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ABSTRACT
o

N Context. The knowledge of the point-spread function compensateddayptave optics is of prime importance in several image resimn
C techniques such as deconvolution and astromiptratometric algorithms. Wavefront-related data from ttiemive optics real-time computer
=5 can be used to accurately estimate the point-spread functiadaptive optics observations. The only point-spreattfan reconstruction
r—) algorithm implemented on astronomical adaptive opticsesgsnakes use of particular functions, nanigg TheseU;; functions are derived

from the mirror modes, and their number is proportional ®gfjuare number of these mirror modes.

0 Aims. We present here two new algorithms for point-spread funat@@onstruction that aim at suppressing the use of tbigstinctions to

Q\ avoid the storage of a large amount of data and to shorterothpwtation time of this PSF reconstruction.

I Methods. Both algorithms take advantage of the eigen decompositidheoresidual parallel phase covariance matrix. In the &ikgorithm,
the use of a basis in which the latter matrix is diagonal redube number ot);; functions to the number of mirror modes. In the second
algorithm, this eigen decomposition is used to compute @Basens that follow the same statistics as the residuallgigshase covariance
matrix, and thus suppress the need for tHégdunctions.

9 Results. Our algorithms dramatically reduce the numbebtlgffunctions to be computed for the point-spread function mstmiction. Adaptive
(/) optics simulations show the good accuracy of both algorstbmreconstruct the point-spread function.

—

ve
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1. Introduction Wavefront-related data delivered by the AO real-time com-
puter can help to accurately estimate the ASF. Véran]et al.
Since the advent of adaptive optics (AO), it has been passifiggy) have been the first to develop such a PSF reconstruc-
to perform imaging with a spatial resolution very close te thtion algorithm. Implemented on the CFHT curvature sensing
diffraction limit. Despite this large improvement, the cori@tt pAQ system PUEO[(Arsenault et]dl. 1994), it has been rou-
O of the atmospheric turbulence by an AO system is only partighely delivering reconstructed on-axis PSFs for more tBan
I_and point source images are for example stiteted by a halo years now. A first attempt to transpose this algorithm to the
that surrounds them. Shack-Hartmann (SH) wavefront sensor has been undertaken
()  Such dfects of the partial AO correction can be correctey [Harder & Chelli [2000).
O by image restoration techniques such as deconvolution algo Based on the Veran efla]. (1997) algorithm, PSF reconstruc-
rithms. Except in the "blind” deconvolution case (Fusco éton has been developed for three AO systems, equipped this
al. [1999;[Christou et &[. 1999), these algorithms need an #ge with SH wavefront sensors, and tested during a few runs
timation of the point-spread function (PSF), or its cormsg  of observations, leading to good results

ing optical transfer function (OTF) derived from the PSF by_w_ : . .
a Fourier transform, to restore the image fieated by the at- ~ eiss [200B) has written a piece of PSF reconstruction soft-

mospheric turbulence. In addition, astrometric and phetoia ware for ALFA (Kasper et 3. 2000), the SH AO system of

algorithms, e.g., StarFinddr (Diolaiti e{ fil. 2000) or DAGOT .ﬁth_?_$—w 3.5m telescope;

— — Jolissaint et al.[(2004) has written OPERA, a piece of PSF
-‘metso ) 1987), usually also need an estimation of the PSF. . ) —
‘ ) y reconstruction software for Altaif (Herriot et|al. 2000)et

4-quadrant SH AO system of the Gemini North telescope;
Send offprint requests to: Y. Clénet and
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— F|tzg§rald et a.|4) have written a piece of PSF recon- <OT F¢E” (p//l)> is the attenuation of the |Ong_exposure OTF
struction software for the SH AO system of the ULk due the mirror component of the phase, i.e., the "residual
Observatorys 3 m Shane Telescope (Bauman|gt al] 2002). parallel phase”

These current existing algorithms use particular funatjon — <OT Fo., (P/ﬂ)> is the attenuation of the long-exposure OTF
usually named);;, computed from the mirror modes. The num- due the component of the phase belonging to the space
ber of U;; functions is proportional to the square number of perpendicular to the mirror space, i.e., the "perpendicula
mirror modes, which leads to gigabytes of data to handle for phase”,
systems with 150 to 200 actuators, and thus limits fhieiency — Dy, (p) is the mean structure function of the residual paral-
of the PSF reconstruction process. lel phase,

The goal of this article is to propose two new algorithms- Dy_ (p) is the mean structure function of the perpendicular
that avoid the use of thes#; functions. The global scheme of  phase,
the PSF reconstruction is ndfected; we have simply replaced — p is a pupil plane coordinate vector, and
the steps involving the);; functions. We also provide, as a by- — A is the wavelength of observation.
product, a way to estimate the PSF likelihood. The latter may

be crucial for image deconvolution algorithms, which caothe This decomposition is based on several assumptions (cf.
lack this kind of information. 7):

We present the main points of the PSF reconstruction al-

gorithm developed by Véran et]al. (1997), as well as thdir dil. the complex field amplitude is uniform over the pupil (scin

ferent assumptions in Se¢f. 2. Inléﬁt. 3, we describe the two tillation is neglected),

algorithms we propose, and in Se@t. 4, the tests from AO simi- the residual parallel phasg, (x) and the perpendicular

lations. We discuss the choice and use of each algorithrrein th phasep,, (x) follow Gaussian statistics,

last section. 3. the phase structure function is stationary over thedelss
pupil, and

4. the correlation between the mirror component and the per-
pendicular component of the phase is negligible.

2. The current Ujj algorithm

2.1. The long-exposure AO-corrected PSF expression

From the expression of the structure function of the redidua
In the PSF reconstruction algorithm developed by Véran g4rallel phase:
al. (1997), assuming that the phase structure function eigfin

in Eq.|4 below is stationary over the pupil, the AO-corrected

2
monochromatic long-exposure OTF is decomposed as follov%t.e” (x.p) = <(¢EH(X) — ¢q (X + P)) > (4)
<OTF(p//l)> = <OT Fo (p//l)> x OTFiel(p/ ), (1) and the decomposition of the phase on the basis of the mirror
modes{M;(X)}i-1..n:
where:
N
- <OT F¢E(p//l)> is the attenuation of the long-exposure OTEa(*: 1) = 2 &i(0) Mi(x), ()
i=1
due to the partial correction of AO, and I
- OT Fte|(p//l) is the perfect telescope OTF. one obtains:
The phasep. can be split into two partsp,,, which be- N N
longs to the vector space spanned by the mirror modes, am&‘ (x,p) = Z (eHieHj)(Mi(x)—|v|i(x+p))(Mj(x)—Mj(x+p)),(6)
¢, , Which is orthogonal to the former space. i=1 j=1

_ The mean structure function of the residual parallel phase
<OTF(p//l)> = <OT Fo, (p//l)> X <OT Fy., (p//l)> Dy, (p) is the mean oDy, (x, p) overx:

x OTFeei(p/1) (2)
[ s, (xp1PO9POCH prc

fP(x) P(x + p)dx

and, this expression can be written 5¢ (p) =
‘

(7)

1- 1-
OTF /l>zex --D xexp(—- =D —
< (p/ ) p( 2 % (p)) p( 2 (p)) The expression ofDy_(p) is similarly derived from

x OTFeei(p/A),  (3) Dq, (X.p)-
The corresponding AO-corrected monochromatic long ex-
where: posure PSF is derived as the Fourier transform of the OTF.
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2.2. The Ujj(p) functions the basis of the mirror moded;(x). The eigen decomposition
Equatiorﬂs can be rewritten: of the residual parallel phase covariance matrix is:
_ N N A= Bt<€“€“t>B, (11)
Dy, (0) = (eji€nj) Vij(p) (8)
% ; JZ; W whereA is a diagonal matrix that contains th&}i-;. n eigen-
) _ values and B is the matrix of eigenvectoBsB = BB' = Id.
TheUi;j(p) functions are defined by: Equatio@l can be written:
f (M) = Mi(x+ p)(Mi(X) ~ MiGx + p)POOP(x + ) A = (Bl (Bley)). (12)
.(9)
fP(x) P(x + p)dx The vector equal toB'¢) represents, (x, t) in the basis

that diagonalizes the residual parallel phase covariaratexm
whereP(r) is the pupil function and a coordinate vector in Its codficients are notefl;i}i-1_n. From Eq, the covariance
the pupil plane. matrix (m;') is diagonal, i.e., in this new basis, the residual par-
In practice, using the Fourier transform and the propertighel phase covariance matrix is diagonal, and the meaduaki

of the correlation functior{ (Véran et]fl. 1997), tg(p) func- parallel phase structure function reduces to:
tions are computed as:

N N
7:1(2% (F(MM;P)F(P) - T(MiP)T(MjP))) Dy, (p) = ;(mm)Vn(P) = ;/li Vii(p), (13)
i(p) = ,(10
Vii(e) F1 (I F(P) |2) ) where theV;;(p) functions are the equivalent in the new basis

to the U;j(p) functions (Eq{B). Similarly to Eq., 9, the;(p)
wheref is the Fourier transform function arll the complex functionlé are defined by B 4 !

number real part function.

Equation[B is a key one for the experimental reconstruc
tion of PSFs. The covariance matxige') has to be measured
experimentally on the AO system itself, by averaging thesro
products of wavefront measurements obtained during the tim fp(x) P(x + p)dx
of the image exposure.

In the current PSF reconstruction algorithms, derived frogtich thatM’, the matrix made of the eigenvector modes
léran et a. [1997), the matrit €'y is the basic entry point {M;(X)}i-1.n is given byM’ = B'M, M being the matrix made
from which one can deduce successively the phase structakée mirror mode$M;(X)}i-1..n-
function, the OTF, and then the PSF. Additionally, one has to Using theV;; algorithm, the computation of the residual
compute, store once for all, and also readlthgp) functions parallel phase OTF only requires the computation of a number
during the reconstruction process . N of functionsVii(p). However, thes&/;(p) functions have to

In Eq.[$, thei andj indices play a symmetric role, so thabe computed on the fly for each estimation of the mean residual
there are actualli{ x (N+1)/2 "useful” Ujj(p) functions. As an parallel phase structure function.
example, in the case of the VLT AO system NAOS (Rousset et
al. poob), the 159 compensated modes lead to 12720 "usefyl, 14 winstantaneous PSE” algorithm
Uij(p) functions. Today, the large numberdfj(p) hence rep-
resents, depending on the array size and data type, several e solution we propose here is similar to the algorithm pre-
gabytes of data to compute, store, and read. Even if in pectisented bO) to simulate atmospherically distb
Eq.[8 can be fciently implemented by Fourier transform (cfwavefronts, calculated from the covariance matrix of thefeo
Eq.%), this leads to a heavy PSF reconstruction processhwHicients of their expansion in Zernike modes. We extend this
will turn out to be impossible to handle in the future since thalgorithm to any modal basis and covariance matrix, andtuse i
next AO systems are expected to have a largely increased ntmrreconstruct AO-corrected PSFs.
ber of modes: about 1370 actuators for the VLT-Planet Finder Let us consider again the eigen decomposition of the resid-
AO system [[Fusco etHI. 2005) and several tens of thousandsfal parallel phase covariance matrix:
extremely large telescopes. In the following, we proposag w
to achieve this computation, starting from the same cowagia (€€ = BAB', (15)
matrix (g¢'), without using theJ;j(p).

(Mi'(x) - M{(x + P))(M](X) - Mj(x + p))P(X)P(x + p)dx

.(14)

If one generates a vectgiwhose coéicients are indepen-
) dent Gaussian random variables with zero mean and variance
3. Theory of the proposed algorithms equal to the eigenvalug;, i.e., (;') = A, then the vector
3.1. The V; algorithm B = Bnis a set of correlated random variables whose covari-
ance matrix i g'):
Let us consider the vectog(t), hereafterg, made of the
{gi}i-.n codficients, i.e., the vector representinng(x,t) in (38" = (Byy'B") = BAB' = (¢/¢"). (16)
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Fig. 1. Strehl ratio at 2.2xm vs. guide star visual magnitude forig. 2. Circular mean of the "atmospheric” OTFs fortidirent

a NAOS-like AO system. conditions of correction: from top to bottom, the guide star
magnitude is 7.3, 12.3, and 13.6. For each guide star magni-
tude, the solid line is obtained with thé;/V;; and the crosses

The phase represented by the vegis: with the "instantaneous PSF” algorithm”.

N
¢(x.1) = Z'Bi (t) Mi(x), (17)  \wavelengths of the simulation were 0.65 and 2, respec-
=1 tively. The seeing was 0.85at 0.5um.
and the "instantaneous” PSF corresponding to that phase is: Since we aimed at testing our algorithms witffelient con-
ditions of correction, we ran the simulation with a guider sta
PSF;(x, 1) = ”7-( expia(x t))HZ' (18) magnitude ranging from 7 to 15 so that the resulting Strehl ra
% ’ tio ranged from~70% down to~0.2% (Fig.[JL). For a given
Then, by generating randomwvectors such thai') = A, guide star magnitude, we stored all the valgg$) obtained
we build instantaneous PSFs that, on average, converge toffAm the simulation to compute the covariance matepe)
long-exposure PSF of the mirror space. Note that the latterdnd ran theJij, Vi, and "instantaneous PSF” algorithms (code
not the "full PSF” that would be observed at the telescopessindetailed in Appendif ]A) from this covariance matrix to deriv
it does not include the uncorrected part of the phase (cfEq. e corresponding OTFs for comparison.
Finally:
4.2. Results of the simulations

<OTF¢E” (X//l)> X OTFtel(X//l) = T(Z PSF(x, t)]- (19) Figure[} represents the circular mean of the residual "atmo-
t

spheric” OTFs (i.e., not multiplied by the telescope OTF)-pr
duced by the dferent algorithms in three cases: good, mod-
4. Test of the algorithms erate and poor correction (#312.3", and 13.8' magnitude
guide stars, respectively). Within the numerical unceties,
the U;; and V;; algorithms produce exactly the same OTFs,
To test our algorithms, we have used a Monte Carlo-based Adich is not unexpected since they mathematically do theesam
simulation software developed at ONERA. It is a complete engomputations, but in a fierent modal basis. Their correspond-
to-end AO simulator divided into four main modules (calibrang PSF profiles in Fig[]3 are consequently also the same.
tion, propagation, closed-loop, and focal plane imaginglmo  This is of course not the case for the "instantaneous PSF”
ules) that make it as close as possible to an actual systeen. &gorithm, which needs a large enough number of iterations t
complete algorithm is fully describedfin Conan R. dtfal. @00 converge. However, even in the poor correction case, the OTF
and has been used extensively for the design of AO syster}m’@f”e obtained with the "instantaneous PSF" algorithmlwel
especially the future Planet Finder System for the VLT (Bus¢eproduces theJ;; profile (Fig.[2) with a maximum error of
et al.[200p), as well as for the tests and validations of iexjst a few 102 around 0.05D/A. This is also confirmed with the
AO systems (NAOS for instance). PSF profiles that are almost superimposed, even in the poor
We have tested our algorithms in the simple case ofcarrection case (Fig] 3).
NAOS-like AO system |(Rousset et|al. 2p00): ax14 sub-
pupil Shack-Hartmann wavefront sensor witk8pixels per
sub-aperture, a read-out noise of 3per pixel, and a sampling
frequency of 500 Hz, 2048 loop iterations. The correctios wahe U;j andV;; algorithms mathematically produce the same
performed with a 185 actuator piezostack deformable mirrf@TFs. In practice, thel;; algorithm requires reading each
plus a tip-tilt mirror. The wavefront sensing and obsemati of the N x (N + 1)/2 U;; functions (whereN is the number

4.1. Description of the simulation

5. Discussion
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10° : ' OTF«(p/A). The dispersion in the random generation of OTFs
can be computed as
1072 . 2
o2(p/A) = <||OTFm(p//l) — OTFi(p/)] >i, (20)

t‘i”t 1074 -4 whereOTF; is thei'" draw of a randomly-generated OTF. If we
call OT Fopgp/ 1) the OTF actually observed on the instrument
during the given, non infinite, observing tinTg,, when the

1074 given covariance matrigg €)'y was measured, we can evaluate
how far our estimatio®TF,, is from OT Fqps by writing:
1978 s s 2
2 a(p/A
0 20 40 80 <||OTFoo(p//l) — OTFopsp/ )| > = % (21)

Angle (A/D units)
wheren is the equivalent number of independent realisations

Fig. 3. Qrcular mean of the PSFs forff_brent cond|t|or_13 of of PSFs, whose sum has resulted in the final PSF observed by
correction: from top to bottom, the guide star magmtude(%ﬁ

. . instrument during the given, non infinite integrationdi
13.6, 12.3, and 7.3. For each guide star magnitude, the s Ingt An estimation oi could be obtained for example from a

line is obtained W,',th thy”/vif, and the crosses with the "in-¢ . simulation of the AO system under the same atmospheric
stantaneous PSF” algorithm”. Npte that the PSFs _Cons'de&@ditions as during the observation. It is also be readenab

here only correspond to the residuals and do not include sider that the impact of the correction by the AO system is
perpendicular part of the phase. to shorten the image correlation time compared to the image

correlation timero(4) of the atmospheric seeinfy (Rigaut € al.

of modes), which have been computed and stored previou)' We can then find a lower bound givenrby Tint/7o(4)-

once. In comparison, thé; algorithm requires to diagonalize
the covariance matrix, to compute the new madésx)}i-1.n, References

and to compute eact; function. This latter step is composed
of calls to these functions (cf. Appendix A): Arsenault, R., Salmon, D., & Kerr, J., et al. 1994, Proc. SPIE

2201, 833
— 2 FFTs, Bauman, B., Gavel, D., & Waltjen, K. 2002, Proc. SPIE, 4494,
— 1 square function, 19
— 1real part of a complex number, and Christou, J., Bonnacini, D., Ageorges, N., & Marchis, F. 999
— 1 modulus of a complex number. ESO Messenger, 97, 14

Conan, R., Fusco, T., Rousset, G., etal. 2004, Proc. SP#, 54
As an example, th¥/; algorithm took~8 seconds in our 602
simulation: ~2 seconds to diagonalize the covariance matr@onan, J.-M., 1994, PhD Thesis, Université Paris XI Orsay,
and compute the modes (the former taking a negligible time),France
and ~6 seconds to compute the V;; functions. This is~25 Diolaiti, E., Bendinelli, O., Bonaccini, D., et al. 2000, A&,
times faster than th;; algorithm 191 seconds). In addition 147, 335
to this huge gain in computation time, a large amount of disktzgerald M. 2004, in The® Victoria Workshop on AO-PSF
space is saved. This causes Yhealgorithm to always be pre-  reconstruction, ed. L. Jollissaint, J.-P. Véran, J. Gbus&
ferred to thel;; one. T. Rimmele, httpy/cfao.ucolick.orgmeetinggpsfreconstruc-
As noticed by|Conan J.-M.| (1994), averaging short- tion
exposure OTFs, as we do in the "instantaneous PSF” algarittfrasco, T., Rousset, G., Beuzit, J.-L. et al. 2005, Proc. SPIE
is a process that converges very slowly, especially at Brge 5903, 148
or a low correction level. In addition, it does not lead toithe Fusco, T., Véran, J.-P., Conan, J.-M., & Mugnier, L. 1999,
finitely long exposure OTF since a given number of short ex- A&AS, 134,1
posures are averaged. Besides, Conan [J|-M. [1994) has shielarder, S., & Chelli, A. 2000, A&AS, 142,119
that in the poor correction case, the errorin computingaghgd Herriot, G., Morris, S., Anthony, A., et al. 2000, Proc. SPIE
exposure OTF of such an algorithm is larger than forthe 4007, 115
algorithm, and then th¥;; algorithm as well. Jolissaint, L., Véran, J.-P., & Marino, J. 2004, Proc. SPIE
Though, we emphasize that, in addition to the OTF compu-5490, 151
tation itself, the "instantaneous PSF” algorithm can pdevén Kasper, M., Looze D., Hippler S., et al. 2000, Experimental
estimation about the variability of the OTF, which can help a Astronomy, 10, 49
lotin some deconvolution algorithms. The estimation ofithe Mugnier, L., Fusco, T., & Conan, J.-M. 2003, JOSA A, 21,
finitely long exposure OTF that results from the convergencel841
of our "instantaneous PSF” algorithm and that corresponB&gaut, F., Rousset, G., Kern, P., et al. 1991, A&A, 250, 280
to a given covariance matrig ¢y is unique: let us call it Roddier, N. 1990, Proc. SPIE, 1237, 668
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Rousset, G., Lacombe, F., Puget, P., et al. 2000, Proc. SPIE,for i=0,nmodes-1 do begin

4007, 72 for j=i,nmodes-1 do begin
Stetson, P. 1987, PASP, 99, 191 uij = readfits('Uiju_’ +string(i,format’(i2.2)") +' ' +$
Véran, J.-P., Rigaut, F., Nise H., & Rouan, D. 1997, Journal string(j,formag’(i2.2)") +'.fits’, /silent)

of the Optical Society of America A, 14, 3057 fac = double((i ne j}1)

Weiss, R. 2003, PhD Thesis, Naturwissenschaftlich- dphl= dphl+(fac*covmode(i,j)*uij)
Mathematische Gesamtfakultat der Universitat Heidglpe endfor
Germany endfor

otfl = exp(-0.5*dph1*ratidambdd 2)*mask
otfl = otfl/max(otfl)
Appendix A: IDL codes
PP A.3. The Vi algorithm

A.1. Common par . : . .
Common parts ; New modes that diagonalize the covariance matrix

| = (eigengl(covmode,eigenvecteis))>0

s = b#diagmatrix(sqrt(l))

newmodes- reform((reform(modes,di2,nmodes))#b,$
dim,dim,nmodes)

cbmes= readfits('cbmes.fits’)
s2m= readfits('slopes2modes.fits’)
modes= readfits('modalbasis.fits’)
nmodes:(size(modes))(3)
lambdaim=2.2d-6
lambdaasc=0.65d-6
ratio_lambda-lambdaasglambdaim
; Telescope OTF computation and corresponding mask

; Computation of the OTF with the Vii
newmodek dblarr(dim2,dim?2)
temp= dblarr(dim2,dim2)
for i=0,nmodes-1 do begin

apertreadfits('pupille.fits’)
dim=(size(apert))(1)
dim2=2*dim
pup=dblarr(dim2,dim2)
pup(0,0¥apert
puptt=ftft(double(pup))
conjpugftt=conj(puft)

otftel = real part(ft(pupft*conjpupfit,/inverse))
den=1/(otftel)
den(where(finite(den) eq G
mask=fltarr(dim2,dim2}1
mask(where(otftel It 1e-530
otftel=otftel/max(otftel)

newmodei(0,0¥ newmodes(*,*,i)*apert
term1= real part(ft(hnewmodei2)*conjpupftt)
term2= (absftt(newmodei))) 2
temp= tempr+((term1-term2)*I(i))
endfor
otf2 = exp(-0.5*realpart(ft(2*temp/inverse))*den$
*ratio_lambdd 2)*mask
otf2 = otf2/max(otf2)

A.4. The "instantaneous PSF” algorithm

psf= dblarr(dim2,dim2)
tmp = ratio_lambda*reform(modes,difi2,nmodes)

for i=0,nbcb-1 do begin
phi(0,0)= reform((s#randomn(seed,nmodes))##tmp,dim,dim
psf= psf+(absfft(pup*exp(dcomplex(0,phi))))R

endfor

psf= psfinbcb

otf3 = realpart(ftt(psf))

otf3 = otf3/max(otf3)Yotftel*mask

otf3(where(finite(otf3) eq 0H0

;Computation of the covariance matrix over the modes
cbmode= cbmes##transpose(s2m)
nbcb= (size(cbmode))(2)
covmode= (cbmode#transpose(cbmodalcb

A.2. The Uj; algorithm

; Computation and storage of the Uij functions
modei= dblarr(dim2,dim2)
modej= dblarr(dim2,dim2)
for i=0,nmodes-1 do begin
modei(0,0)= modes(*,*,i)*apert
for j=i,nmodes-1 do begin
modej(0,0)= modes(*,*,j)*apert
term1= real part(ft(modei*modej)*conjpufit)
term2= real part(ft(modei)*conjtt(modej)))
uij = realpart(ft(2*(term1-term2)inverse))*den*mask
writefits,'Uij/u_’ +string(i,format’(i2.2)") +' ' +$
string(j,format’(i2.2)") +'.fits’,uij
endfor
endfor
; Computation of the OTF with the Uijj
dphl= dblarr(dim2,dim2)



