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ABSTRACT
After decades of searching, the true nature of dark matter still eludes us. One potential probe of
the form of dark matter in galaxy clusters is to search for microlensing variability in the giant
arcs and arclets. In this paper, a simple method is introduced to characterize pixel variability
in the limit of high optical depth to microlensing. Expanding on earlier work, the expected
microlensing signal for two massive clusters, A2218 and A370 is calculated. It is found that
the microlensing signal depends sensitively upon the mix of smooth and compact dark matter
in the cluster. Comparison of two deep exposures taken with James Webb Space Telescope or
2-h exposures taken with a 30-m class telescope in two epochs separated by a few years will
possibly detect a few dozen pixels that show strong variability due to microlensing at the 5σ

level, revealing a wealth of information on the microlensing population.

Key words: gravitational lensing – dark matter – galaxies: clusters: individual: A370 –
galaxies: clusters: individual: A2218.

1 I N T RO D U C T I O N

There is significant evidence that most of the energy density in the
Universe resides in forms yet unknown, but the physical nature of
this dark matter is an issue of live debate and is far from being under-
stood (Muñoz 2003; Lahav & Liddle 2004). Typical explanations
invoke either compact objects, such as primordial black holes, stellar
remnants or planets, or continuous material such as weakly interact-
ing massive particles, unseen hydrogen or more exotic explanations.
Potential clues to the nature of dark matter have recently been uncov-
ered with the detection of neutrino mass and observations of com-
pact massive objects thought to be mostly white dwarfs in Galactic
neighbourhood (e.g. Fukuda et al. 2000; Alcock et al. 2000). How-
ever, given their mass neutrinos cannot contain more than ∼13 per
cent of the dark matter mass budget (Hu, Eisenstein & Tegmark
1998). Furthermore, the halo microlensing programs constrain com-
pact objects in the mass range of (10−7–10−1) M� to making
no more than 10 per cent of the Galactic halo (Sadoulet 1999).

Gravitational lensing has allowed the detailed reconstruction of
the projected mass distribution in galaxy clusters (e.g. Ebbels et al.
1998). Unfortunately, such analysis does not probe the fundamental
nature of dark matter. However, although deflection angles due to
compact objects in the dark matter are negligible their derivatives
may be substantial, which means that although the granularity of
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dark matter cannot change the morphology of lensed systems, this
microlensing can have significant impact on the observed fluxes
(Liebes 1964; Paczyński 1986). As the mutual configuration of
sources and lenses change with time, this results in variability of
the observed flux.

Several microlensing programs have been proposed and under-
taken, the most successful of them being the microlensing experi-
ments towards Galactic bulge and Magellanic Clouds by MACHO,
EROS and OGLE collaborations (Udalski, Kubiak & Szymanski
1997; Alcock et al. 2000; Lasserre et al. 2000). Another approach is
pixel lensing when the search focuses not on individual sources, but
on a large number of stars seen as a single pixel of the image. Events
of strong lensing of a single star can be detected in the pixel light
though they never dominate it. Such events have been discussed in
connection with the galaxies M31 and M87 (Crotts 1992; Baillon
et al. 1993; Gould 1995), and a few observational programs mon-
itoring these galaxies have been implemented (Crotts & Tomaney
1996; Ansari et al. 1997; Riffeser et al. 2001; Baltz et al. 2003).

Further away from the Galaxy, a search for microlensing-induced
variability of quasars seen through galaxy clusters has been pro-
posed (Walker & Ireland 1995; Tadros, Warren & Hewett 1998).
This has been undertaken for the Virgo cluster, although its close
proximity ensures that the optical depth to microlensing is low.
Although analysis of the quasar variability based on a long obser-
vation series by Hawkins (1996) let him conclude that the dark
matter may be dominated by Jupiter-mass microlenses, this idea is
not widely supported. One of the difficulties here is that quasars are
expected to possess intrinsic variability (Zackrisson et al. 2003),
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which significantly complicates microlensing studies. Totani (2003)
proposed the exploration of the advantage of the recent discovery
of a galaxy cluster found just behind the rich cluster Abell 2152 but
this has yet to result in an observational program.

Another possibility is to look for the variations in surface bright-
ness of strongly lensed distant galaxies, e.g. giant gravitationally
lensed arcs (Lewis & Ibata 2001; Lewis, Ibata & Wyithe 2000).
They are found in the regions of large magnification and therefore
high optical depth. Assuming that microlenses make up an appre-
ciable fraction of the lensing mass, it means that in any instant all
the stars in a pixel are subject to strong microlensing and therefore
an investigation of the surface brightness variability is effectively
reduced to an investigation of the behaviour of the sum of a large
number of individual fluxes with fairly well-known individual sta-
tistical properties.

This study extends the analysis of Lewis et al. (2000) and pro-
vides a general method for the analytic calculation of variability
patterns given the convergence and shear values. We apply it to the
two well-studied galaxy clusters – Abell 370 and Abell 2218. In
the next section we describe and justify the method we use, and
then calculate the value of individual microlensing-induced vari-
ability dispersion as a function of standard microlensing parameters.
Section 3 discusses observational prospects for detecting this sort
of variability. We discuss our results in Section 4.

2 G E N E R A L M E T H O D

2.1 Statistical approach

The goal of this section is to learn to characterize the variability in
pixels of images of distant galaxies with a few parameters. We show
that the high optical depth and large numbers of stars forming the
pixel allow one to reduce this to a single parameter – dispersion – as
the observed flux distribution can be approximated by the Gaussian
function with good accuracy.

The major assumption we make in our investigation is that the
fluxes of individual stars, which vary as stars and lenses move with
respect to each other, do so independently. This is a natural assump-
tion as individual stars in the source plane are distributed in a random
manner. It might be worth considering the presence of some form
of agglomerations in pixels but this seems to be an unnecessary
complication at the present stage.

We consider statistical properties ‘as static’, i.e. on time-scales
greater than typical individual variability scale given by the time of
Einstein–Chwolson radius crossing (re/v), and therefore are inter-
ested in the probability distribution function of the summed pixel
flux. The typical fluxes in pixels forming images of strongly lensed
galaxies correspond to the range in luminosity of thousands to bil-
lions of solar luminosities – and therefore contain very large num-
bers of stars. This fact along with the variability independence imme-
diately suggests using the central limit theorem to infer the statistical
properties of the pixel flux.

Indeed, let the intrinsic (unlensed) fluxes of the pixel population
stars be {Li}, i = 1, . . . , N , with N being the number of stars in the
pixel. If we neglect the fraction of stars intrinsically variable at the
same level and time-scale as the variability caused by the microlens-
ing, the role of Li is to normalize the variability in magnification
factor µi arising as the source stars move through the magnification
map:

Lobs
i = Liµi (1)

and µi can be considered a random variable.

The probability distribution of µi does depend on the individual
characteristics of the source – mostly, the size of its disc. However,
as we will see in the following section, this dependence is not strong
and, to show the validity of Gaussian approximations it is enough
to assume that µi distribution is identical for all i and only depends
on (macro) lensing parameters in the pixel.1

The flux observed in the pixel is given by

Lobs|{Li } =
N∑

i=1

Liµi (2)

and its average value is

Lobs|{Li } = µ

N∑
i=1

Li , (3)

where the bar denotes the averaging over the lensing configuration
at a given convergence and shear (assuming a sort of ergodic hy-
pothesis this is equivalent to averaging over time).

Let us define δLi ≡ (µi − µ)Li and consider the deviation of
Lobs|{Li } from its average value:

δL|{Li } =
N∑

i=1

Li (µi − µ). (4)

Let us also define the second and third moments of the distribution
in µ: σ 2

µ ≡ (µ − µ)2 and β ≡ |µ − µ|3. Clearly, the corresponding
moments for δLi equal L2

i σ
2
µ and L3

i β.
According to Lyapunov theorem, the actual probability distribu-

tion function F of δL|{Li } tends to the Gaussian approximation

�(δL) = 1√
2πσ 2

exp

(
− δL2

2σ 2

)
, (5)

where we dropped {Li} subscript for clarity, with

σ 2 ≡ σ 2
µ

∑
i

L2
i . (6)

The accuracy of this approximation in the Kolmogorov (L∞) mea-
sure ρ(F, �) ≡ supx∈R |F(x) − �(x)| is not worse than cA, where

A ≡ β

σ 3
µ

∑
L3

i(∑
L2

i

)3/2 (7)

(Berry 1941; Esseen 1942) and c ≡ (
√

10 + 3)/6
√

2π ≈ 0.41
(Chistyakov 2001).

Although the value of the second fraction in A may, depend-
ing on {Li}, be as large as unity its typical value is of the order
of 〈L3

i 〉/(〈L2
i 〉3/2

√
N ), where the angled brackets denote averaging

over the luminosity function (which, up to a distance- and band-
dependent constant, is the distribution of intrinsic fluxes).

With the luminosity function given by Jahreiss & Wielen (1997)2,
〈L3

i 〉 ≈ 103 and 〈L2
i 〉 ≈ 10 L2�, therefore

cA ≈ 10
β

σ 3
µ

1√
N

. (8)

To estimate the values of β and σ µ it is sufficient to use a
rather coarse ‘model’ probability distribution density p(µ), which is

1 We also assume that these parameters are constant throughout the pixel
and this is a natural assumptions in most cases.
2 The work of Jahreiss & Wielen (1997) presents V-band luminosities,
which are of rather limited interest for exact cosmological predictions where
K-corrections are to be taken into account; however, these numbers provide
sensible estimates for the quantities under consideration.

C© 2004 RAS, MNRAS 353, 853–866

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/353/3/853/1079541 by guest on 16 D
ecem

ber 2020



Compact dark matter in galaxy clusters 855

normalized to unity and has three basic properties established the-
oretically:

(i) p(µ) = 0 at µ � 1;
(ii)

∫
dµ p(µ)µ = µth, µth = |(1 − κ2) − γ 2|−1;

(iii) p(µ) ∼ µ−3 at µ � 1.

The job is performed by the following ‘model’ p(µ):

p(µ) = 2(µ0 − 1)2(µ − 1)[
(µ − 1)2 + (µ0 − 1)2

]2 . (9)

The second condition implies µ0 − 1 = 2(µth − 1)/π.
This distribution does not possess the second moment, let alone

the third, as a result of property (iii). However, the finite size of the
source places a cut-off µmax at the high values of µ (for a single
point mass µmax is nearly inversely proportional to the source size
as was shown by Liebes 1964). Since µmax � µ0 it does not affect
either norm or the first moment and therefore with σ 2

µ ≈ 2µ2
0 ln

(µmax/µ0) ≈ µ2
th ln (πµmax/2µth) and β ≈ µ2

thµmax we have

cA ≈ 10√
N

µmax

µth ln (πµmax/2µth)
. (10)

With typical gravitationally lensed arcs values of µth ∼ 10, µmax ∼
100 (Lewis et al. 2000) and N ∼ 104 –106 in a pixel cA � 0.01–
0.1. This means that when talking about a deviation of at least one
standard value σ , for which the Gaussian probability is ≈0.15, one
can be sure that the actual probability of such a deviation is not less
than 5–25 per cent.

Strictly speaking, the minimum magnification value for mi-
crolensing at high optical depth is greater than one used in (i) as
was shown by Schneider (1984), and one could rather use some
model value for this quantity (Bartelman & Schneider 1990). How-
ever, this does not have much impact on the estimate of the validity of
our approximation. Perhaps more important is that due to the value
of minimum magnification, which is greater than unity, Gaussian
approximation clearly cannot hold exactly as it assigns non-zero
probability to flux values below the minimum. However, this in-
consistency is well inside the uncertainty of our method, given by
equation (10) and does not affect our results.

The initial task is thus reduced to calculating the only parameter
of a centred Gaussian distribution – its dispersion. As {Li} is not
known a priori (and nor it can be known well a posteriori), δL|{Li} is
to be averaged over all possible {Li}. This can easily be achieved
by considering the following three random variables:

�L = �Lo + δL, (11)

where �L = ∑
i (µLi − µ〈Li 〉), �Lo = µ

∑
i (Li − 〈Li 〉) and δL

is the value of interest. Here, again the bar denotes averaging in the
µ domain, while angled brackets mean averaging over {Li}.

As these three quantities are (nearly) Gaussian and uncorrelated
(the correlation vanishes when averaging over µ), the following
relation holds:

σ 2
δL = σ 2

�L − σ 2
�Lo . (12)

Clearly,

σ 2
�Lo =

〈[
µ

∑
(L − 〈Li 〉)

]2 〉
= Nµ2σ 2

L , (13)

where σ 2
L is the dispersion of individual flux (Jahreiss & Wielen

1997).

For the second quantity we may write:

σ 2
�L =

〈[∑
(µL − µ〈Li 〉)

]2
〉

= N
〈
µ2 L2

i − 2µµLi 〈Li 〉 + µ2〈Li 〉2
〉

= N
(
µ2

〈
L2

i

〉 − µ2〈Li 〉2
)

= N
(
σ 2

µ

〈
L2

i

〉 + µ2σ 2
L

)
(14)

and therefore

σ 2
δL = N

〈
L2

i

〉
σ 2

µ. (15)

The dispersion of the quantity δL/(Nµ〈Li 〉) – the relative fluctua-
tion – is thus given by:

ε2
δL = 1

N

〈
L2

i

〉
〈Li 〉2

σ 2
µ

µ2 . (16)

As N is not known either we will just divide the observed flux of
the pixel Lobs by the mean magnification factor and mean individual
stellar flux to obtain a first-order estimate:

N̂ = Lobs

µ〈Li 〉 . (17)

Thus,

ε̂δL =
√ 〈

L2
i

〉
〈Li 〉Lobs

√
ε2

µµ, (18)

with the first factor in this formula being approximately
6.02/

√
Lobs/L� for the luminosity function of Jahreiss &

Wielen (1997) and the variability extent

ε2
µ ≡ σ 2

µ

µ2 = µ2

µ2 − 1. (19)

This quantity is therefore of our prime interest.

2.2 Evaluation of ε2
µ

In calculating the variability extent ε2
µ we employ the method of

Neindorf (2003), who improved and generalized previous works
of Deguchi & Watson (1987), Seitz & Schneider (1994) and Seitz,
Wambsganss & Schneider (1994) to make possible the calculation
of microlensing correlation functions in the case of non-zero shear.
We, however, slightly modify his equations and evaluation method
for our specific needs.

Let z and ζ be the light ray positions in the lens L and source S
planes, respectively. The normalized lens equation is then (Kayser,
Refsdal & Stabell 1986; Paczyński 1986)

ζ = Ĵ0z − sign(1 − κc)
∑

i

mi
z − zi

|z − zi |2 , (20)

where

Ĵ0 ≡
(

1 + γ 0
0 1 − γ

)
, (21)

where γ = γ ′/(1 − κ c), while κ c is the smooth matter convergence
and γ ′ is the shear, both expressed in critical units

�0 ≡ c2

4πG D
(22)

and

�0 ≡ c2

4G D
, (23)
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where D is a reduced (angular diameter) distance

D ≡ DLS DOL

DOS
. (24)

The masses of the microlenses mi are given in units of M0, the
quantity that also defines Einstein radii z0 and ζ 0, physical length
units in which z and ζ of equation (20) are expressed – in lens and
source planes:

z0 ≡
√

4G M0

c2

1

|1 − κc|
DLS DOL

DOS
(25)

ζ0 ≡
√

4G M0

c2
|1 − κc| DLS DOS

DOL
. (26)

In the case we consider the microlensing shear S(z) ≡
sign(1 − κc)

∑
mi (z − zi )/|z − zi |2 – the second term in equa-

tion (20) – is an isotropic random variable. Changing the sign of γ

has the effect of only redefining coordinate axes and as this is not
of interest for us we drop the sign(1 − κ c) factor in equation (20)
and use absolute value of γ from now on.

The magnification factor at a point ζ in the source plane may be
written in an elegant form (Neindorf 2003):

µ(ζ) = 1

|1 − κc|2
∫
L

δ[ζ − Ĵ0z + S(z)] d2z. (27)

The average of µ is

µth = 1∣∣[1 − κc]2[(1 − κ)2 − γ 2]
∣∣ , (28)

where κ = π〈m〉n is the scaled microlensing optical depth with n
being the surface number density of microlenses and angled brackets
now meaning averaging over microlens mass distribution φ(m).

We consider a Lambert disc, a disc of uniform surface brightness,
with radius R in ζ 0 units and total flux I0. The average value of
observed flux 〈I〉 does not depend on the microlens mass distribution
and is only a function of lensing macro parameters:

〈I 〉 = I0µth = I0∣∣(1 − κc)2 det Ĵ
∣∣

with

Ĵ ≡ Ĵ0 − κ 1̂ =
(

1 − κ + γ 0
0 1 − κ − γ

)
. (29)

As shown in Appendix A, the following relation holds for ε2
µ:

ε2
µ + 1 = 〈I 2〉

〈I 〉2
= 2|det Ĵ |

πR2

∫ ∫ ∫
ds ′ dr dχ

1

s ′

×J 2
1

(
R

rs ′

2

)
J0

(
γ

r 2s ′

2

)
× exp{−[na(s ′, χ ) + is ′ cos χ ]r 2/2}. (30)

The integration is performed from zero to infinity in ρ and s′ and
from zero to 2π in angular variable χ . Function a(s, χ ) in this
formula is given by Neindorf (2003) and is described in Appendix A.

Introducing the function

B(s, χ ) ≡ na(s, χ ) + is cos χ

s

= κ

π〈m〉
a(s, χ )

s
+ i cos χ (31)

and performing the variable change r → ρ = r 2s/2, s ′ → s =
R2s ′/2 we obtain the following integral to be evaluated:

ε2
µ + 1 = | det Ĵ |

π

∫ ∞

0

ds s−2

∫ ∞

0

dρ J 2
1 (

√
ρs)J0 (γρ)

×
∫ 2π

0

dχ exp

[
−ρB

(
2s

R2
, χ

)]
. (32)

This evaluation is performed in Appendix B under the assumptions
that R � 10−2–10−3 � 1 and R � γ .

The former is plausible, as in a cosmological situation with
D ∼ 1028 cm, the length-scale (26) is

ζ0 ∼ 1017

(
M0

M�

)1/2

|1 − κc|1/2 cm,

while typical physical sizes of sources are∼1010–1012 cm. However,
it immediately places a constraint on the microlens masses and the
smooth component convergence:

M0|1 − κc| � 10−4 M�. (33)

Therefore, the results derived below are not directly applicable to
situations where equation (33) is not fulfilled, which may be of
interest when Jupiter-mass lenses are involved or for detailed inves-
tigations of microlensing in the region |κ c − 1| � 1. Microlensing
of large sources was considered numerically by Refsdal & Stabell
(1991) in the zero shear case and later including the effect of a
shear term (Refsdal & Stabell 1997). Quite naturally, increasing the
size of the source suppresses microlensing-induced fluctuations,
averaging them over less correlated regions of the magnification
map. However, for sources as large as R ∼ 30 they find values of
εµ ∼ 0.1 in a range of 0 � κ � 2 and 0 � γ � 0.4 (it was found that
ε2

µ ≈ 2κ/R2 in zero shear case). This is only an order of magnitude
less than the numbers we obtain below and shows, that even objects
billions times less massive than the Sun could introduce noticeable
variability provided they contribute to the overall compact object
density (however, the time-scale of this kind of variability will be
much shorter).

The second assumption, which relates γ and R, is of a rather
technical nature and does not restrict our scope whenever marginal
cases of zero shear are not considered.

As shown in Appendix B, under these assumptions the integral
(32) may be then rewritten in the following form:

ε2
µ(κ, γ, R) = | det Ĵ |

π

[
I (κ, γ ) − g3(κ, γ )

2
ln R

]
− 1, (34)

where I (κ , γ ) and g3(κ , γ ), defined by equations (B22) and (B13),
are computed numerically. The actual values of g3(κ , γ ) do not
exceed ∼ 0.1–0.2. Therefore, we neglect the weak dependence of
ε2

µ on R putting R0 = 10−6.
The contour lines of constant εµ are shown in Fig. 1 for the range

of parameters κ and γ present in the observed clusters. Computa-
tions near the lines γ = |1 − κ| are unreliable and are therefore
ignored on the graph.

2.3 Dependence on source redshift and smooth matter
contribution

The actual values of κ and γ depend on both the physical surface
density at the point in the lensing plane where the image is formed
and the scaling parameters �0 and �0 given by equation (22, 23),
which in turn are functions of the distance parameter D equation (24)
and thus of lens and source redshifts and underlying cosmology.
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Figure 1. The contour lines of εµ as a function of convergence in mi-
crolenses κ and shear γ .

If we consider the redshift of the lens zl as fixed, the values of
convergence and shear would depend on the source redshift zs. As
�0 ∝ D−1 and κ ∝ �−1

0 and the same applies to the shear, κ and γ

are directly proportional to D and can be written in a simple form:(
κ

γ

)
=

(
κ0

γ0

)
D(zs)

D
(

zo
s

) . (35)

with κ 0 and γ 0 being the convergence and shear corresponding to
a given redshift zo

s .
For the currently favoured flat cosmological models (� =

1 − �0)

D(zs) ∝ f (zs) − f (zl )

f (zs)
= 1 − f (zl )

f (zs)
,

where

f (z) =
∫ z

0

dζ√
�0(ζ + 1)3 + 1 − �0

. (36)

As f (z) is a monotonic increasing function of its argument and zs is
clearly greater than zl, the second fraction in equation (35)

h
(

zs, zo
s

) ≡ D(zs)

D
(

zo
s

) = 1 − f (zl )/ f (zs)

1 − f (zl )/ f
(

zo
s

) (37)

increases from zero at zs = zl through unity at zs = zo
s to some

limiting value h∞, determined by zl, zo
s and �0, when zs → ∞. This

is somewhat different from considering convergence and shear as
functions of zl, in which case there exists an optimal lens redshift,
which maximizes the lensing parameters. In the case of varying zs

the further the source is the greater κ and γ are. For instance, in the
case of Abell 370 with zl = 0.37, h∞ ≈ 1.7 for �0 = 1 and ∼1.5
when �0 is only 0.2 (zo

s = 1), that is κ and γ for far away sources
are not much larger than for sources at redshifts of approximately
unity.

The behaviour of εµ with redshift is evidently more complex, as
κ and γ slide along the line of proportionality equation (35) in κ–γ

plane the variance first increases from zero at its bottom left corner
but can then, depending on κ 0 and γ 0 cross one or two ‘zero-signal’
lines γ = |1 − κ|. Actual zs = 1 convergence and shear in Abell 370
and Abell 2218 for which we have detailed density maps (Bézecourt
et al. 1999; Kneib et al. 1996) cover approximately the range present

in Fig. 1 therefore there is no much point in discussing how εµ

changes with redshift any further, especially as the measurements
of the redshift have been performed for many of the potential targets
for surface brightness variability observations.

However, it is worth noting the general pattern of brightness vari-
ability behaviour over the area of some of the most prominent candi-
dates for this sort of observations – gravitational lensed arcs. These
objects often consist of two or more sections with critical lines be-
tween these sections and, in the case where there is no smooth matter,
the variability will be most easily observed in the pixels further away
from the critical lines on which det J̃ and variability vanish.

When compact objects make up only a limited fraction of the
lensing matter, which is expected to be the case, the situation is
more interesting. Let x be the compact objects share in the total
convergence, so that κ ′ = xκ tot and κ c = (1 − x)κ tot. Then the
effective convergence and shear are κ = xκ tot/|1 − (1 − x)κ tot| and
γ = γ ′/|1 − (1 − x)κ tot|. The factor det Ĵ in ε2

µ is then:

det Ĵ = (1 − κ)2 − γ 2 = [|1 − (1 − x)κtot| − xκtot]2 − γ ′2

|1 − (1 − x)κtot|2

= 1

[1 − (1 − x)κtot]2

{
(1 − κtot)2 − γ ′2

[1 − (1 − 2x)κtot]2 − γ ′2
(38)

the latter alternative determined by whether κ tot is less (top) or
greater (bottom) than (1 − x)−1 � 1.

Therefore, the outer lines of the zero variability signal (those that
correspond to γ = 1 − κ and therefore κ < 1) are not affected
by the addition of smooth matter. Other zero line positions depend
on the value of x and this dependence represents a potential means
to determine this value. We will see that only highly magnified
pixels show variability detectable with present-day observational
techniques, i.e. those lying near the critical curves, and therefore for
the effect to be detectable these curves should not coincide with the
lines of zero variability. Thus, the condition κ tot � (1 − x)−1 or, as
κ tot can be determined from macrolensing modelling:

x � 1 − 1/κtot (39)

is in practice necessary to observe the effect. For axially symmetric
clusters, the arcs that form on the second (inner) critical curves tend
to have radial morphology, i.e. their dimensions along the critical
curve, and thus the number of highly magnified pixels, are small.

As an example we have computed the maps of the signal εµ

for two well-studied clusters, Abell 370 and Abell 2218 (see Kneib
et al. 1996; Bézecourt et al. 1999; Metcalfe et al. 2003 and references
therein) and present them in Figs 2 and 3. These are given for two
values of the source redshift zs = 2 for both clusters and zs = 0.724
and 0.702 for Abell 370 and Abell 2218, respectively. The latter two
correspond to giant gravitational-lensed arcs seen in the clusters,
while the former are given for comparison. As new instruments,
such as the James Webb Space Telescope (JWST , formerly known
as NGST), come into operation they are expected to observe many
more lensed galaxies behind these clusters and zs = 2 maps show
how the signal might look for them. Each of the maps is given for
two values of x with 100 and 20 per cent of convergence contained
in compact objects. These values of x are assumed to be constant
over the maps.

In Fig. 4 we show the contour lines of the microlensing signature
εµ superimposed on the optical image of the radial arc R in Abell
370 obtained with the Hubble Space Telescope (HST) (Bézecourt
et al. 1999). The source redshift here is estimated to be zs ≈ 1.7
(see Bézecourt et al. 1999 and Smail et al. 1996). The regions be-
tween the thick white lines correspond to ‘zero signal’ lines where
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858 A. V. Tuntsov et al.

Figure 2. The map of the microlensing-induced variability parameter εµ over the area of the cluster Abell 370. Coordinates are given in arcsec, the orientation
of the images is the same as in Bézecourt et al. (1999); the north is to the top, the east is to the left. The maps are given for two redshift values z = 0.724 and
2 and for two values of compact object mass fraction x = 1 and 0.2 (for x = 1 white lines of εµ coincide with the macrolensing critical lines, according to
equation 38). The thick black lines at x = 0.2 correspond to regions with |κ c − 1| � 1, where the analysis given in this paper is not applicable.

εµ � 0.3, while the regions between the thick black lines, where
present, have |κ c − 1| � 1, where the analysis given in this paper is
not applicable. Dashed white lines show the location of the critical
curve.

The figure illustrates how the signal changes with varying fraction
of compact objects in the overall mass budget. Perhaps in contrast to
naive expectations, the signal generally increases when the density
of compact objects is decreased because of the magnification effect
by the smooth matter distribution. This can be understood on the
basis of equation (34): the dependence of the variability extent on
the source size is rather modest, while slight changes in the smooth
matter convergence κ c change the |1 − κ c|−1 factor in the definition
of effective shear and convergence of the compact matter (Kayser
et al. 1986; Paczyński 1986) significantly when κ c is approximately
unity, which is a common place for macrolensed images of distant

sources; thus convergence and shear on the κ–γ plane of Fig. 1 can
assume high values. This somewhat surprising behaviour has also
been discussed by Schechter et al. (2003), while Schechter &
Wambsganss (2002) give a detailed explanation of this effect. More
important is the change in zero signal lines pattern that can be
readily probed in observations and can provide, via equation (38),
an interesting constraint on the compact object contribution to
the overall convergence determined by modelling of the lensing
potential.

For images that do not lie on the critical lines observations can
still be of interest for the determination of x through studying the
variability pattern in greater detail and comparing it to the predicted
one. However, for the two clusters investigated in this paper the latter
possibility remains mostly a theoretical one because of observational
limitations.
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Compact dark matter in galaxy clusters 859

Figure 3. The map of the microlensing-induced variability parameter εµ over the area of the cluster Abell 2218. The orientation is the same as in Fig. 2. The
maps are given for two redshift values z = 0.702 and 2 and for two values of compact object mass fraction x = 1 and 0.2 (for x = 1 white lines of εµ coincide
with the macrolensing critical lines, according to equation 38). The thick black lines at x = 0.2 correspond to regions with |κ c − 1| � 1, where the analysis
given in this paper is not applicable.

3 O B S E RVAT I O NA L A S P E C T S

Let us now discuss the prospects for the detection of the consid-
ered effect. We will consider observations with the Hubble Space
Telescope as a reference point in this section although it will be clear
that observations of this effect with HST in the two clusters under
investigation is impractical. Observations with more advanced in-
struments, such as the James Webb Space Telescope or the proposed
30-m telescope (also known as CELT)3 could, however, be used to
observe the microlensing-induced variability.

The number of photons l detected in a unit time interval in a
pixel from a source of observed luminosity Lobs (uncorrected for
lensing magnification) is determined by the luminosity distance to
the source DL(zs), the energy distribution in its spectrum f λ (such

3 See http://tmt.ucolick.org/ for details.

that
∫

dλ fλ = 1) and the telescope efficiency ηλ and diameter d:

l = d2 Lobs

16D2
L (zs)

∫
dλ fλ

[
(1 + zs)−1λ

]
ηλ(λ)

λ

hc

= Lobs d2ηeffλeff

/
16D2

L (zs)hc = αLobs. (40)

These photons will be accompanied by b background photons.
For the HST Wide Field and Planetary Camera 2 (WFPC2) and
the actual luminosities observed in pixels of gravitationally lensed
galaxies, the noise is dominated by Poissonian fluctuations in count
numbers. At zs = 1.7 the coefficient in equation (40) is α ≈ 5 × 10−6

L1� h−1, while the background level is ∼ b = 1000 photons in a pixel
per hour (this value changes by approximately 1.5–2 depending on
the source heliocentric ecliptic longitude).

Let us now calculate the time t required to detect the fractional
change of βεδL in a pixel with given microlensing parameters εµ, µ
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860 A. V. Tuntsov et al.

Figure 4. The contour lines of the microlensing-induced variability parameter εµ superimposed on the optical image of the radial gravitationally lensed arc
(z ≈ 1.7) seen in Abell 370 obtained with the Hubble Space Telescope (Bézecourt et al. 1999). The area between the solid white lines correspond to nearly zero
signal with εµ � 0.3. The dashed white lines represent the approximate location of the critical curve, while the area between the thick black lines corresponds
to |κ c − 1| � 1, where the analysis given in this paper is not applicable. Four values of compact to total mass density ratio are assumed: x = 1.0, 0.4, 0.2 and
0.1.

at a signal-to-noise ratio level of Q; β here determines the fraction
of pixels deviating from the mean at βεδL level via the normal law
1 − �(β) and we will use β = 1 for numerical estimates which one
is close to the optimal value. The signal S is

S = βεδLlt, (41)

while the noise N is determined by Poissonian fluctuations

N =
√

2bt + (2 + βεδL )lt, (42)

the factor of 2 in the latter expression comes from the fact that we
need to compare two images from different epochs. In most cases
εδL can be neglected for noise estimation. Equation (16) shows that
signal and noise behave similarly, which as can be easily seen, gives
the following expression for the time required:

t = Q2 2〈Li 〉〈
L2

i

〉
α

1 + b/l

β2ε2
µµ

. (43)

Thus, it is determined mostly by the telescope and geometry
(through α) and lensing characteristics of the pixel (through εµ and
µ), while the dependence on photometry is very weak as soon as
the background value is exceeded by the source surface brightness
and increases inversely proportional to the latter if it is lower than
the sky level. In fact, the surface brightness of a typical galaxy at
z = 0 is of the order of 21–22 mag arcsec−2 and scales as (1 +
z)−(4−p) with p depending on the spectrum; surface brightness is
conserved in gravitational lensing. The sky background outside the
atmosphere of the Earth varies in the range of 22–23 mag arcsec−2

and is approximately half a magnitude higher for the best terrestrial
observatories. Therefore, typical values of the numerator in the last
fraction of equation (43) is of the order of 1 for nearby galaxies and
grows rapidly as the redshift exceeds unity.

Combining values of coefficients in equations (16) and (40)
we find that for observation of the radial arc in Abell 370 with
HST WFPC2 the value of the first fraction in equation (43) is

C© 2004 RAS, MNRAS 353, 853–866

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/353/3/853/1079541 by guest on 16 D
ecem

ber 2020
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approximately 1.2 × 104 h. The value of the variability power pa-
rameter ε2

µ does not exceed ∼15–20 (in fact, ε2
µ changes very slowly

with convergence after it exceeds approximately 15), while the ra-
tio of sky background to the observed arc surface brightness b/l for
most pixels is approximately 7–8 (Bézecourt et al. 1999).

Therefore, the effect can be most easily observed in pixels of
high magnification µ. This value does not depend on the compact-
to-smooth convergence ratio, and peaks at the critical curve. The
variability ε2

µ, on the contrary, follows the compact matter distribu-
tion and wherever some smooth matter is present, can preserve high
values at the regions of high magnification. As can be seen from
equation (38) this is the case when the local convergence value is
greater than the inverse of the smooth matter share (1 − x)−1, or
x � 1 − 1/κ tot; otherwise the variability zero lines coincide with
the critical curves and it is not possible to obtain both appreciable
variability and high magnification values. Somewhat ironically, the
compact objects can only be observed when their mass contribution
is sufficiently low.

Magnification values are determined firmly by the present-day
advanced methods of mass distribution modelling in lensing clus-
ters, which proved to be accurate as well as highly and success-
fully predictive (Kneib et al. 1993; Ebbels et al. 1998). The values
of convergence for the radial arc R in Abell 370 span a range of
approximately 1.3–1.4 and therefore the maximum values of the
fraction of compact matter, which produce detectable signal would
be approximately 23–30 per cent, values close to those suggested
by studies of the Galaxy and its immediate neighbourhood (Alcock
et al. 2000; Lasserre et al. 2000; Sadoulet 1999). All other gravita-
tionally lensed objects in the cluster either lie on the outer critical
curves (e.g. the giant gravitationally lensed arc A0) or do not show
sufficient magnification values.

For the map of variability present in Fig. 4 with x = 0.2, the values
of ε2

µ on the arc are approximately four, while the magnification
varies from a few dozen to a few hundreds with a handful of pixels
where µ exceeds 104. Therefore, according to equation (43), for
most pixels detecting variability at signal-to-noise ratio Q = 5 with
HST would require considerable integration time of a few hundreds
to a few thousands hours. However, for a few pixels these exposure
times will have more reasonable values of the order of 10 h.

Certain reservations should be made reflecting the fact that these
values are dependent on the model and in this respect the distribution
of the magnifications (or the derived required exposure times) is a
more robust measure. However, one should bear in mind that the
critical curve is necessarily a set of points with infinite magnification
and therefore the number of variable pixels is determined by the
length of the arc along the critical curve (which is rather small for
radial arcs) and the rate at which magnification falls off the critical
curve, i.e. gradually in convergence and shear values over the image
in the critical curve vicinity.

To estimate the latter value, we can rewrite equation (43):

t = t0 × 1

µ
, (44)

where

t0 ≡ Q2 2〈Li 〉〈
L2

i

〉
α

1 + b/l

β2ε2
µ

, (45)

which is ∼ 6 × 105 h for the radial arc R observed with HST . Factor
1/µ vanishes at the critical curve, and to the first-order approxima-
tion, t as a function of the coordinate d orthogonal to the critical

curve is

t = t0

∣∣∣∣∇ 1

µ

∣∣∣∣ d. (46)

Hence, the width of the strip along the critical line on which the
required integration time t is less than a given value T is simply

2d = 2T

t0

∣∣∇ 1
µ

∣∣ � T

t0

1

|1 − κtot||∇κtot| + γ ′|∇γ ′| . (47)

For the patch of the critical curve near the radial arc with ε2
µ ≈ 4,

1 + b/l ≈ 7–8, κ tot − 1 = γ ′ ≈ 0.3, |∇κ tot| ≈ 2 × 10−3 pixel−1,
|∇γ | ≈ 3 × 10−3 pixel−1 and β = 1 one obtains 2d ≈ T /600h for
HST . Multiplied by the dimension of the arc along the critical curve
(approximately five for the radial arc R in Abell 370), these give the
required number of pixels.

It is immediately clear from this estimate that as integration time
of more than 100 h is hardly possible, only local (on interpixel scale)
stationary points in 1/µ can give detectable signal for HST images,
the above-mentioned strip itself is too narrow. One would need more
advanced telescopes to observe the effect, such as JWST or CELT,
or explore other lensing clusters where strongly lensed objects on
inner critical curves are seen.

At visible and near-infrared wavelengths, the sky background
level expected to be observed with JWST is not much different from
that with HST and therefore changes mostly come from differences
in the optics and spectral band via the value of α in equation (43).
Using the JMS sensitivity calculator4 we estimate that the exposure
time required for the near-infrared Camera of JWST to detect the
signal will be approximately 15–20 times as short as those of HST .
However, even this would require exposure times of several dozen
hours as 2d ≈ T /30 h in this case. In light of the recent discovery
of a candidate z = 10 lensed galaxy behind Abell 1835 (Pello et al.
2004), it does not seem implausible that such ultradeep exposures
with JWST will be attempted. For the radial arc in Abell 370 that
would result in approximately a dozen variable pixels.

The proposed 30-m telescope would make the prospects more
optimistic. For a ground-based telescope, the sky background will
be a factor of 1.5–2 higher, and the atmosphere transparency should
be taken into account. However, increase in collecting area over the
HST will be enormous, and the net effect will be to reduce t0 to
approximately 8 × 103 h. Of further advantage would be the use
of diffraction-limited mode. Taking into account possible tracking
uncertainties, an estimate for the angular resolution of ∼ 0.01 arc-
sec should be considered conservative. This represents a five-fold
decrease in the pixel size resulting in the ability to get closer to the
critical curve. Thus, according to equation (47), the width of the
strip around the critical curve where variability can be detected in
T h integration time would make 2d ≈ T /1 h. Similarly, the arc
length along the critical curve will be covered by five times more
pixels compared with HST . This means dozens of variable pixels
and potential to observe the pattern of variability change both along
and across the critical curve in an exposure of just a few hours!

Fig. 5 presents the histograms of the number of pixels in the image
of the radial arc seen in Abell 370, which are expected to show
variability detectable at the 5σ level as a function of integration
time for JWST and CELT. The actual values of the arc brightness
are used to determine t from equation (43) for every pixel, which are
then binned logarithmically in 0.5-dex wide bins. Two values of the
compact matter fraction x = 0.2 and 0.1 are assumed. For JWST ,

4 See http://www.stsci.edu/jwst/science/jms/jms flux form.html
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Figure 5. The number of pixels with a detectable microlensing signature
as a function of the integration time required for the one εµ variation to be
detectable at 5σ level.

the pixel size and background level are taken to be equal to those for
HST WFPC2. For CELT, the background level is half a magnitude
brighter, while for the pixel size a value of 0.01 arcsec is assumed.

One should bear in mind that the pixels mentioned above are
variable at a detectable level, but they will only spend approximately
one-third of the time in this ‘varied’ state. This fraction of time can be
controlled by the parameter β but one can see, combining equation
(43), the normal distribution and the nearly linear histogram shape
in the region of interest – that the value β = 1 is close to optimal.

The time-scale of variations depends on the microlens masses and
motion and is of the order of months to years for solar masses mov-
ing with a velocity of a few hundred kilometres per second (Lewis
et al. 2000). Observation epochs should therefore be separated by a
similar time interval.

4 D I S C U S S I O N

We have shown in the previous section that with a few exposures
on JWST or CELT we expect to detect shimmering of pixels in
the image of the radial gravitationally lensed arc in Abell 370 due
to microlensing by compact objects in the cluster. To answer the
question of how such detections should be interpreted let us now
sketch a portrait of a typical event. This would also give us an
insight into what sort of contaminants could mimic variability due
to gravitational microlensing.

The surface brightness of the arc is approximately seven to eight
times lower than the sky background level outside the Earth atmo-
sphere. In a 30 h exposure on JWST approximately 60 000 ‘signal’
photons will be detected in a typical pixel and around 500 000 back-
ground photons will accompany them. Hence the noise, according
to equation (42), is approximately (neglecting βεδL ) 1060 photons
and five times that is 5300 photons or approximately 9 per cent
of the original flux. As εµ in this region is approximately 2 (see
Fig. 4c), the pixel, according to equation (16) contains light of ap-
proximately 4.7 × 104 stars with an intrinsic luminosity of some
1.4 × 104 L�. Given a typical observed luminosity of 2 × 108 L�
the magnification needed is ∼104, in accordance with the estimate
of the previous section.

Nine per cent variability corresponds to 0.09 × 2 × 108/µ =
1.8 × 107/µ L� and the average value of magnification in the map

is approximately a hundred. In the case of the average pixel, only
supernova and brightest peak nova eruptions can give the true in-
crease of ∼105 L�. The most significant contaminant to the average
pixel is nova eruptions. We can calculate the expected number of
nova explosions in a way similar to that of Baltz et al. (2003), for
a galaxy similar to the Milky Way the rate of nova explosions is
expected to be 10−9–10−10 eruptions per star per year. Eruption du-
rations, by which we mean the period of time novae stay above the
level of interest ∼105, is only a fraction ∼0.01–0.1 of a year, long
compared with the integration time, while short compared with the
interval between exposures. Therefore, we expect approximately
10−10 erupted novae per star at any given exposure. The radial arc
spans around three hundred pixels and therefore the expected num-
ber of stars in it is approximately 1010, i.e. this is a galaxy of rather
modest size. Thus, even not taking into account the multiple nature
of the arc, novae are not a problem for our study. Clearly, super-
nova explosions in the source galaxy are even less of a problem.
An additional source of contamination is supernovae in background
galaxies but, with a rate of 10−3–10−2 SNe per galaxy between two
exposures (see Sarajedini, Gilliland & Phillips 2000), they are not
important.

However, with pixels magnified by a factor of ∼104, which is
needed to observe the microlensing variability, physical luminosity
changes go down to approximately 2000 solar luminosities or less,
and this is approximately the amplitude of the brightest Mira vari-
ables in red bands. Contamination due to Miras (and other variable
stars) in microlensing studies is usually removed by considering
observations in different spectral bands. The three key signatures of
microlensing origin of the variability are achromaticity, uniqueness
and a symmetric form of the variations (Paczyński 1986). None of
them is valid in the case considered in this paper. Achromaticity
does not work for pixel lensing although in the case of low optical
depth some constraints can still be applied (Gould 1996). When the
optical depth is high every star in the pixel at any given moment is
subject to strong microlensing and this fact does not allow one to use
the achromaticity constraint. For the same reason the uniqueness of
the microlensing event does not work any more. With regards to the
symmetry, we do not observe individual light curves in this case and
therefore cannot use this constraint at all.

However, although we cannot use achromaticity for individual
pairs of measurements, this property is still valid in a statistical
sense. Namely, the variability extent seen in different bands is, ac-
cording to equation (16), proportional to 〈 L2

i 〉 / 〈 Li 〉2, the value that
does not change much from one band to another, is closely related
to the magnitude of the surface brightness fluctuations and can be
determined in observations of nearby galaxies that are definitely not
lensed. In contrast, the (absolute) variability amplitude of variable
stars is strongly dependent on the spectral band and, for instance, in
Miras the change ranges from thousands of solar luminosities in K
band to hundreds and even tens of solar luminosities in bluer bands.
Other variables are too faint to affect the fluxes of pixels containing
thousands of stars.

Contamination due to variable stars is a more serious issue for
observations with CELT. An analysis similar to that given above,
shows that typical intrinsic luminosities of pixels with variability
detectable in a 1-h exposure amount to just around 500 solar lu-
minosities with typical variability extent of around 70 per cent or
around 350 solar luminosities. This is a range at which various
variable stars may contribute to the observed variability. The only
way to distinguish it from the variability due to gravitational mi-
crolensing by compact dark matter in the cluster seems to be to use
the behaviour of variability from one pixel to another and across
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spectral bands to see whether it is consistent with physical variabil-
ity or gravitational microlensing hypotheses.

One of the remaining problems is how to tell the difference be-
tween no compact matter and too much compact matter in the case
of a null signal detection. More work needs to be performed on this
question and perhaps other effects should be considered to answer it.
However, the effect considered provides us with a lot of information
on the microlensing population. The Gaussian approximation seems
to be a simple framework for characterizing pixel microlensing in
galaxy clusters and although the implications of future observations
on microlensing population are not straightforward, they can pro-
vide strong constraints on the otherwise inaccessible properties of
this population.
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A P P E N D I X A : D E R I VAT I O N O F
F O R M U L A ( 3 0 )

The derivation presented here follows very closely the lines of that
by Neindorf (2003). We do not include all the steps of this derivation,
which can be found in the original work.5

Starting with the expression for the magnification factor of
equation (27) one has the following result for the observed flux
of a source with surface profile I ′(ζ − ζ 0) = I 0/(πR2) ×
�(R − | ζ − ζ 0|) placed at ζ 0

I (ζ0) = 1

|1 − κc|2
∫
S×L

d2ζ d2z I ′(ζ − ζ0)δ[ζ − Ĵ0z + S(z)].

(A1)

Its average value over S(z) is well known to be independent of
microlensing population mass distribution and source profile (see,
e.g., Schneider, Ehlers & Falco 1992, chapter 11)

〈I 〉 = I0∣∣[1 − κc]2[(1 − κ)2 − γ 2]
∣∣

= I0

|1 − κc|2| det Ĵ | , (A2)

where Ĵ ≡ Ĵ0 − κ 1̂.
The value of I2(ζ 0) is calculated in a similar manner

I 2(ζ0) = 1

|1 − κc|4
∫
S2

d2 ζ1 d2ζ2 I ′(ζ1 − ζ0)I ′(ζ2 − ζ0)

×
∫
L2

d2 z1 d2z2 δ(ζ1 − Ĵ0z1 + S1)

× δ(ζ2 − Ĵ0z2 + S2),
(A3)

where S1 = S(z1), S1 = S(z1). Introducing the joint probability
function density of S1 and S2 ϕ(S1, S2, z1, z2) we can calculate the
average value of I2

〈I 2〉 = 1

|1 − κc|4
∫
S2×L2×R4

d2ζ1 d2ζ2 d2z1 d2z2 d2 S1 d2 S2

× δ(ζ1 − Ĵ0z1 + S1) δ(ζ2 − Ĵ0z2 + S2)

× ϕ(S1, S2, z1, z2)I ′(ζ1)I ′(ζ2).
(A4)

5 Please note, however, that the asymptotes for the involved functions found
here differ slightly from those found in Neindorf (2003) due to some numer-
ical errors and a typographical error in the latter work.
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Changing to the Fourier domain and making use of δ functions we
obtain

〈I 2〉 = 1

(2π)4|1 − κc|4
∫
R2×L2

d2τ1 d2τ2 d2z1 d2z2

× Ĩ (τ1) Ĩ (τ2)Q2(τ1, z1, τ2, z2)

× exp[−i(τ1 Ĵ0z1 + τ2 Ĵ0z2)], (A5)

where

Q2(τ1, z1, τ2, z2)

≡
∫
R4

d2 S1 d2 S2ϕ(S1, S2, z1, z2)ei(τ1 S1+τ2 S2)
(A6)

is the Fourier transform, or characteristic function, of ϕ(S1, S2, z1,
z2) and Ĩ (τ ) is that of the source profile, which is the following for
a uniformly radiating disc of radius R emitting a total flux I0

Ĩ (τ ) = 2I0

Rτ
J1(Rτ ). (A7)

We introduce central and relative coordinates τ 1 = T − t/2, τ 2 =
T + t/2, z1 = Rc − r/2, z2 = Rc + r/2, assume that lens positions
are not correlated and take the limit of an infinite lens plane to obtain
the following expression ( Ĵ0

T = Ĵ0)

〈I 2〉 = 1

(4π)2|1 − κc|4
1

| det Ĵ |

×
∫

d2t d2r Ĩ
(
− t

2

)
Ĩ
( t

2

)
Q(t, r )

× exp

[
− i

2

(
Ĵ0

T t
)
r

]
, (A8)

where the δ-functions in Rc and T have been utilized and for

Q(t, r ) ≡ Q2

(
− t

2
, − r

2
,

t
2
,

r
2

)
the following expression was obtained (Neindorf 2003)

Q(t, r ) = exp

[
−n

2
r 2a(s)

]
, (A9)

where s = t/ r and the angle χ between s and positive Ox ray equals
the angle between t and r. Function a(s, χ ) is the mass average of
α(ms, χ )

a(s, χ ) ≡
∫

dm φ(m)α(ms, χ ),

the latter given by

α(s, χ ) ≡
∫ ∞

−∞
dx

1 − eisx

x2
f (x, χ ). (A10)

Finally, the function f (x, χ ) is defined as

f (x, χ )

≡
∫ π/2

−π/2

cos2 φ dφ√
(x − 2 cos χ )2 cos2 φ + (x sin φ + 2 sin χ cos φ)2

(A11)

and can be expressed analytically in terms of complete elliptic
integrals

f (x, χ ) = 1

u + 1

{[
1 + 1 − x cos χ

u

]
K (v)

+ (1 − x cos χ )(1 + u)2

2u2
[E(v) − K (v)]

}
(A12)

with u =
√

x2 − 2x cos χ + 1 and v = 4u/(u + 1)2.
The function α(s, χ ) is therefore easily computed numerically.

However, its overall behaviour is easily guessed from the following
two analytic asymptotes:

α(s, χ )
s→∞−→ πs − i

π

2
cos χ (A13)

valid to the accuracy of ∼1 per cent at s � 3–5 and

α(s, χ )
s→0−→ π

2 s2

(
1

2
+ 2 ln 2 − γ̃ + cos2 χ − ln s

)
− iπs cos χ

≈ π

2
s2

(
1.3 + cos2 χ − ln s

) − iπ cos χ,
(A14)

where γ̃ ≡ limn→∞(
∑n

k=1 1/k − ln n) ≈ 0.577 216 is Euler’s con-
stant.

Substituting the expression (A7) for Ĩ (τ ) into equation (A8),
expanding

− i

2
( Ĵ0

T t)r = − i

2
r t[cos χ + γ cos(χ + 2αr )]

and using the change of variables t = rs we can immediately inte-
grate over the angular component α r of r to obtain

〈I 2〉 = 2I 2
0

π|1 − κc|4| det Ĵ |R2

×
∫ ∞

0

dr

∫ ∞

0

ds

∫ 2π

0

dχ
r

s
J 2

1

(
R

rs

2

)

× J0

(
γ

r 2s

2

)
exp

{
−r 2

2
[na(s, χ ) + is cos χ ]

}
. (A15)

Thus, using expression (A2) for the average value of observed flux
we obtain the integral equation (30).

A P P E N D I X B : E VA L UAT I O N O F I N T E G R A L
E QUAT I O N ( 3 2 )

To evaluate the integral in equation (32) we consider the asymptotes
of B(σ , χ ), which follow directly from the asymptotes, equations
(A14) and (A13), of the function α(σ , χ ) introduced in Appendix A:

B(σ, χ ) ≈ κ

2
meffσ

(
1.3 + cos2 χ − 〈m2 ln m〉

〈m2〉 − ln σ

)
+i(1 − κ) cos χ, σ � 1 (B1)

B(σ, χ ) ≈ B(χ ) = κ + i cos χ, σ � 1 (B2)

with m eff = 〈m2〉/〈m〉 (Refsdal & Stabell 1991).
At γ � 10−2 it is convenient to split the integration over s into

the following five regions:

(i) 0 � s � σ 1 R2/2, σ 1 � 1;
(ii) σ 1 R2/2 � s � σ 2 R2/2, σ 2 � 1;
(iii) σ 2 R2/2 � s � σ 3γ

2, σ 3 � 1;
(iv) σ 3γ

2 � s � σ 4, σ 4 � 1;
(v) σ 4 � s.

As a result of the assumptions on γ and R made in regions
(i)–(iii) the convergence of the integral in ρ is provided by J 0(γ ρ)
and e−Bρ , while J 2

1 (
√

sρ) ≈ sρ/4 holds well for all values of ρ
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where the integrand is any significant. Therefore,∫ ∞

0

dρ J 2
1 (

√
sρ)J0(γρ)e−ρB ≈ s

4

∫ ∞

0

dρ ρ J0(γρ)e−ρB

= s

4

B

(B2 + γ 2)3/2
. (B3)

In addition, in regions (i) and (iii) approximations (B1) and (B2)
can be used, respectively. The latter approximation is even better
in regions (iv) and (v) but equation (B3) clearly fails there. Let us
consider the five regions in turn.

(i) 0 � s � σ1
R2

2 .

Returning to the variable σ = 2s/R2 we can write down this part
of the integral as follows:

I1 = 1

4

∫ σ1

0

dσ

σ

∫ 2π

0

B(σ, χ ) dχ

[B2(σ, χ ) + γ 2]3/2
. (B4)

We can rewrite B of equation (B1) in the following form:

B(σ, χ ) = |1 − κ|(x ± i cos χ ), (B5)

where

x ≡ κ

2

meff

|1 − κ|

(
1.3 + cos2 χ − 〈m2 ln m〉

〈m2〉 − ln σ

)
σ (B6)

and at sufficiently small σ when the logarithm term dominates x is
nearly independent of χ . Then

I1 = 1

4

∫ σ1

0

dσ

σ

1

|1 − κ|2 g1

[
x(σ ),

γ

|1 − κ|

]
, (B7)

where

g1(x, δ) ≡ 2

∫ π

0

(x + i cos χ ) dχ[
δ2 + (x + i cos χ )2

]3/2 . (B8)

We have found numerically that the following approximation holds
for g1(x , δ) with an accuracy of � 1 per cent:

g1(x, δ) � g1(|1 − δ|, δ)

|1 − δ| x, x � xmax = |1 − δ|, (B9)

xmax stands for the point where g1 reaches its maximum at a given
δ. This maximum value is approximately |1 − δ|−1 for |1 − δ| �
10−2 and should be calculated directly otherwise.

At |1 − δ| > σ 1 ln σ 1 we can therefore perform an integration
over σ in equation (B7) to obtain

I1 = 1

4

κmeff

2|1 − κ|2
g1

(∣∣1 − γ

|1−κ|
∣∣ ,

γ

|1 − κ|

)
||1 − κ| − γ |

×
(

1.8 − 〈m2 ln m〉
〈m2〉 + ln

e

σ1

)
σ1.

(B10)

When σ 1 does not obey the condition just formulated, we just
replace it with σ ′

1 < σ 1 such that σ ′
1 ln σ ′

1 is smaller than |1 − γ /

|1 − κ|| and move the rest of the calculations to region (ii) where it
is performed numerically.

The problem arises with |1 − δ| → 0 but this corresponds to
the case of diverging average amplification and the microlensing-
induced variability is expected to drop logarithmically to zero in
this case (Deguchi & Watson 1987). Formally, it does happen in our
calculations – det Ĵ in front of the integral equation (32) make it go to
zero linearly in all regions with the exception of (i) where the ratio
of the determinant and denominator of equation (B10) tends to a

non-zero limit, while g1σ
(′)
1 ln σ

(′)
1 provides the behaviour expected.

However, numerical calculations become unreliable in this case and
so we do not calculate ε2

µ for (κ , γ ) closer than approximately 0.03
to the γ = |1 − κ| lines in κ–γ plane.

Another apparent problem with equation (B10) seems to be
present when κ → 1, but this turns out to be a slight technical
issue with no real computational consequences and therefore may
be called ‘a removable discontinuity’.

(ii) σ 1 R2/2 � s � σ 2 R2/2.

This region is the easiest to compute:

I2 = 1

4

∫ σ2

σ
(′)
1

dσ

σ
g2(σ ), (B11)

where

g2(σ ) ≡
∫ 2π

0

B(σ, χ ) dχ

[B2(σ, χ ) + γ 2]3/2
(B12)

and B(σ , χ ) is computed numerically by interpolation of α(σ , χ ),
which is computed in advance with good accuracy.

The computations of I2 provide no problem from either a con-
ceptual or a computational point of view, but it transpires that they
are the most time consuming part of the procedure.

(iii) σ 2 R2/2 � s � σ 3γ
2.

At s � σ 2 R2/2 the function B(2s/R2, χ ) = κ + i cos χ to high
accuracy and does not depend on s. Therefore, the integral over χ :

g3(κ, γ ) ≡
∫ 2π

0

(κ + i cos χ ) dχ

[(κ + i cos χ )2 + γ 2]3/2
(B13)

(which equals g1 introduced above for x = κ and δ = γ ) turns out to
be a common factor and the integral with respect to s is elementary

I3 = 1

4
g3(κ, γ ) ln

2σ3γ
2

σ2 R2
(B14)

(iv) and (v) s > σ 3γ
2.

In regions (iv) and (v) the approximation (B2) is still valid, there-
fore

I4 + I5 =
∫ ∞

σ3γ 2

ds

s2

∫ ∞

0

dρ J 2
1 (

√
sρ)J0(γρ)

×
∫ 2π

0

dχ e−ρ(κ+i cos χ ) = 2π

∫ ∞

σ3γ 2

ds

s2
g4(s, κ, γ ),

(B15)

where

g4(s, κ, γ ) ≡
∫ ∞

0

dρ J 2
1 (

√
sρ)J0(γρ)J0(ρ)e−κρ . (B16)

The integrand in g4 decreases exponentially and therefore it is suf-
ficient to perform a numerical integration up to some ρmax/κ . The
absolute value of the residual can be easily estimated

R =
∣∣∣∣∣
∫ ∞

ρmax
κ

dρ J 2
1 (

√
sρ)J0(γρ)J0(ρ)e−κρ

∣∣∣∣∣
�

∫
ρmax

κ

dρ e−κρ = 1

κ
e−ρmax .

(B17)

The value ρmax ∼ 30 turned out to be suitable for all our purposes.
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For completeness we can write down the integration in region
(iv), which is performed numerically

I4 = 2π

∫ σ4

σ3γ 2

ds

s2
g4(s, κ, γ ). (B18)

The integration in region (v) is accomplished by considering the
asymptotic behaviour of g4 at large s. The integral equation (B16)
effectively splits into two, with ρ � ρ 0/s and ρ � ρ 0/s with ρ 0 ∼ 1.
Invoking the asymptotics of Bessel functions one can see that the
second of these integrals is proportional to 1/

√
s and represents a

leading term when s → ∞. Using the asymptotic formula J1(x) �√
2/(πx) cos(πx/2 + α) and noting that the cos -term oscillates

rapidly for x � 1 we find the following limiting value for g4:

g4(s, κ, γ ) → 1

π
√

s
g5(κ, γ ),

where

g5(κ, γ ) ≡
∫ ∞

0

dρ√
ρ

J0(ρ)J0(γρ)e−κρ . (B19)

This integration is again performed only up to some ρmax/κ .
Thus we obtain the last portion needed to compute ε2

µ:

I5 = 2π

∫ ∞

σ4

ds

s2
g4(s, κ, γ ) ≈ 4

3

g5(κ, γ )

σ
3/2
4

. (B20)

Putting all the pieces together we may now write the result:

ε2
µ(κ, γ, R) + 1 = | det J̃ |

π

[
I (κ, γ ) − g3(κ, γ )

2
ln R

]
, (B21)

where

I (κ, γ ) ≡ I1 + I2 + I4 + I5 + g3(κ, γ )

4
ln

2σ3γ
2

σ2
. (B22)

We should note here that it is exactly the behaviour of J1(
√

sρ),
namely the possibility to approximate it with

√
sρ/2, in the whole

region of actual dependence of B(2s/R2, χ ) on s that makes the
result virtually independent of R allowing it to appear in region (iii)
only.

Considering the constants σ i used in the actual calculations we
found that the following values provide the best compromise be-
tween the accuracy of the computations and the time needed to
perform them: σ 1 = 0.03, σ 2 = 4, σ 3 = 0.03, σ 4 = 30. This corre-
sponds to the case when φ(m) = δ(m − 1), which is the case actually
considered. We have checked that changes in these constants do not
affect the results.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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