛ is a diagonal matrix that contains the{λi}i=1...N eigen-
values and B is the matrix of eigenvectors:BtB = BBt = Id.

Equation 11 can be written:

Λ =
〈

(Btǫ‖)(B
tǫ‖)

t
〉

. (12)

The vectorη equal toBtǫ‖ representsφǫ‖(x, t) in the basis
that diagonalizes the residual parallel phase covariance matrix.
Its coefficients are noted{ηi}i=1...N . From Eq. 12, the covariance
matrix 〈ηηt〉 is diagonal, i.e., in this new basis, the residual par-
allel phase covariance matrix is diagonal, and the mean residual
parallel phase structure function reduces to:

D̄φǫ‖ (ρ) =
N

∑

i=1

〈ηiηi〉Vii(ρ) =
N

∑

i=1

λi Vii(ρ), (13)

where theVi j(ρ) functions are the equivalent in the new basis
to theUi j(ρ) functions (Eq. 8). Similarly to Eq. 9, theVi j(ρ)
functions are defined by
∫

(

M′i (x) − M′i (x + ρ)
)(

M′j(x) − M′j(x + ρ)
)

P(x)P(x + ρ)dx
∫

P(x) P(x + ρ)dx
, (14)

such thatM′, the matrix made of the eigenvector modes
{M′i (x)}i=1...N is given byM′ = BtM,M being the matrix made
of the mirror modes{Mi(x)}i=1...N.

Using theVii algorithm, the computation of the residual
parallel phase OTF only requires the computation of a number
N of functionsVii(ρ). However, theseVii(ρ) functions have to
be computed on the fly for each estimation of the mean residual
parallel phase structure function.

3.2. The ”instantaneous PSF” algorithm

The solution we propose here is similar to the algorithm pre-
sented by Roddier (1990) to simulate atmospherically distorted
wavefronts, calculated from the covariance matrix of the coef-
ficients of their expansion in Zernike modes. We extend this
algorithm to any modal basis and covariance matrix, and use it
to reconstruct AO-corrected PSFs.

Let us consider again the eigen decomposition of the resid-
ual parallel phase covariance matrix:

〈ǫ‖ǫ‖
t〉 = BΛBt, (15)

If one generates a vectorη whose coefficients are indepen-
dent Gaussian random variables with zero mean and variance
equal to the eigenvalueλi, i.e., 〈ηηt〉 = Λ, then the vector
β = Bη is a set of correlated random variables whose covari-
ance matrix is〈ǫ‖ǫ‖t〉:

〈ββt〉 = 〈BηηtBt〉 = BΛBt = 〈ǫ‖ǫ‖
t〉. (16)
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Fig. 1.Strehl ratio at 2.2µm vs. guide star visual magnitude for
a NAOS-like AO system.

The phase represented by the vectorβ is:

φ(x, t) =
N

∑

i=1

βi(t) Mi(x), (17)

and the ”instantaneous” PSF corresponding to that phase is:

PS F‖(x, t) =
∥

∥

∥

∥
F

(

exp(iφ(x, t)
)

∥

∥

∥

∥

2
. (18)

Then, by generating randomη vectors such that〈ηηt〉 = Λ,
we build instantaneous PSFs that, on average, converge to the
long-exposure PSF of the mirror space. Note that the latter is
not the ”full PSF” that would be observed at the telescope since
it does not include the uncorrected part of the phase (cf. Eq.2).
Finally:

〈

OT Fφǫ‖
(

x/λ
)

〉

× OT Ftel

(

x/λ
)

= F















∑

t

PS F‖(x, t)















. (19)

4. Test of the algorithms

4.1. Description of the simulation

To test our algorithms, we have used a Monte Carlo-based AO
simulation software developed at ONERA. It is a complete end-
to-end AO simulator divided into four main modules (calibra-
tion, propagation, closed-loop, and focal plane imaging mod-
ules) that make it as close as possible to an actual system. The
complete algorithm is fully described in Conan R. et al. (2004)
and has been used extensively for the design of AO systems,
especially the future Planet Finder System for the VLT (Fusco
et al. 2005), as well as for the tests and validations of existing
AO systems (NAOS for instance).

We have tested our algorithms in the simple case of a
NAOS-like AO system (Rousset et al. 2000): a 14×14 sub-
pupil Shack-Hartmann wavefront sensor with 8×8 pixels per
sub-aperture, a read-out noise of 3 e− per pixel, and a sampling
frequency of 500 Hz, 2048 loop iterations. The correction was
performed with a 185 actuator piezostack deformable mirror
plus a tip-tilt mirror. The wavefront sensing and observation

Fig. 2. Circular mean of the ”atmospheric” OTFs for different
conditions of correction: from top to bottom, the guide star
magnitude is 7.3, 12.3, and 13.6. For each guide star magni-
tude, the solid line is obtained with theUi j/Vii and the crosses
with the ”instantaneous PSF” algorithm”.

wavelengths of the simulation were 0.65 and 2.2µm, respec-
tively. The seeing was 0.85′′ at 0.5µm.

Since we aimed at testing our algorithms with different con-
ditions of correction, we ran the simulation with a guide star
magnitude ranging from 7 to 15 so that the resulting Strehl ra-
tio ranged from∼70% down to∼0.2% (Fig. 1). For a given
guide star magnitude, we stored all the valuesǫ‖(t) obtained
from the simulation to compute the covariance matrix〈ǫ‖ǫ‖t〉
and ran theUi j, Vii, and ”instantaneous PSF” algorithms (code
detailed in Appendix A) from this covariance matrix to derive
the corresponding OTFs for comparison.

4.2. Results of the simulations

Figure 2 represents the circular mean of the residual ”atmo-
spheric” OTFs (i.e., not multiplied by the telescope OTF) pro-
duced by the different algorithms in three cases: good, mod-
erate and poor correction (7.3th, 12.3th, and 13.6th magnitude
guide stars, respectively). Within the numerical uncertainties,
the Ui j and Vii algorithms produce exactly the same OTFs,
which is not unexpected since they mathematically do the same
computations, but in a different modal basis. Their correspond-
ing PSF profiles in Fig. 3 are consequently also the same.

This is of course not the case for the ”instantaneous PSF”
algorithm, which needs a large enough number of iterations to
converge. However, even in the poor correction case, the OTF
profile obtained with the ”instantaneous PSF” algorithm well
reproduces theUi j profile (Fig. 2) with a maximum error of
a few 10−2 around 0.05D/λ. This is also confirmed with the
PSF profiles that are almost superimposed, even in the poor
correction case (Fig. 3).

5. Discussion

The Ui j andVii algorithms mathematically produce the same
OTFs. In practice, theUi j algorithm requires reading each
of the N × (N + 1)/2 Ui j functions (whereN is the number
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Fig. 3. Circular mean of the PSFs for different conditions of
correction: from top to bottom, the guide star magnitude is
13.6, 12.3, and 7.3. For each guide star magnitude, the solid
line is obtained with theUi j/Vii and the crosses with the ”in-
stantaneous PSF” algorithm”. Note that the PSFs considered
here only correspond to the residuals and do not include the
perpendicular part of the phase.

of modes), which have been computed and stored previously,
once. In comparison, theVii algorithm requires to diagonalize
the covariance matrix, to compute the new modes{M′i (x)}i=1...N ,
and to compute eachVii function. This latter step is composed
of calls to these functions (cf. Appendix A):

– 2 FFTs,
– 1 square function,
– 1 real part of a complex number, and
– 1 modulus of a complex number.

As an example, theVii algorithm took∼8 seconds in our
simulation:∼2 seconds to diagonalize the covariance matrix
and compute the modes (the former taking a negligible time),
and∼6 seconds to compute theN Vii functions. This is∼25
times faster than theUi j algorithm (∼191 seconds). In addition
to this huge gain in computation time, a large amount of disk
space is saved. This causes theVii algorithm to always be pre-
ferred to theUi j one.

As noticed by Conan J.-M. (1994), averaging short-
exposure OTFs, as we do in the ”instantaneous PSF” algorithm,
is a process that converges very slowly, especially at largeD/r0

or a low correction level. In addition, it does not lead to thein-
finitely long exposure OTF since a given number of short ex-
posures are averaged. Besides, Conan J.-M. (1994) has shown
that in the poor correction case, the error in computing the long-
exposure OTF of such an algorithm is larger than for theUi j

algorithm, and then theVii algorithm as well.
Though, we emphasize that, in addition to the OTF compu-

tation itself, the ”instantaneous PSF” algorithm can provide an
estimation about the variability of the OTF, which can help a
lot in some deconvolution algorithms. The estimation of thein-
finitely long exposure OTF that results from the convergence
of our ”instantaneous PSF” algorithm and that corresponds
to a given covariance matrix〈ǫ‖ǫ‖t〉 is unique: let us call it

OT F∞(ρ/λ). The dispersion in the random generation of OTFs
can be computed as

σ2(ρ/λ) =
〈

∥

∥

∥OT F∞(ρ/λ) − OT Fi(ρ/λ)
∥

∥

∥

2
〉

i
, (20)

whereOT Fi is theith draw of a randomly-generated OTF. If we
call OT Fobs(ρ/λ) the OTF actually observed on the instrument
during the given, non infinite, observing timeTint, when the
given covariance matrix〈ǫ‖ǫ‖t〉 was measured, we can evaluate
how far our estimationOT F∞ is from OT Fobs by writing:

〈

∥

∥

∥OT F∞(ρ/λ) − OT Fobs(ρ/λ)
∥

∥

∥

2
〉

=
σ2(ρ/λ)

n
, (21)

wheren is the equivalent number of independent realisations
of PSFs, whose sum has resulted in the final PSF observed by
the instrument during the given, non infinite integration time
Tint. An estimation ofn could be obtained for example from a
full simulation of the AO system under the same atmospheric
conditions as during the observation. It is also be reasonable to
consider that the impact of the correction by the AO system is
to shorten the image correlation time compared to the image
correlation timeτ0(λ) of the atmospheric seeing (Rigaut et al.
1991). We can then find a lower bound given byn > Tint/τ0(λ).
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Appendix A: IDL codes

A.1. Common parts

cbmes= readfits(’cbmes.fits’)
s2m= readfits(’slopes2modes.fits’)
modes= readfits(’modalbasis.fits’)
nmodes=(size(modes))(3)
lambdaim=2.2d-6
lambdaaso=0.65d-6
ratio lambda=lambdaaso/lambdaim

; Telescope OTF computation and corresponding mask
apert=readfits(’pupille.fits’)
dim=(size(apert))(1)
dim2=2*dim
pup=dblarr(dim2,dim2)
pup(0,0)=apert
pupfft=fft(double(pup))
conjpupfft=conj(pupfft)
otftel= real part(fft(pupfft*conjpupfft,/inverse))
den=1/(otftel)
den(where(finite(den) eq 0))=0
mask=fltarr(dim2,dim2)+1
mask(where(otftel lt 1e-5))=0
otftel=otftel/max(otftel)

;Computation of the covariance matrix over the modes
cbmode= cbmes##transpose(s2m)
nbcb= (size(cbmode))(2)
covmode= (cbmode#transpose(cbmode))/nbcb

A.2. The Ui j algorithm

; Computation and storage of the Uij functions
modei= dblarr(dim2,dim2)
modej= dblarr(dim2,dim2)
for i=0,nmodes-1 do begin

modei(0,0)= modes(*,*,i)*apert
for j=i,nmodes-1 do begin

modej(0,0)=modes(*,*,j)*apert
term1= real part(fft(modei*modej)*conjpupfft)
term2= real part(fft(modei)*conj(fft(modej)))
uij = real part(fft(2*(term1-term2),/inverse))*den*mask
writefits,’Uij /u ’+string(i,format=’(i2.2)’)+’ ’+$

string(j,format=’(i2.2)’)+’.fits’,uij
endfor

endfor
; Computation of the OTF with the Uij

dph1= dblarr(dim2,dim2)

for i=0,nmodes-1 do begin
for j=i,nmodes-1 do begin

uij = readfits(’Uij/u ’+string(i,format=’(i2.2)’)+’ ’+$
string(j,format=’(i2.2)’)+’.fits’, /silent)

fac= double((i ne j)+1)
dph1= dph1+(fac*covmode(i,j)*uij)

endfor
endfor
otf1= exp(-0.5*dph1*ratiolambdâ 2)*mask
otf1= otf1/max(otf1)

A.3. The Vii algorithm

; New modes that diagonalize the covariance matrix
l = (eigenql(covmode,eigenvectors=b))>0
s= b#diagmatrix(sqrt(l))
newmodes= reform((reform(modes,dim̂2,nmodes))#b,$

dim,dim,nmodes)
; Computation of the OTF with the Vii

newmodei= dblarr(dim2,dim2)
temp= dblarr(dim2,dim2)
for i=0,nmodes-1 do begin

newmodei(0,0)= newmodes(*,*,i)*apert
term1= real part(fft(newmodeî 2)*conjpupfft)
term2= (abs(fft(newmodei)))̂ 2
temp= temp+((term1-term2)*l(i))

endfor
otf2= exp(-0.5*realpart(fft(2*temp,/inverse))*den$

*ratio lambdâ 2)*mask
otf2= otf2/max(otf2)

A.4. The ”instantaneous PSF” algorithm

psf= dblarr(dim2,dim2)
tmp= ratio lambda*reform(modes,dim̂2,nmodes)
for i=0,nbcb-1 do begin

phi(0,0)= reform((s#randomn(seed,nmodes))##tmp,dim,dim)
psf= psf+(abs(fft(pup*exp(dcomplex(0,phi)))))̂2

endfor
psf= psf/nbcb
otf3= real part(fft(psf))
otf3= otf3/max(otf3)/otftel*mask
otf3(where(finite(otf3) eq 0))=0


