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Effect of step stiffness and diffusion anisotropy on the
meandering of a growing vicinal surface

Thomas Frisch∗ and Alberto Verga†
Institut de Recherche sur les Phénomènes Hors Équilibre,

UMR 6594, CNRS, Université de Provence, Marseille, France
(Dated: April 11, 2006)

We study the step meandering instability on a surface characterized by the alternation of terraces
with different properties, as in the case of Si(001). The interplay between diffusion anisotropy and
step stiffness induces a finite wavelength instability corresponding to a meandering mode. The insta-
bility sets in beyond a threshold value which depends on the relative magnitudes of the destabilizing
flux and the stabilizing stiffness difference. The meander dynamics is governed by the conserved
Kuramoto-Sivashinsky equation, which display spatiotemporal coarsening.

PACS numbers: 81.15.Hi, 68.35.Ct, 81.10.Aj, 47.20.Hw

Molecular beam epitaxy (MBE) is often used to grow
nanostructures on vicinal surfaces of semiconductor and
metallic crystals [1–5]. Under nonequilibrium growth a
very rich variety of crystal surface morphologies are ex-
perimentally observed resulting from the nonlinear evo-
lution of step bunching and meandering instabilities [6–
8]. Self-organized patterns arising from these instabilities
may be used for the development of technological appli-
cations such as quantum dots and quantum wells [9, 10].
The step meandering instability was originally predicted
theoretically by Bales and Zangwill [11] for a vicinal sur-
face under growth. Its origin comes from the asymme-
try between the descending and ascending currents of
adatoms. Nonlinear extensions of this work have shown
that the meander evolution can be described by ampli-
tude equations showing diverse behaviors: spatiotempo-
ral chaos governed by the Kuramoto-Sivashinsky equa-
tion in the case of the Erlich-Schwoebel effect with des-
orption [12]; nonlinear coarsening in the case of negligible
desorption [13–15]; and interrupted coarsening when two-
dimensional anisotropy is included [16, 17]. Step mean-
dering on a Si(001) vicinal surface can also be driven by
a drift electromigration current in the presence of alter-
nating diffusion coefficients, even for symmetric adatom
attachment to the steps [18, 19].

Recent experiments [20–23] on the growth of Si(001)
have revealed the existence of a step bunching instabil-
ity and the development of a transverse two-dimensional
complex structure (ripples), possibly reminiscent of a me-
andering instability. We have recently shown that the
observed step bunching instability is due to the interplay
between the elastic interactions and the alternation of the
step parameters [24]. In order to understand the rough-
ening of the Si(001) surface during growth it would be
important to know if step bunching and meandering can
arise simultaneously. So far, no conclusive experimental
evidence for the presence of the Schwoebel effect leading
to meandering instability has been established.

In this Letter, we show that the difference in step stiff-
ness and diffusion anisotropy induce a meandering insta-
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FIG. 1: Sketch of the Si(001) vicinal surface showing the al-
ternation of terraces and steps Sa and Sb. Lines on terraces
indicate the privileged diffusion directions. Da, Db and γ̃a,
γ̃b are the surface diffusion and step stiffness coefficients, re-
spectively; xn

a , xn
b and ξn

a (y, t), ξn
b (y, t) are step positions and

the corresponding perturbations.

bility which can account for the complex step structures
observed in Si(001) epitaxial growth. We first present
the linear two-dimensional stability analysis of a train of
steps using a simplified extension of the model studied
in reference [24]. We show that the interplay between
diffusion anisotropy and the step stiffness effect under
growth conditions induces a finite wavelength instability
which is maximum for the in-phase modes. We present
the stability phase diagram in the parameters space. Our
results are complemented by a weak nonlinear analysis of
the step meander which reveals a coarsening dynamics.
Using a simple similarity argument, we show that the
characteristic coarsening exponent is 1/2 and that the
general solution of the CKS equations can be thought as
a superposition of parabolas. Finally we conclude this
Letter by discussing the possible relevance of our model
to the experiment on Si growth and the consequences of
the simultaneous existence of bunching and meandering
instabilities.

The Si(001) vicinal surface consists of a periodic se-
quence of terraces where rows of 2×1 dimerized adatoms
(terrace of type a) alternate with 1×2 dimerized adatoms
(terrace of type b), as shown in Fig. 1 where we also in-
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troduce several notations. On the reconstructed surface
adatoms diffuse preferentially along dimer rows, giving
rise to an anisotropic diffusion. Therefore, the steps sep-
arating the terraces are of two kinds. The Sa steps are
rather straight while the Sb ones are very corrugated [25].
We shall allow each step to have a different step stiffness
coefficient γ̃a and γ̃b [26]. For simplicity we neglect elas-
tic interactions between steps and assume that the des-
orption of adatoms is negligible; we also neglect Erlich-
Schwoebel effects. Let us denote by xn

a(y, t) and xn
b (y, t)

the positions at time t of steps Sa and Sb respectively
(cf. Fig. 1). During growth, the adatom concentrations
on each terrace Cn

a (x, y, t) and Cn
b (x, y, t), obey the fol-

lowing diffusion equations [27]:

Da∂2
xCn

a + Db∂
2
yCn

a = −F , (1)

Db∂
2
xCn

b + Da∂2
yCn

b = −F , (2)

where Da and Db are the diffusion coefficients, and F the
deposition flux. Cn

a and Cn
b are the difference of adatoms

concentrations with respect to the uniform equilibrium
concentration C0 (taken to be the same on both terrace
types). We assume for Cn

a and Cn
b , the following bound-

ary conditions:

Cn
a (xn−1

b ) = Cn−1
eq,b , Cn

a (xn
a) = Cn

eq,a , (3)
Cn

b (xn
a) = Cn

eq,a , Cn
b (xn

b ) = Cn
eq,b , (4)

which correspond to instantaneous attachment kinetics,
and can be considered as the simplest ones capturing the
main physical effects (no diffusion along steps and negli-
gible transparency). The adatom equilibrium concentra-
tions Cn

eq,a and Cn
eq,b depend on the step curvatures κn

a

and κn
b [12]:

Cn
eq,a = C0Γaκn

a , Cn
eq,b = C0Γbκ

n
b , (5)

with Γb = Ωγ̃b/kBT and Γa = Ωγ̃a/kBT (Ω is the unit
atomic surface, T the temperature, and kB the Boltz-
mann constant). The normal velocities of each step are
vn

a = ẋn
a/(1 + (∂yxn

a)2)1/2 and vn
b = ẋn

b /(1 + (∂yxn
b )2)1/2,

where

ẋn
a = Ω [(Db∂xCn

b −Da(∂yxn
a)∂yCn

b )−
(Da∂xCn

a −Db(∂yxn
a)∂yCn

a )]x=xn
a

, (6)

ẋn
b = Ω

[
(Da∂xCn+1

a −Db(∂yxn
b )∂yCn+1

a )−
(Db ∂xCn

b −Da(∂yxn
b )∂yCn

b )]x=xn
b

. (7)

In order to get a nondimensional version of equations
(1)-(7), we set the unit of length to be the initial size
of the terrace l0 and the unit of time l30/(C0ΓaΩDa).
The system is controlled by three independent positive
nondimensional parameters:

f0 =
Fl30

C0ΓaDa
, α0 =

Db

Da
, δ0 =

Γa − Γb

Γa
, (8)
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FIG. 2: Stability diagram in the plane (f0, δ0), for α0 > 1.
The thick gray line f0 = f0c given by Eq. (9), separates the
unstable region (right side), from the stable one (left side).
The dispersion relation σ(q) with its two branches is shown
in each region.

which respectively relate to the flux, diffusion anisotropy
and step stiffness difference.

We investigate now the linear stability of a train of
equidistant steps traveling at a constant velocity f0 when
perturbed transversally. The shape of the steps can be
decomposed in Fourier modes of the form xn

a(y, t) =
f0t + 2n + ξn

a (y, t) and xn
b (y, t) = f0t + 2n + 1 + ξn

b (y, t)
with ξn

a and ξn
b the perturbation amplitudes varying as

exp(σ(q, φ)t + iqy + inφ), where q is the wavenumber
and φ the phase (see Fig. 1). Inserting these expres-
sions into (1)-(7), we obtain the general dispersion re-
lation σ = σ(q, φ). The dispersion relation possesses,
for each φ, two branches corresponding to a stable σs

and an unstable σu mode. The maximum growth rate is
reached for the in-phase perturbation φ = 0 (Fig. 2). In
the following we consider only this in-phase mode, thus
neglecting the n dependence ξn

a = ξa, and ξn
b = ξb (the

system is periodic in the x-direction with period 2l0). We
find that the instability appears above a flux threshold
f0c given by,

f0 > f0c = −12α0δ0/(α0 − 1) , (9)

where f0 > 0. The stability domain in the plan (f0, δ0)
is shown in Fig. 2. Typically the instability is related to
a large diffusion Db on terrace b (α0 � 1) accompanied
by a small stiffness γ̃b of step Sb (δ0 > 0). Although
the full expression of the dispersion relation is cumber-
some, near the instability threshold we can introduce a
small parameter ε measuring the distance to the thresh-
old. This parameter arises naturally when considering
the long wavelength limit, in which q → εq. In this
limit the relevant scaled parameters are chosen to be:
f0 = εf, δ0 = εδ, α0 = 1+ ε2α, together with a rescaling
of the stiffness Γa → ε2Γa. This scaling will lead to a
consistent weak nonlinear expansion, as it will be shown
below. To lowest order the two branches of σ = σ(q, φ)
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are,

σs = −4ε4q2 , (10)

σu =
ε6

48
fα(fα + 12δ)q2 − ε6q4 . (11)

The growth rate σu is maximum for the wavenumber
qm = [fα(fα + 12δ)]1/2/4

√
6. Even for vanishing δ (no

difference between step stiffness) an instability is still
present driven by diffusion anisotropy and growth effect,
σu(qm) ∼ f4α4. The physical mechanism of the insta-
bility is the point effect, increasing the diffusion around
the maxima, combined with the anisotropy in diffusion
between two consecutive terraces, locally impeding the
compensation of the currents leaving and reaching the
steps. If the anisotropy was absent, a simple difference
in diffusion coefficients would not lead to an instability
as a consequence of mass conservation.

Taking for example typical values for Si(001) at two
different temperatures T = 1000 K and T = 800 K (with
l0 = 2 10−8 m and F = 0.1 ML s−1), f0 = 0.3, and 4.3,
α0 = 45, and 119, and δ0 = 0.9, we obtain that the typi-
cal wavelength of the meanders is of the order of 250 nm
and 60 nm, respectively. These sizes are in the range of
the transverse modulations (ripples) of the step bunches
observed in the experiments [20–23].

We study at present the nonlinear evolution of the me-
andering instability, in the limit of weak amplitudes and
long wavelengths. An inspection of Eqs. (10)-(11) for
the damping and growth rates, suggests that we should
consider different time scales and amplitudes for the sta-
ble and unstable branches. We introduce the functions
s(y, t) and u(y, t) corresponding to the amplitudes of the
stable and the unstable branches respectively. These am-
plitudes are related to the step shape by,(

ξa

ξb

)
= εM0(ε)

(
ε s
u

)
, (12)

where M0 is the matrix formed with the eigenvectors as-
sociated to the linear dispersion relation and depends on
the physical parameters (f0, α0, δ0). In order to obtain
the relevant nonlinear dynamics we use a standard multi-
scale method. Adatoms concentrations and step shapes
are expanded in powers of ε. The amplitudes of this
expansion depend on the slowly varying space εy and
two time variables ε4t and ε6t. In particular the stable
and unstable shape functions are given by s = s(ε4t, εy)
and u = u(ε6t, εy). Solving diffusion equations (1-2) and
boundary conditions (3-4) up to order ε7, and inserting
the results into the step velocity equations (6-7) we find
the equation for the unstable mode:

∂tu = −∂2
y

[
fα

48
(fα + 12δ)u + ∂2

yu +
f

12
(∂yu)2

]
, (13)

where we renamed the slow variables ε6t → t and εy →
y. After rescaling we can write Eq. (13) in the form
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FIG. 3: Spacetime plot of u(y, t) with nondimensional y and
t axes, given by the numerical solution of the CKS equation.
The coarse-graining of structures leads to a superposition of
parabolas, with a size 〈u2〉1/2 ∼ t. In the long time state all
the parabolas tend to have unity curvature at their maximum,
and width increasing as

√
t.

∂tu = −∂2
y [u + ∂2

yu + (∂yu)2/2]. This is a conserved ver-
sion of the Kuramoto-Sivashinsky equation (CKS). The
numerical simulations [28] of a related equation describ-
ing bunches created by an electromigration current, thus
having an extra symmetry breaking term in ∂3

yu, have
revealed a non interrupted coarsening dynamics with a
characteristic size of coalesced step bunches increasing as
t1/2. In our context this ∂3

yu term, leading to a dispersive
drift, must be absent. Our direct simulations confirmed
a t1/2 scaling and also demonstrate a linear time growth
of the characteristic meander amplitude 〈u2〉1/2 ∼ t (spa-
tial average is denoted 〈· · · 〉). A typical spatiotemporal
evolution from a random initial condition is shown in
Fig. 3. In the context of Bales-Zangwill meandering in-
stability, it was shown that the dynamics of steps is fully
nonlinear, excluding CKS equation, although it would be
compatible with the basic symmetries of the system [15].

Simple similarity and matching arguments lead to a
complete picture for the long time behavior of (13). It
is worth noting that the CKS equation admits an exact
particular solution in the form of a stationary parabola
u(y, t) = −y2/2. We also note that, for rapidly decreas-
ing or bounded functions, the moment of order one of
u(y, t) is conserved while the second order moment sat-
isfies

d

dt

1
2

∫
u2dy =

∫
[(∂yu)2 − (∂2

yu)2]dy , (14)

showing that the amplitude of u tends to increase in re-
gions where the gradient term ∂yu inside the integral
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dominates the curvature term ∂2
yu. This suggests that

the dynamics of large amplitude smooth regions of u(y, t)
is almost independent of the four derivative (stabilizing)
term in (13). Trying a similarity solution

u = taϕ(y/tb) , Y = y/tb (15)

of ∂tu = −∂2
y [u + (∂yu)2/2], we find immediately the

exponents b = 1/2 and a = 1, which agree with our
numerical results. The fourth order derivative term be-
haves as ∂4

yu ∼ ∂4
Y ϕ/t, which is consistent with the above

assumption that it should be negligible in the consid-
ered regime. Moreover, the similarity equation for ϕ:
ϕ− (Y/2)∂Y ϕ + ∂2

Y [ϕ + (∂Y ϕ)2/2] = 0 has a solution in
the form of a bounded parabola:

u(y, t) = −y2/2, |y| < y0(t) (16)

and zero elsewhere. The parabola edge y0(t) is deter-
mined by the condition

d

dt

1
4

∫ y0(t)

0

y4dy = 2
∫ y0(t)

0

y2dy , (17)

a consequence of (14), which gives y0(t) = (16t/3)1/2.
The general, asymptotic solution of (13) can be thought
as a superposition of parabolas satisfying (16) (see
Fig. 3). The joining region between the parabolas
possesses a high curvature and can be described by
the reduced inner equation ∂2

yu(y) + (1/2)(∂yu(y))2 =
2k2 = const., whose solution is of the form u(y) =
2 log[cosh k(y − y0(t))]. Matching with the outer solu-
tion (16) we find that k = y0(t)/2 ∼

√
t. Therefore, the

curvature of the joining line increases as κ ∼ t.
In this Letter, we have shown that the effect of step

stiffness difference and diffusion anisotropy induces a me-
andering instability during surface growth. We have first
presented a linear stability analysis of a train of steps us-
ing a simplified two-dimensional extension of the model
studied in Ref. [24]. We have shown that the inter-
play between diffusion anisotropy and the step stiffness
effect under growth conditions leads to a finite wave-
length instability which is maximum for the in-phase
mode. Our results are complemented by a weak non-
linear analysis of the step dynamics which reveals that
the amplitude of the meanders is governed by the con-
served Kuramoto-Sivashinsky equation (CKS) which dis-
plays non-interrupted coarsening. We believe that the
morphology observed in experiments of molecular beam
epitaxy on Si(001) slightly disoriented towards the [110]
direction, reported in Refs. [20–23], can be explained by
the nonlinear evolution of the step bunching and step
meandering instabilities arising simultaneously. Indeed,
we will present elsewhere an investigation of the two-
dimensional dynamics originated by the nonlinear cou-
pling between these kinetic effects, and we will discuss
their role in the formation of the ripples shown for in-
stance in Fig. 1 of Ref. [21].
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