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Abstract: This paper does not suppose a priori that the evolution of
the price of a financial asset is a semimartingale. Since possible strate-
gies of investors are self-financing, previous prices are forced to be finite
quadratic variation processes. The non-arbitrage property is not excluded
if the class A of admissible strategies is restricted. The classical notion of
martingale is replaced with the notion of A-martingale. A calculus related
to A-martingales with some examples is developed. Some applications to
the maximization of the utility of an insider are expanded.
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1. Introduction

According to the fundamental theorem of asset pricing of Delbaen and Schacher-
mayer in [7], in absence of free lunches with vanishing risk (NFLVR), when in-
vesting possibilities run only trough simple predictable strategies with respect
to some filtration G, the price process of the risky asset S is forced to be a
semimartingale. However (NFLVR) condition could not be reasonable in several
situations. In that case S may not be a semimartingale. We illustrate here some
of those circumstances.

Generally, admissible strategies are let vary in a quite large class of predictable
processes with respect to some filtration G, representing the information flow
available to the investor. As a matter of fact, the class of admissible strategies
could be reduced because of different market regulations or for practical reasons.
For instance, the investor could not be allowed to hold more than a certain num-
ber of stock shares. On the other hand it could be realistic to impose a minimal
delay between two possible transactions as suggested by Cheridito ([5]): when
the logarithmic price log(S) is a geometric fractional Brownian motion (fbm),
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it is impossible to realize arbitrage possibilities satisfying that minimal require-
ment. We remind that without that restriction, the market admits arbitrages,
see for instance [24]. When the logarithmic price of S is a geometric fbm or
some particular strong Markov process, arbitrages can be excluded taking into
account proportional transactions costs: Guasoni ([15]) has shown that, in that
case, the class of admissible strategies has to be restricted to bounded variation
processes and this rules out arbitrages.

Besides the restriction of the class of admissible strategies, the adoption of non-
semimartingale models finds its justification when the no-arbitrage condition
itself is not likely.

Empirical observations reveal, indeed, that S could fail to be a semimartin-
gale because of market imperfections due to micro-structure noise, as intra-
day effects. A model which considers those imperfections would add to W , the
Brownian motion describing log-prices, a zero quadratic variation process, as a
fractional Brownian motion of Hurst index greater than 1

2 , see for instance [32].
Theoretically arbitrages in very small time interval could be possible, which
would be compatible with the lack of semimartingale property.

At the same way if (FLVR) are not possible for an honest investor, an inside
trader could realize a free lunch with respect to the enlarged filtration G includ-
ing the one generated by prices and the extra-information. Again in that case
S may not be a semimartingale. The literature concerning inside trading and
asymmetry of information has been extensively enriched by several papers in
the last ten years; among them we quote Pikowski and Karatzas ([21]), Grorud
and Pontier ([14]), Amendinger, Imkeller and Schweizer ([1]). They adopt en-
largement of filtration techniques to describe the evolution of stock prices in the
insider filtration.

Recently, some authors approached the problem in a new way using in particular
forward integrals, in the framework of stochastic calculus via regularizations.
For a comprehensive survey of that calculus see [29]. Indeed, forward integrals
could exist also for non-semimartingale integrators. Leon, Navarro and Nualart
in [18], for instance, solve the problem of maximization of expected logarithmic
utility of an agent who holds an initial information depending on the future of
prices. They operate under technical conditions which, a priori, do not imply
the classical assumption (H’) for enlargement considered in [16]. Using forward
integrals, they determine the utility maximum. However, a posteriori, they found
out that their conditions let log(S) be a semimartingale.

Biagini and Øksendal ([3]) considered somehow the converse implication. Sup-
posing that the maximum utility is attained, they proved that S is a semi-
martingale. Ankkirchner and Imkeller ([2]) continue to develop the enlargement
of filtrations techniques and show, among the others, a similar result as [3]
using the fundamental theorem of asset pricing of Delbaen-Schachermayer. In
particular they establish a link between that fundamental theorem and finite
utility.

In our paper we treat a market where there are one risky asset, whose price
is a strictly positive process S, and a less risky asset with price S0, possibly
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riskless but a priori only with bounded variation. A class A of admissible trad-
ing strategies is specified. If A is not large enough to generate all predictable
simple strategies, then S has no need to be a semimartingale, even requiring
the absence of free lunches among those strategies. We try to build the basis of
a corresponding financial theory which allows to deal with several problems as
hedging and non-arbitrage pricing, viability and completeness as well as with
utility maximization.

For the sake of simplicity in this introduction we suppose that the less risky
asset S0 is constant and equal to 1.

As anticipated, a natural tool to describe the self-financing condition is the
forward integral of an integrand process Y with respect to an integrator X,
denoted by

∫ t
0
Y d−X; see section 2 for definitions. Let G = (Gt)0≤t≤1 be a fil-

tration on an underlying probability space (Ω,F , P ), with F = G1; G represents
the flow of information available to the investor. A self-financing portfolio
is a pair (X0, h) where X0 is the initial value of the portfolio and h is a G-
adapted and S-forward integrable process specifying the number of shares of S
held in the portfolio. The market value process X of such a portfolio, is given
by X0 +

∫ ·
0
hsd
−Ss, while h0

t = Xt − Stht constitutes the number of shares of
the less risky asset held.

This formulation of self-financing condition is coherent with the discrete-time
case. Indeed, let we consider a buy-and-hold strategy, i.e. a pair (X0, h) with
h = ηI(t0,t1], 0 ≤ t0 ≤ t1 ≤ 1, and η being a Gt0 -measurable random variable.
Using the definition of forward integral it is not difficult to see that: Xt0 = X0,
Xt1 = X0 + η(St1 −St0). This implies h0

t+0
= X0− ηSt0 , h0

t+1
= X0 + η(St1 −St0)

and

Xt0 = ht0+St0 + h0
t+0
, Xt1 = ht+1

St1 + h0
t+1

: (1)

at the re-balancing dates t0 and t1, the value of the old portfolio must be rein-
vested to build the new portfolio without exogenous withdrawal of money.

In this paper A will be a real linear subspace of all self-financing portfolios and
it will constitute, by definition, the class of all admissible portfolios. A will
depend on the kind of problems one has to face: hedging, utility maximization,
modeling inside trading. If we require that S belongs to A, then the process S
is forced to be a finite quadratic variation process. In fact,

∫ ·
0
Sd−S exists if and

only if the quadratic variation [S] exists, see [29]; in particular one would have

∫ ·

0

Ssd
−Ss = S2 − S2

0 −
1

2
[S].

L will be the sub-linear space of L0(Ω) representing a set of contingent claims
of interest for one investor. An A-attainable contingent claim will be a
random variable C for which there is a self-financing portfolio (X0, h) with
h ∈ A and

C = X0 +

∫ 1

0

hsd
−Ss.
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X0 will be called replication price for C. The market will be said (A,L)-
complete if every element of L is A-attainable.

In these introductory lines we will focus only on one particular elementary sit-
uation.

For simplicity we illustrate the case where [log(S)]t = σ2t. We choose as L the
set of all European contingent claims C = ψ(S1) where ψ is continuous with
polynomial growth. We consider the case A = AS , where

AS = {(u(t, St)), 0 ≤ t < 1 | u : [0, 1]× R→ R, Borel-measurable

with polynomial growth and lower bounded} .

Such a market is (A,L)-complete: in fact, a random variable C = ψ(S1) is an
A-attainable contingent claim. To build a replicating strategy the investor has
to choose v as solution of the following problem

{
∂tv(t, x) + 1

2σ
2x2∂

(2)
xx v(t, x) = 0

v(1, x) = ψ(x)

and X0 = v(0, S0). This follows easily after application of Itô formula contained
in proposition 2.11, see proposition 5.29.

We highlight that this method can be adjusted to hedge also Asian contingent
claims.

A crucial concept is the one ofA-martingale processes. Those processes naturally
intervene in utility maximization, arbitrage and uniqueness of hedging prices.

A process M is said to be an A-martingale if for any process Y ∈ A,

E

[∫ ·

0

Y d−M

]
= 0.

If for some filtration F with respect to which M is adapted, A contains the class
of all bounded F-predictable processes, then M is an F-martingale.

An example of A-martingale is the so called weak Brownian motion of order
k = 1 and quadratic variation equal to t. That notion was introduced in [13]:
a weak Brownian motion of order 1 is a process X such that the law of Xt is
N(0, t) for any t ≥ 0.

A portfolio (X0, h) is said to be an A-arbitrage if h ∈ A, X1 ≥ X0 almost surely
and P{X1−X0 > 0} > 0. We denote byM the set of probability measures being
equivalent to the initial probability P under which S is an A-martingale. If M
is non empty then the market is A-arbitrage free. In fact if Q ∈M, given a pair

(X0, h) which is an A-arbitrage, then EQ[X1−X0] = EQ[
∫ 1

0
hd−S] = 0. In that

case the replication price X0 of an A-attainable contingent claim C is unique,
provided that the process hη, for any bounded random variable η in G0 and h
in A, still belongs to A. Moreover X0 = EQ[C|G0]. In reality, under the weaker
assumption that the market is A-arbitrage free, the replication price is still
unique, see proposition 5.27. Furthermore if M is non empty and A = AS , as
assumed in this section, the law of St has to be equivalent to Lebesgue measure
for every 0 ≤ t ≤ 1, see proposition 5.21.
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If the market is (A,L)-complete then all the probabilities measures in M co-
incide on σ(L), see proposition 5.28. If σ(L) = F then M is a singleton: this
result recovers the classical case.

Given an utility function satisfying usual assumptions, it is possible to show that
the maximum π is attained on a class of portfolios fulfilling conditions related to
assumption 5.37, if and only if there exists a probability measure under which
log(S)−

∫ ·
0

(
σ2πt − 1

2σ
2
)
dt is an A-martingale, see proposition 5.44. Therefore

if A is big enough to fulfill conditions related to assumption D in Definition 4.6,
then S is a classical semimartingale.

Those considerations show that most of the classical results of basic financial
theory admit a natural extension to non-semimartingale models.

The paper is organized as follows. After some preliminaries about stochastic cal-
culus via regularizations for forward integrals, we provide in section 3 examples
of integrators and integrands for which forward integrals exist and realize some
important properties in view of financial applications: those examples appear in
three essential situations coming from Malliavin calculus, substitution formulae
and Itô-fields. Regarding finance applications, the class of strategies defined us-
ing Malliavin calculus are useful when log(S) is a geometric Brownian motion
with respect to a filtration F contained in G; the use of substitution formulae
naturally appear when trading with an initial extra information, already avail-
able at time 0; Itô fields apply whenever S is a generic finite quadratic variation
process.

Section 4 is devoted to the study of A-martingales: after having defined and
established basic properties, we explore the relation between A-martingales and
weak Brownian motion; later we discuss the link between the existence of a
maximum for a an optimization problem and the A-martingale property.

In Section 5 we finally deal with applications to mathematical finance. We define
self-financing portfolio strategies and we provide examples. Moreover we face
technical problems related to the use of forward integral in order to describe the
evolution of the wealth process. Those problems arise because of the lack of chain
rule properties. Later, we discuss absence of A-arbitrages, (A,L)-completeness
and hedging. We conclude the section analyzing the problem of maximizing
expected utility from terminal wealth. We obtain results about the existence of
an optimal portfolio generalizing those of [18] and [3].

2. Preliminaries

For the convenience of the reader we give some basic concepts and fundamental
results about stochastic calculus with respect to finite quadratic variation pro-
cesses which will be extensively used later. For more details we refer the reader
to [29].

In the whole paper (Ω,F , P ) will be a fixed probability space. For a stochastic
process X = (Xt, 0 ≤ t ≤ 1) defined on (Ω,F , P ) we will adopt the convention
Xt = X(t∨0)∧1, for t in R. Let 0 ≤ T ≤ 1. We will say that a sequence of

imsart ver. 2006/01/04 file: NSModelsJune06.tex date: June 26, 2006



6 Rosanna Coviello and Francesco Russo

processes (Xn
t , 0 ≤ t ≤ T )n∈N converges uniformly in probability (ucp)

on [0, T ] toward a process (Xt, 0 ≤ t ≤ T ), if supt∈[0,T ] |Xn
t −Xt| converges to

zero in probability.

Definition 2.1. 1. Let X = (Xt, 0 ≤ t ≤ T ) and Y = (Yt, 0 ≤ t ≤ T ) be
processes with paths respectively in C0([0, T ]) and L1([0, T ]). Set, for every
0 ≤ t ≤ T ,

I(ε, Y,X, t) =
1

ε

∫ t

0

Ys (Xs+ε −Xs) ds,

and

C(ε,X, Y, t) =
1

ε

∫ t

0

(Ys+ε − Ys) (Xs+ε −Xs) ds.

If I(ε, Y,X, t) converges in probability for every t in [0, T ], and the limiting
process admits a continuous version I(Y,X, t) on [0, T ], Y is said to be
X-forward integrable on [0, T ]. The process (I(Y,X, t), 0 ≤ t ≤ T ) is
denoted by

∫ ·
0
Y d−X. If I(ε, Y,X, ·) converges ucp on [0, T ] we will say that

the forward integral
∫ ·

0
Y d−X is the limit ucp of its regularizations.

2. If (C(ε,X, Y, t), 0 ≤ t ≤ T ) converges ucp on [0, T ] when ε tends to zero,
the limit will be called the covariation process between X and Y and it
will be denoted by [X,Y ]. If X = Y, [X,X] is called the finite quadratic
variation of X: it will also be denoted by [X] , and X will be said to be a
finite quadratic variation process on [0, T ].

Definition 2.2. We will say that a process X = (Xt, 0 ≤ t ≤ T ), is localized
by the sequence

(
Ωk, X

k
)
k∈N∗ , if P

(
∪+∞
k=0Ωk

)
= 1, Ωh ⊆ Ωk, if h ≤ k, and

IΩkX
k = IΩkX, almost surely for every k in N.

Remark 2.3. Let (Xt, 0 ≤ t ≤ T ) and (Y, 0 ≤ t ≤ T ) be two stochastic
processes. The following statements are true.

1. Let Y and X be localized by the sequences
(
Ωk, X

k
)
k∈N and

(
Ωk, Y

k
)
k∈N,

respectively, such that Y k is Xk-forward integrable on [0, T ] for every k in
N. Then Y is X-forward integrable on [0, T ] and

∫ ·

0

Y d−X =

∫ ·

0

Y kd−Xk, on Ωk, a.s..

2. If Y is X-forward integrable on [0, T ], then Y I[0,t] is X-forward integrable
for every 0 ≤ t ≤ T, and

∫ ·

0

YsI[0,t]d
−Xs =

∫ ·∧t

0

Ysd
−Xs.

3. If the covariation process [X,Y ] exists on [0, T ], then the covariation pro-
cess [XI[0,t], Y I[0,t]] exists for every 0 ≤ t ≤ T, and

[
X[0,t], Y I[0,t]

]
= [X,Y ]t∧T .

Definition 2.4. Let X = (Xt, 0 ≤ t ≤ T ) and Y = (Yt, 0 ≤ t < T ) be processes

with paths respectively in C0([0, T ]) and L1
loc([0, T )), i.e.

∫ t
0
|Ys| ds < +∞ for

any t < T .

imsart ver. 2006/01/04 file: NSModelsJune06.tex date: June 26, 2006



7

1. If Y I[0,t] is X-forward integrable for every 0 ≤ t < T, Y is said locally
X-forward integrable on [0, T ). In this case there exists a continuous
process, which coincides, on every compact interval [0, t] of [0, 1), with
the forward integral of Y I[0,t] with respect to X. That process will still be

denoted with I(·, Y,X) =
∫ ·

0
Y d−X.

2. If Y is locally X-forward integrable and limt→T I(t, Y,X) exists almost
surely, Y is said X-improperly forward integrable on [0, T ].

3. If the covariation process [X,Y I[0,t]] exists, for every 0 ≤ t < T, we say
that the covariation process [X,Y ] exists locally on [0, T ) and it is
still denoted by [X,Y ]. In this case there exists a continuous process, which
coincides, on every compact interval [0, t] of [0, 1), with the covariation
process

[
X,Y I[0,t]

]
. That process will still be denoted with [X,Y ] . If X =

Y, [X,X] we will say that the quadratic variation of X exists locally
on [0, T ].

4. If the covariation process [X,Y ] exists locally on [0, T ) and limt→T [X,Y ]t
exists, the limit will be called the improper covariation process between
X and Y and it will still be denoted by [X,Y ]. If X = Y, [X,X] we will
say that the quadratic variation of X exists improperly on [0, T ].

Remark 2.5. Let X = (Xt, 0 ≤ t ≤ T ) and Y = (Yt, 0 ≤ t ≤ T ) be two
stochastic processes being in C0([0, 1]) and L1([0, 1]), respectively. If Y is X-
forward integrable on [0, T ] then its restriction to [0, 1) is X-improperly forward
integrable and the improper integral coincides with the forward integral of Y with
respect to X.

Definition 2.6. A vector
((
X1
t , ..., X

m
t

)
, 0 ≤ t ≤ T

)
of continuous processes is

said to have all its mutual brackets on [0, T ] if
[
Xi, Xj

]
exists on [0, T ] for

every i, j = 1, ...,m.

In the sequel if T = 1 we will omit to specify that objects defined above exist
on the interval [0, 1] (or [0, 1), respectively).

Proposition 2.7. Let M = (Mt, 0 ≤ t ≤ T ) be a continuous local martingale
with respect to some filtration F = (Ft)t∈[0,T ] of F . Then the following properties
hold.

1. The process M is a finite quadratic variation process on [0, T ] and its
quadratic variation coincides with the classical bracket appearing in the
Doob decomposition of M2.

2. Let Y = (Yt, 0 ≤ t ≤ T ) be an F-adapted process with left continuous and
bounded paths. Then Y is M -forward integrable on [0, T ] and

∫ ·
0
Y d−M

coincides with the classical Itô integral
∫ ·

0
Y dM.

Proposition 2.8. Let V = (Vt, 0 ≤ t ≤ T ) be a bounded variation process and
Y = (Yt, 0 ≤ t ≤ T ), be a process with paths being bounded and with at most
countable discontinuities. Then the following properties hold.

1. The process Y is V -forward integrable on [0, T ] and
∫ ·

0
Y d−V coincides

with the Lebesgue-Stieltjes integral denoted with
∫ ·

0
Y dV.
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2. The covariation process [Y, V ] exists on [0, T ] and it is equal to zero. In
particular a bounded variation process has zero quadratic variation.

Corollary 2.9. Let X = (Xt, 0 ≤ t ≤ T ) be a continuous process and Y =
(Yt, 0 ≤ t ≤ T ) a bounded variation process. Then

XY −X0Y0 =

∫ ·

0

XsdYs +

∫ ·

0

Ysd
−Xs.

Proposition 2.10. Let X = (Xt, 0 ≤ t ≤ T ) be a continuous finite quadratic
variation process, and f a function in C1(R). Then Y = f(X) has a finite
quadratic variation on [0, T ] and [Y ] =

∫ ·
0
f ′(X)2d [X] .

Proposition 2.11. Let X = (Xt, 0 ≤ t ≤ T ) be a continuous finite quadratic
variation process and V = ((V 1

t , . . . , V
m
t ), 0 ≤ t ≤ T ) be a vector of continuous

bounded variation processes. Then for every u in C1,2(Rm × R), the process
(∂xu(Vt, Xt), 0 ≤ t ≤ T ) is X-forward integrable on [0, T ] and

u(V,X) = u(V0, X0) +
m∑

i=1

∫ ·

0

∂viu(Vt, Xt)dV
i
t +

∫ ·

0

∂xu(Vt, Xt)d
−Xt

+
1

2

∫ ·

0

∂(2)
xx u(Vt, Xt)d [X]t .

Lemma 2.12. Let X = (X1
t , . . . , X

m
t , 0 ≤ t ≤ T ) be a vector of continuous

processes having all its mutual brackets. Let ψ : Rm → R be of class C2(Rm) and
Y = ψ(X). Then Z is Y -forward integrable on [0, T ], if and only if Z∂xiψ(X)
is Xi-forward integrable on [0, T ], for every i = 1, ...,m and

∫ ·

0

Zd−Y =

m∑

i=1

∫ ·

0

Z∂xiψ(X)d−Xi +
1

2

m∑

i,j=0

∫ ·

0

Z∂
(2)
xixjψ(X)d

[
Xi, Xj

]
.

Proof. The proof derives from proposition 4.3 of [28]. The result is a slight
modification of that one. It should only be noted that there forward integral
of a process Y with respect to a process X was defined as limit ucp of its
regularizations.

3. Existence of forward integrals and related properties: some
examples

In this section we illustrate examples of processes for which forward integrals
exist and we list some related properties which will be extensively used in further
applications to finance.

3.1. Forward integrals of Itô fields

In this subsection ξ will be a G-adapted process with finite quadratic varia-
tion, where G is some filtration of F . The following definitions and results are
extracted from [10].
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Definition 3.1. Let k be in N∗. A random field (H(t, x), 0 ≤ t ≤ 1, x ∈ R) is
called a Ck G-Itô-semimartingale field driven by the vector N =

(
N1, ..., Nn

)
,

if N is a vector of semimartingales with respect to G, and

H(t, x) = f(x) +
n∑

i=1

∫ t

0

ai(s, x)dN i
s, 0 ≤ t ≤ 1, (2)

where f : Ω×R→ R belongs to Ck(R) almost surely and it is G0-measurable for
every x, H and ai : [0, 1]× R× Ω → R, i = 1, ..., n are G-adapted for every x,
almost surely continuous with their partial derivatives with respect to x in (t, x)
up to order k, and for every index h ≤ k it holds

∂(h)
x H(t, x) = ∂(h)

x f(x) +

n∑

i=1

∫ t

0

∂(h)
x ai(s, x)dN i

s, 0 ≤ t ≤ 1.

Definition 3.2. We denote with Ckξ (G) the set of processes of the form

(H(t, ξt), 0 ≤ t ≤ 1) ,

being (H(t, x), 0 ≤ t ≤ 1, x ∈ R) a Ck G-Itô-semimartingale field driven by the
vector N =

(
N1, ..., Nn

)
, such that

(
N1, ..., Nn, ξ

)
has all its mutual brackets.

Remark 3.3. 1. The set C1
ξ (G) is an algebra.

2. Let ψ be in C∞(R) and h in C2
ξ (G). Itô formula implies that ψ(h) belongs

to C2
ξ (G).

Proposition 3.4. Let h and k be in C1
ξ (G). Then the following statements are

true.

1. The process h is ξ-forward integrable, the forward integral
∫ ·

0
htd
−ξt is the

limit ucp of its regularizations and it belongs to C2
ξ (G).

2. The covariation process
([∫ ·

0
htd
−ξt,

∫ ·
0
ktd
−ξt
])

exists and it is equal to∫ ·
0
htktd [ξ]t .

3. The process
∫ ·

0
htd
−ξt is forward integrable with respect to the process∫ ·

0
ktd
−ξt and ∫ ·

0

htd
−
∫ t

0

ksd
−ξs =

∫ ·

0

htktd
−ξt.

Using remark 2.3 it is not difficult to prove that proposition 3.4 extends to
processes which are simple combinations of processes in C1

ξ (G). We illustrate
this result below.

Definition 3.5. Let S(Ckξ (G)) be the set of all processes h of type h = h0I{0}+∑m
i=1 h

iI(ti−1,ti] where 0 = t0 ≤ t1, · · · , tm = 1, and hi belongs to Ckξ (G), for
i = 1, ...,m.

Remark 3.6. Thanks to remark 3.3, if h belongs to S(Ckξ (G)) and ψ is of class

C∞(R), then ψ(h) is still in S(Ckξ (G)).
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Proposition 3.7. Let h and k be in S(C1
ξ (G)). Then the we can state the

following.

1. The process h is ξ-forward integrable and it belongs to S(C2
ξ (G)).

2. The covariation process
([∫ ·

0
htd
−ξt,

∫ ·
0
ktd
−ξt
])

exists and it is equal to∫ ·
0
htktd [ξ]t .

3. The process
(∫ ·

0
htd
−ξt, 0 ≤ t ≤ 1

)
is forward integrable with respect to the

process
(∫ ·

0
ktd
−ξt, 0 ≤ t ≤ 1

)
and

∫ ·

0

htd
−
∫ t

0

ksd
−ξs =

∫ ·

0

htktd
−ξt.

Proof. By linearity of forward integral and bilinearity of covariation it is suf-
ficient to prove the statement for processes of type hI[0,t] and kI[0,t], with h
and k in C1

ξ (G) and 0 ≤ t ≤ 1. The proof is a consequence of remark 2.3 and
proposition 3.4.

3.2. Forward integrals via Malliavin calculus

We work in the Malliavin calculus framework. To this extent we recall some
basic notations and definitions from [20] and [19].

We suppose that (Ω,F,F , P ) is the canonical probability space, meaning that
Ω = C ([0, 1],R), P is the Wiener measure, W is the Wiener process, F is the
filtration generated by W and the P -null sets and F is the completion of the
Borel σ-algebra with respect to P.

Let S be the space of all random variables on (Ω,F , P ), of the form

F = f(W (t1), ...,W (tn)), 0 ≤ t0, · · · , tn ≤ 1,

with f in C∞(Rn) being bounded with its derivatives of all orders. The it-
erated derivative of order k operator is denoted by Dk. Then Dk : Dk,p →
Lp
(
Ω× [0, 1]k

)
, where Dk,p, p ≥ 2, k ∈ N∗, is the closure of S with respect to

the norm

||F ||pDk,p = ||F ||pLp(Ω) +

k∑

j=1

∣∣∣
∣∣∣
∣∣∣∣DjF

∣∣∣∣
L2([0,1]j)

∣∣∣
∣∣∣
p

Lp(Ω)
.

For any p ≥ 2, L1,p denotes the space of all functions u in Lp (Ω× [0, 1]) such
that ut belongs to D1,p for every 0 ≤ t ≤ 1 and there exists a measurable

version of (Dsut, 0 ≤ s, t ≤ 1) with
∫ 1

0
E
[
||Dut||pL2([0,1])

]
dt < ∞. For every u

in L1,p we denote ||u||pL1,p =
∫ 1

0
||ut||pD1,p dt. Similarly, for p ≥ 2, L2,p denotes

the space of all functions u in Lp (Ω× [0, 1]) , such that ut belongs to D2,p for
every 0 ≤ t ≤ 1 and there exist measurable versions of (Dsut, 0 ≤ s, t ≤ 1) and
(DrDsut, 0 ≤ s, t, r ≤ 1) with

∫ 1

0

E
[
||Dut||pL2([0,1])

]
+ E

[∣∣∣∣D2ut
∣∣∣∣p
L2([0,1]2)

]
dt <∞.
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For every u in L2,p we denote ||u||pL2,p =
∫ 1

0
||ut||pD2,p dt.

The Skorohod integral δ is the adjoint of the derivative operator D; its domain is
denoted by Domδ. An element u belonging to Domδ is said Skorohod integrable.
We recall that D1,2 is dense in L2(Ω), L1,2 ⊂ Domδ, and that if u belongs to
L1,2 then, for each 0 ≤ t ≤ 1, uI[0,t] is still in L1,2. In particular it is Skorohod

integrable. We will use the notation δ
(
uI[0,t]

)
=
∫ t

0
usδWs, for each u in L1,2.

The process
(∫ t

0
usδWs, 0 ≤ t ≤ 1

)
is mean square continuous and then it admits

a continuous version, which will be still denoted by
∫ ·

0
utδWt. We finally recall

that for every u in L1,p there exists a positive constant cp such that

||δ(u)||pLp(Ω) ≤ cp

[(∫ 1

0

|E [ut]|2 dt
) p

2

+
∣∣∣
∣∣∣||Du||L2([0,1]2)

∣∣∣
∣∣∣
p

Lp(Ω)

]
(3)

≤ cp ||u||pL1,p .

It is useful to remind the following result contained in [19], exercise 1.2.13.

Lemma 3.8. Let F and G be two random variables in D1,2. Suppose that G and
||DG||L2([0,1]) are bounded. Then FG is still in D1,2 and D(FG) = FDG+GDF.

Remark 3.9. 1. Let u be a process in L1,p, for some p ≥ 2, and v in L1,2

such that the random variable

sup
t∈[0,1]

(
|vt|+

∫ 1

0

(Dsvt)
2ds

)

is bounded. By lemma 3.8 the process uv belongs to L1,p and Duv = uDv+
vDu.

2. Let u be a process in L2,p, for some p ≥ 2 and v in L2,2 such that the
random variable

sup
t∈[0,1]

(
|vt|+

∫ 1

0

(Dsvt)
2ds+

∫ 1

0

∫ 1

0

(DrDsvt)
2drds

)

is bounded. Then the process uv belongs to L2,p.

In order to state a chain rule formula we will need the Fubini -type lemma below.

Lemma 3.10. Let u be in L2
(
Ω× [0, 1]2

)
. Assume that for every 0 ≤ t ≤ 1,

the process u(·, t) belongs to L1,2, that there exist measurable versions of the two
processes (δ(u(·, t), 0 ≤ t ≤ 1) and (Dru(s, t), 0 ≤ r, s, t ≤ 1) and that

E
[∫ 1

0

||Du(·, t)||2L2([0,1]2) dt

]
< +∞. (4)

Then the process
(∫ 1

0
u(s, t)dt, 0 ≤ s ≤ 1)

)
belongs to L1,2 and

δ

(∫ 1

0

u(·, t)dt
)

=

∫ 1

0

δ(u(·, t))dt.
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Proof. Consider the process (gs, 0 ≤ s ≤ 1) so defined: gs =
∫ 1

0
u(s, t)dt. Let

0 ≤ s ≤ 1 be fixed. Since (u(s, t), 0 ≤ t ≤ 1) is in L1,2, gs is in D1,2 and

Dgs =
∫ 1

0
Du(s, t)dt. By Fubini theorem

(∫ 1

0
Dru(s, t)dt, 0 ≤ r, s ≤ 1

)
admits

a measurable version. Thanks to inequality (4),
∫ 1

0
E
[
||Dgs||L2([0,1])

]
ds < +∞.

This implies that g is in L1,2. The conclusion of the proof is achieved using
exercise 3.2.8, page 174 of [19].

Definition 3.11. For every p ≥ 2, L1,p
− will be the space of all processes u

belonging to L1,p such that limε→0Dtut−ε exists in Lp(Ω× [0, 1]). The limiting
process will be denoted by

(
D−t ut, 0 ≤ t ≤ 1

)
.

Remark 3.12. 1. If u belongs to L1,p
− then

E
[∫ 1

0

(
1

ε

∫ s+ε

s

∣∣Drus −D−r ur
∣∣p dr

)
ds

]
(5)

converges to zero when ε tends to zero. Indeed term (5) equals 1
ε

∫ ε
0
f(z)dz,

with f(z) = E
[∫ 1

0
|Drur−z −D−r ur|

p
dr
]
, and limν→0 f(z) = 0.

2. Let u and v be two left continuous processes respectively in L1,p
− and L1,2

−
with p ≥ 2. Suppose, furthermore, that supt∈[0,1] |ut| belongs to Lp(Ω) and

that the random variable supt∈[0,1]

(
|vt|+ sups∈[0,1] |Dsvt|

)
is bounded.

Then uv belongs to L1,q
− , for every 2 ≤ q < p. Moreover D−uv = uD−v +

vD−u. In particular v belongs to L1,q
− , for every q ≥ 2.

The hypothesis on the left continuity of u and v on point 2. of previous remark
allows us to show that

lim
ε→0

[∫ 1

0

|zt−ε − zt|p dt
]

= 0, z = u, v, a.s. (6)

That condition could be relaxed. It would be enough to suppose that,

λ((0 ≤ t ≤ 1, s.t. |zt − zt− | 6= 0)) = 0,

almost surely, for z = u, v, being λ the Lebesgue measure on B([0, 1]). Never-
theless, convergence in (6) does not hold for every bounded process. To see this
it is sufficient to consider, for instance, z = IQ∩[0,1].

Lemma 3.13. Let u and v be respectively in L1,p
− , p ≥ 2, and L1,2

− . Suppose

that the random variable supt∈[0,1]

(
|vt|+ sups∈[0,1] |Dsvt|

)
is bounded. Then the

sequence of processes

(
1

ε

∫ 1

0

utvt(Wt+ε −Wt)dt−
1

ε

∫ 1

0

ut

(∫ t+ε

t

vsδWs

)
dt

)

ε>0

converges in Lq(Ω) to
∫ 1

0
utD

−
t vtdt, for every 2 ≤ q < p.

imsart ver. 2006/01/04 file: NSModelsJune06.tex date: June 26, 2006



13

Proof. Set

Aε =
1

ε

∫ 1

0

utvt (Wt+ε −Wt) dt, Bε =
1

ε

∫ 1

0

ut

(∫ t+ε

t

vsδWs

)
dt.

Proposition 1.3.4 in section 1.3 of [19] permits to rewrite Aε in the following
way:

Aε =
1

ε

∫ 1

0

utvt

(∫ t+ε

t

I[0,1](s)δWs

)
dt.

Moreover, by point 1. of remark 3.9, Duv = vDu + uDv. For every 0 ≤ t ≤ 1,
the random variables

∫ t+ε
t

Ds(utvt)ds and
∫ t+ε
t

Dsutvsds are square integrable.
Therefore property (4) in section 1.3 of [19] can be exploited to write

Aε =
1

ε

∫ 1

0

(∫ t+ε

t

utvtδWs

)
dt+

1

ε

∫ 1

0

(∫ t+ε

t

Ds(utvt)ds

)
dt,

and

Bε =
1

ε

∫ 1

0

(∫ t+ε

t

utvsδWs

)
dt+

1

ε

∫ 1

0

(∫ t+ε

t

Dsutvsds

)
dt.

This implies

Aε −Bε =

∫ 1

0

(
1

ε

∫ t+ε

t

ut(vt − vs)δWs

)
dt

+

∫ 1

0

(
1

ε

∫ t+ε

t

(vt − vs)Dsutds

)
dt+

∫ 1

0

(
1

ε

∫ t+ε

t

utDsvtds

)
dt

= I1
ε + I2

ε + I3
ε .

We observe that the function (ω, s, t) 7−→ I(t,t+ε](s)ut(ω)(vt − vs)(ω), for every
(ω, s, t) in Ω × [0, 1]2, satisfies the hypotheses of lemma 3.10. Therefore I1

ε can
be rewritten as follows

I1
ε =

∫ 1

0

(
1

ε

∫ s

s−ε
ut(vt − vs)dt

)
δWs.

Using inequality (3) it is possible to prove that there exists a positive constant
c such that

E
[∣∣I1

ε

∣∣p
]
≤ cE

[∫ 1

0

(
|ut|p +

(∫ 1

0

(Drut)
2dr

) p
2

)
hεtdt

]
,

with

hεt =
1

ε

∫ t+ε

t

(
|vt − vs|p +

(∫ 1

0

|Drvt −Drvs|2 dr
) p

2

)
ds.

Since supt∈[0,1]

(
|vt|+ sups∈[0,1] |Dsvt|

)
is a bounded random variable, for al-

most all (ω, t), hεt converges to zero when ε goes to zero. Consequently, Lebesgue
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dominated convergence theorem applies to conclude that E
[∣∣I1

ε

∣∣p] converges to
zero.

Considering the term I2
ε , Hölder inequality and the boundedness of v lead to

E
[∣∣I2

ε

∣∣p
]
≤ cE

[∫ 1

0

(
1

ε

∫ t+ε

t

∣∣Dsut −D−s us
∣∣p ds

)
dt

]

+ cE
[∫ 1

0

(
1

ε

∫ s

s−ε
|vt − vs|p dt

) ∣∣D−s us
∣∣p ds

]
,

for some positive constant c. The first term of previous sum converges to zero
by point 1. of remark 3.12; the second by Lebesgue dominated convergence
theorem.

Finally I3
ε may be rewritten as follows:

I3
ε =

∫ 1

0

(
1

ε

∫ t+ε

t

(Dsvt −D−s vs)ds
)
utdt

+

∫ 1

0

1

ε

∫ t+ε

t

D−s vs(ut − us)dsdt+

∫ 1

0

usD
−
s vsds.

Hölder inequality and again remark 3.12 implies the convergence to zero in
Lq(Ω) of the first term of the sum for every 2 ≤ q < p. The convergence to zero
of the second term of the sum in Lp(Ω) is due to the boundedness of |D−v| and
the following maximal inequality contained in [31], theorem 1.:

∫ 1

0

sup
ε>0

(
1

ε

∫ t+ε

t

|zs|p ds
)
dt ≤

∫ 1

0

|zt|p dt, z ∈ Lp(Ω× [0, 1]).

This leads to the conclusion.

We omit the proof of the following lemma which is, indeed, a slight modification
of the proof of previous one.

Lemma 3.14. Let v be in L1,p
− , p ≥ 2. Then the sequence of processes

(
1

ε

∫ 1

0

vt(Wt+ε −Wt)dt−
1

ε

∫ 1

0

(∫ t+ε

t

vsδWs

)
dt

)

ε>0

converges in Lp(Ω) to
∫ 1

0
D−t vtdt.

Lemma 3.15. Let u be a process in L1,p with p ≥ 2. Then the process

(∫ t

0

usds, 0 ≤ t ≤ 1

)

belongs to L1,p
− , and D−

(∫ ·
0
utdt

)
=
∫ ·

0
Dutdt.

Proof. We set gt =
∫ t

0
usds. Clearly g is in Lp(Ω×[0, 1]). As already observed for

the proof of lemma 3.10, since the process u belongs to L1,2 for every 0 ≤ t ≤ 1,
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gt is in D1,2 and Dgt =
∫ t

0
Dusds. Moreover Hölder inequality implies

E
[∫ 1

0

||Dgt||pL2([0,1]) dt

]
≤ E

[∫ 1

0

||Dus||pL2([0,1]) ds

]
< +∞.

Then g belongs to L1,p. To conclude it is sufficient to observe that

E
[∫ 1

0

∫ t

t−ε
|Dtus|p dsdt

]
= E

[∫ 1

0

∫ s+ε

s

|Dtus|p dtds
]
,

and that the right hand side of previous equality converges to zero when ε goes
to zero by point 1. of remark 3.12.

Lemma 3.16. Let u be a process in L2,p, with p ≥ 2. Suppose furthermore that

∫ 1

0

(
E
[
||Dut||pLp([0,1])

]
+ E

[∣∣∣∣D2ut
∣∣∣∣p
Lp([0,1]2)

])
dt < +∞. (7)

Then the process
(∫ t

0
usδWs, 0 ≤ t ≤ 1

)
is in L1,p

− , and

D−
(∫ ·

0

utδWt

)
=

∫ ·

0

DutδWt.

Proof. We set g =
∫ ·

0
utδWt. By proposition 5.5 of [20], for every t in [0, 1], gt

belongs to D1,2 and Drgt = δ
(
DruI[0,t]

)
+urI[0,t](r), for every r, almost surely.

Using inequality (3) it is possible to find a positive constant c such that

||g||pLp(Ω×[0,1]) ≤ c ||u||
p
L1,p < +∞.

To prove that g belongs to L1,p we still have to show that E
[∫ 1

0
||Dgt||pL2([0,1]) dt

]

is finite. Clearly, E
[∫ 1

0

∣∣∣∣uI[0,t]
∣∣∣∣p
L2([0,1])

dt
]
≤ ||u||Lp(Ω×[0,1]) , which is finite. It

remains to prove that E
[∫ 1

0

(∫ 1

0

∣∣δ
(
DruI[0,t]

)∣∣2 dr
) p

2

dt

]
< +∞. Applying again

inequality (3) we obtain, for some c > 0,

E

[∫ 1

0

(∫ 1

0

∣∣δ
(
DruI[0,t]

)∣∣2 dr
) p

2

dt

]
≤ c

∫ 1

0

E
[∫ 1

0

∣∣δ
(
DruI[0,t]

)∣∣p dt
]
dr

≤ c

∫ 1

0

∫ 1

0

∣∣∣∣DruI[0,t]
∣∣∣∣p
L1,p drdt

≤ c

∫ 1

0

||Dru||pL1,p dr.

Last term in the expression above is bounded by the integral appearing in in-
equality (7). This permits to get the result.
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Proposition 3.17. Let v be a process in L1,p
− , with p > 4. Then v is both

forward and Skorohod integrable with respect to W and
∫ ·

0

vtd
−Wt =

∫ ·

0

vtδWt +

∫ ·

0

D−t vtdt.

Furthermore, if v is also left continuous with right limit, then
∫ ·

0
vtd
−Wt has

finite quadratic variation equal to
∫ ·

0
v2
t dt.

Proof. First of all we observe that if a process v belongs to L1,p
− then I[0,t]v

inherits the property for every t in [0, 1]. Using lemma 3.14 and lemma 3.10

we find that I(ε, v,W, t)−
∫ t

0
vsδWs converges in Lp(Ω) toward

∫ t
0
D−s vsds, for

every 0 ≤ t ≤ 1. If v belongs to L1,p
− , with p > 4, by theorem 5.2 in [20], the

Skorohod integral process
∫ ·

0
vtδWt admits a continuous version. At the same

time, thanks to theorem 1.1 of [26] we know that
∫ ·

0
vtδWt has finite quadratic

variation equal to
∫ ·

0
v2
t dt. The proof is complete.

Proposition 3.18. Let u and v be left continuous processes, respectively in L1,p
−

and L1,2
− , with p > 4. Suppose that supt∈[0,1] |ut| belongs to Lp(Ω), and that the

random variable supt∈[0,1]

(
|vt|+ sups∈[0,1] |Dsvt|

)
is bounded. Then uv and v

are forward integrable with respect to W. Furthermore u is forward integrable
with respect to

∫ ·
0
vtd
−Wt and

∫ ·

0

utd
−
(∫ t

0

vsd
−Ws

)
=

∫ ·

0

utvtd
−Wt

=

∫ ·

0

utvtδWt +

∫ ·

0

(vtD
−
t ut + utD

−
t vt)dt.

Proof. By point 2. of remark 3.12 the process uv belongs to L1,q
− , for every

4 < q < p, and D−uv = vD−u + uD−v. Proposition 3.17 immediately implies
that ∫ ·

0

utvtd
−Wt =

∫ ·

0

utvtδWt +

∫ ·

0

(vtD
−
t ut + utD

−
t vt)dt.

Lemma 3.13 permits to write, for every 0 ≤ t ≤ 1,

I

(
ε, u,

∫ ·

0

vtd
−Wt, t

)
=

1

ε

∫ t

0

us

∫ s+ε

s

vrd
−Wrds

=
1

ε

∫ t

0

us

(∫ s+ε

s

vrδWr

)
ds

+
1

ε

∫ t

0

us

(∫ s+ε

s

D−r vrdr

)
ds.

Since supt∈[0,1]

∣∣D−t vt
∣∣ belongs to Lp(Ω) the second term of previous sum con-

verges toward
∫ t

0
usD

−
s vsds in Lq(Ω), for every 2 ≤ q < p. As a consequence

of this, by lemma 3.13, I
(
ε, u,

∫ ·
0
vtd
−Wt, t

)
converges toward

∫ t
0
usvsd

−Ws in
L2(Ω). The proof is then complete.
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Definition 3.19. We say that a process u belongs to L1,p
−,loc if it is localized by

a sequence
(
Ωk, u

k
)
k∈N , with uk belonging to L1,p

− for every k in N.

Lemma 3.20. Let u =
(
u1, . . . , un

)
, n > 1, be a vector of left continuous

processes with bounded paths and in L1,p
− , for some p ≥ 2. Then, for every

ψ in C1 (Rn) the process ψ(u) belongs to L1,p
−,loc. Moreover, the localizing se-

quence
(
Ωk, ψ(u)k

)
k∈N can be chosen such that ψ(u)k is left continuous, and

supt∈[0,1]

∣∣ψ(u)kt
∣∣ belongs to Lp(Ω) for every k in N.

Proof. For k in N∗, set Ωk =
{

sup0≤t≤1 ||ut||Rn ≤ k
}

and ψ(u)k = ψ(u)fk(u),
being fk(u) = f(uk ), and f a smooth function from Rn to R, with compact sup-
port and f(x) = 1, for every ||x|| ≤ 1. Clearly ψ(u) is localized by

(
Ωk, ψ(u)k

)
k∈N .

By [20], proposition 4.8, ψ(u)k belongs to L1,2, for every k in N∗. Since ψ ◦ fk
has bounded first partial derivatives, proposition 1.2.2 of [19] implies that

Dψ(u)ks =
n∑

i=1

∂i(ψ ◦ fk)(us)Du
i
s.

In particular ψ(u)k belongs to L1,p. Using the continuity of all first partial
derivatives of ψ ◦ fk and the left continuity of ui for every i = 1, ..., n, it is
possible to prove that ψ(u)k belongs indeed to L1,p

− , and D−ψ(u)k =
∑n
i=1 ∂i(ψ◦

fk(u))D−ui. The proof is then complete.

We conclude this section giving a generalization of proposition 3.18.

Proposition 3.21. Let u =
(
u1, . . . , un

)
, n > 1, be a vector of left continuous

processes with bounded paths and in L1,p
− , with p > 4. Let v be a process in L1,2

−
with left continuous paths such that the random variable |vt|+sups∈[0,1] |Dsvt| is

bounded. Then for every ψ in C1(Rn) ψ(u)v and v are forward integrable with
respect to W. Furthermore ψ(u) is forward integrable with respect to

∫ ·
0
vtd
−Wt

and

∫ ·

0

ψ(ut)d
−
(∫ t

0

vsd
−Ws

)
=

∫ ·

0

ψ(ut)vtd
−Wt.

Proof. Let
(
Ωk, ψ(u)k

)
k∈N be a localizing sequence for ψ(u) such that ψ(u)k is

left continuous and supt∈[0,1]

∣∣ψ(u)kt
∣∣ belongs to Lp(Ω) for every k in N. Such a

sequence exists thanks to lemma 3.20. Clearly
(
Ωk, ψ(u)kv

)
k∈N localizes ψ(u)v.

For every k in N, thanks to proposition 3.18, ψ(u)k and ψ(u)kv are forward
integrable with respect to W and

∫ ·

0

ψ(u)kt d
−
∫ t

0

vsd
−Ws =

∫ ·

0

ψ(u)kt vtd
−Wt.

The conclusion follows by remark 2.3.
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3.3. Forward integrals of anticipating processes: substitution
formulae

Let F = (Ft)t∈[0,1] be a filtration on (Ω,F , P ) , with F1 = F , and L an F
measurable random variable with values in Rd. We set Gt = (Ft ∨ σ(L)) , and
we suppose that G is right continuous:

Gt =
⋂

ε>0

(Ft+ε ∨ σ(L)) .

In this section PF (PG, resp.) will denote the σ-algebra of F(of G, resp.)-
predictable processes. E will be the Banach space of all continuous functions on
[0, 1] equipped with the uniform norm ||f ||E = supt∈[0,1] |f(t)| .

3.3.1. Preliminary results

We state in the sequel some results about forward integrals involving processes
that are random field evaluated at L. To be more precise we will establish
conditions to insure the existence of such integrals, their quadratic variation
and a related associativity property.

Definition 3.22. An increasing sequence of random times (Tk)k∈N is said suit-

able if P
(
∪+∞
k=0 {Tk = 1}

)
= 1.

Definition 3.23. For every random time 0 ≤ S ≤ 1, p > 0, and γ > 0, we
define C

p,γ
S as the set of all families of continuous processes ((F (t, x), 0 ≤ t ≤

1);x ∈ Rd) such that for each compact set C of Rd there exists a constant c > 0
such that

E

[
sup
t∈[0,S]

|F (t, x)− F (t, y)|p
]
≤ c |x− y|γ , ∀x, y ∈ C.

If S = 1, Cp,γ will stand for C
p,γ
S .

We begin recalling a result stated in [26], lemma 1.2, page 93.

Lemma 3.24. Let
{

(Fn(t, x), 0 ≤ t ≤ 1), (F (t, x), 0 ≤ t ≤ 1);n ≥ 1, x ∈ Rd
}

be
a family of continuous processes such that Fn and F are F ⊗B([0, 1])⊗B(Rd)-
measurable. Suppose that for each x in Rd, Fn(·, x) converges to F (·, x) ucp and
that there exist p > 1, γ > d, with

E

[
sup
t∈[0,1]

|Fn(t, x)− Fn(t, y)|p
]
≤ c |x− y|γ , ∀x, y ∈ C, ∀n ∈ N.

Then x 7→ F (·, x) admits a continuous version F̄ (·, x), from Rd to E and Fn(·, L)
converges toward F (·, L) ucp.
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Definition 3.25. bL(PF⊗B(Rd)) will denote the set of all functions

((h(t, x), 0 ≤ t ≤ 1);x ∈ Rd)

which are PF ⊗ B(Rd)-measurable, such that for every x in Rd, h(·, x) has left
continuous and bounded paths.

Definition 3.26. Let p > 1, γ > 0. We define Ap,γ as the set of all functions
h in bL(PF⊗B(Rd)) satisfying the following assumption. There exists a suitable
sequence of stopping times (Tk)k∈N such that h belongs to

⋂
k∈N C

p,γ
Tk
.

We state this lemma which will be useful later.

Lemma 3.27. Let h and g be respectively in Ap,γp and Aq,γq for some p, q > 1,
γp, γq > 0. Then the following statements hold.

1. If ψ belongs to C1(R) and it has bounded derivative, then ψ(h) belongs to
Ap,γ .

2. The process hg belongs to Aα, γαp ∧
γqα

q with α = pq
p+q .

3. If N is a continuous F-semimartingale, then the function

(∫ t

0

h(s, x)dNs, 0 ≤ t ≤ 1, x ∈ R)

)

belongs to Ap,γ .

Proof. Let (Tk)k∈N be a suitable sequence of stopping times such that h belongs
to
⋂
k∈N C

p,γ
Tk
.

The conclusion of the first point is straightforward.

Concerning the second point we set, for every k in N,

Sk = inf {0 ≤ t ≤ 1, | |h(t, 0)|+ |g(t, 0)| ≥ k} ∧ Tk.

If C is a compact set of Rd, using Hölder inequality we obtain

E

[
sup

t∈[0,Sk]

|hg(t, x)− hg(t, y)|α
]
≤ c

(
E

[
sup

t∈[0,Sk]

|h(t, x)− h(t, y)|p
])α

p

+ c

(
E

[
sup

t∈[0,Sk]

|g(t, x)− g(t, y)|q
])α

q

≤ c |x− y|
γα
p ∧

γqα

q ,

where c = supx,y∈C
(
E
[
supt∈[0,Sk] |h(t, x)|p

])α
p

+
(
E
[
supt∈[0,Sk] |g(t, x)|q

])α
q

is

bounded thanks to the choice of the sequence (Sk)k∈N and the compactness of
C.

To prove point 3. it is sufficient to define Sk = inf {0 ≤ t ≤ 1, | |V |t + [M ]t ≥ k}∧
Tk, for every k in N, where N = M + V, M is an F-local martingale, V is a
bounded variation process, and |V | denotes the total variation of V.
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3.3.2. Existence

Let M,V :
(
Ω× [0, 1]× Rd,F ⊗ B([0, 1])⊗ B(Rd)

)
−→ (R,B(R)) be measur-

able functions such that for each x in Rd, M(0, x) = V (0, x) = 0, (M(t, x), 0 ≤
t ≤ 1) is an F-continuous local martingale, and (V (t, x), 0 ≤ t ≤ 1), a continuous
bounded variation process.

Remark 3.28. If h is in bL(PF ⊗B(R)), the process (h(t, L), 0 ≤ t ≤ 1) is left
continuous with bounded paths and the process (V (t, L), 0 ≤ t ≤ 1) is continuous
with bounded variation. Then, by proposition 2.8,

∫ ·
0
h(t, L)d−V (t, L) exists and

coincides with the Lebesgue-Stieltjes integral
∫ ·

0
h(t, L)dV (t, L). Moreover

∫ ·

0

h(t, L)dV (s, L) =

(∫ ·

0

h(t, x)dV (t, x)

)

x=L

.

Lemma 3.29. Let h be in bL(PF ⊗ B(R)). Suppose that both supt∈[0,1] |h(t, 0)|
and supt∈[0,1] |M(t, 0)| are bounded, and that there exist p > 1, q > p

p−1 , γp >
d(q+p)
q , γq >

d(q+p)
p such that M belongs to Cp,γp and h to Cq,γq . Then the func-

tion x 7→
∫ ·

0
h(s, x)dM(s, x) admits a continuous version,

∫ ·
0
h(s, L)d−M(s, L)

exists as limit ucp of its regularizations and

∫ ·

0

h(t, L)d−M(t, L) =

(∫ ·

0

h(t, x)dM(t, x)

)

x=L

.

Proof. For every x ∈ Rd and 0 ≤ t ≤ 1 we set

Fε(t, x) =
1

ε

∫ t

0

h(s, x)(M(s+ ε, x)−M(s, x))ds,

and

F (t, x) =

∫ t

0

h(s, x)dM(s, x).

To prove our statement we verify that lemma 3.24 applies to the families defined
above.

Let x and y in Rd be fixed. Point 2. of proposition 2.7 implies that Fε(·, x)
converges ucp to F (·, x). Set α = pq

p+q . Using theorem 45 in chapter IV of [22],
we can write, for every ε > 0,

Fε(·, x)− Fε(·, y) =

∫ ·

0

(
1

ε

∫ r

r−ε
(h(s, x)− h(s, y))ds

)
dM(r, x)

+

∫ ·

0

(
1

ε

∫ r

r−ε
h(s, y)ds

)
d (M(r, y)−M(r, x)) .

Thanks to theorem 2 in chapter V of [22], we find a positive constant a, depend-
ing only on p and q such that, for every ε > 0,

E

[
sup
t∈[0,1]

|F (ε, t, x)− F (ε, t, y)|α
]
≤ a(δ1 + δ2)
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with

δ1 = E

[
sup
t∈[0,1]

|h(t, x)− h(t, y)|q
]α
q

E

[
sup
t∈[0,1]

|M(t, x)|p
]α
p

and

δ2 = E

[
sup
t∈[0,1]

|M(t, x)−M(t, y)|p
]α
p

E

[
sup
t∈[0,1]

|h(t, y)|q
]α
q

.

Thanks to the hypotheses on M and h it is possible to find a constant b de-
pending on C such that

δ1 ≤ b |x− y|
γqα

q , δ2 ≤ b |x− y|
γpα

p , ∀ε > 0.

Consequently, there will exist c > 0 such that

E

[
sup
t∈[0,1]

|F (ε, t, x)− F (ε, t, y)|α
]
≤ c |x− y|γ , ∀x, y ∈ C, ∀ε > 0,

with γ =
γpα
p ∧

γqα
q > d and proof is complete.

The following proposition represents a generalization of previous lemma.

Proposition 3.30. Suppose that M belongs to Ap,γp and that h belongs to

Aq,γq for some p > 1, q > p
p−1 , γp > d(q+p)

q and γq > d(q+p)
p . Then x 7→∫ ·

0
h(s, x)dM(s, x) admits a continuous version,

∫ ·
0
h(s, L)d−M(s, L) exists as

limit ucp of its regularizations and

∫ ·

0

h(s, L)d−M(s, L) =

(∫ ·

0

h(s, x)dM(s, x)

)

x=L

.

Proof. We observe that we do not loose generality assuming that there exists
a suitable sequence of F-stopping times (Tk)k∈R such that M and h belong
respectively to

⋂
k∈N C

p,γp
Tk

and
⋂
k∈N C

q,γq
Tk

. Let (Sk)k∈N be a suitable sequence

of F-stopping times such that, for every k in M, Sk is the first instant, between
0 and 1, the process |M(·, 0)|+ |h(·, 0)| is greater than k. Set, for every k in N,

Rk = Sk ∧ Tk, Mk = MRk , hk = hRk ,

and

Ωk =

{
sup
t∈[0,1]

|M(t, 0)| ≤ k
}
∩
{

sup
t∈[0,1]

|h(t, 0)| ≤ k
}
∩ {Rk = 1} .

Let k be fixed. It is clear that supt∈[0,1]

∣∣hk(t, 0)
∣∣ and supt∈[0,1]

∣∣Mk(·, 0)
∣∣ are

bounded and that Mk and hk belong, respectively, to Cp,γp and Cq,γq . We can
thus apply lemma 3.29 to state that the function x 7→

∫ ·
0
hk(t, x)dMk(t, x)

admits a continuous version and
∫ ·

0

hk(t, L)dMk(t, L) =

(∫ ·

0

hk(t, x)dMk(t, x)

)

x=L

.
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By the local character of the classical stochastic integral, see [22], theorem 26,
F k(·, x) = F h(·, x) =

∫ ·
0
h(t, x)dM(t, x), for every x in Rd, almost surely on Ωh,

for every h ≤ k. Therefore it is possible to define
(
F̄ (t, x), 0 ≤ t ≤ 1, x ∈ Rd

)

such that x 7→ F̄ (·, x) is continuous, and for every k in N

F̄ (·, x) = F̄ k(·, x) =

∫ ·

0

h(t, x)dM(t, x), ∀x ∈ Rd, on Ωk.

Furthermore, remark 2.3 implies that

lim
ε→0

1

ε

∫ ·

0

h(s, L)(M(s+ ε, L)−M(s, x))ds = F̄ (·, L),

ucp, since the convergence holds on every on Ωk, for every k in N.

Previous proposition combined with lemma 3.27 implies directly the following
corollary.

Corollary 3.31. Let N be a continuous F-local martingale. Let h be in Aq,γq ,
for q > 1, γq > d. Then x 7→

∫ ·
0
h(t, x)dNt admits a continuous version,∫ ·

0
h(t, L)d−Nt exists as limit ucp of its regularizations and

∫ ·

0

h(t, L)d−Nt =

(∫ ·

0

h(t, x)dNt

)

x=L

.

3.3.3. Quadratic variation

We examine the existence of the quadratic variation of forward integrals of
the anticipating processes considered in the present subsection. We start giving
a generalization of a substitution formula proved in [26], proposition 1.3. We
furnish, in fact, a localized version of that result in view of further applications
to finance. We omit the details of its proof, which are indeed similar to those
used in the proof of proposition 3.30.

Proposition 3.32. Suppose that M belongs to Ap,γ with p > 2 and γ > 2d.
Then x 7→ [M(·, x),M(·, x)] admits a continuous version, the process M(·, L)
has finite quadratic variation and

[M(·, L),M(·, L)] = [M(·, x),M(·, x)]x=L .

A consequence of previous proposition is the following.

Proposition 3.33. Suppose that M(t, x) =
∫ ·

0
h(t, x)dN(t, x), for every x in

Rd, where h and N verify the following assumption. The functions h and N

are, respectively, in Aq,γq and Ap,γp with p > 2, q > 2p
p−2 , γp >

2d(q+p)
q and

γq >
2d(q+p)

p ; for every x in Rd, N(0, x) = 0, and (N(t, x), 0 ≤ t ≤ 1) is a

continuous F-local martingale. Then M(·, L) has finite quadratic variation and
[M(·, L)] = [M(·, x)]x=L .

imsart ver. 2006/01/04 file: NSModelsJune06.tex date: June 26, 2006



23

Proof. We have to show that hypotheses of proposition 3.32 are satisfied. We
denote with (Tk)k∈N a suitable sequence of F-stopping times such that N and
h belong respectively to

⋂
k∈N C

p,γp
Tk

and
⋂
k∈N C

q,γq
Tk

. Let (Sk)k∈N be a suitable

sequence of F-stopping times such that, for every k in N, Sk is the first in-
stant, between 0 and 1, the process |N(·, 0)| + |h(·, 0)| is greater than k. Set,
for every k in N, Rk = Sk ∧ Tk, Nk = NRk , Mk = MRk hk = hRk , and

Ωk =
{

supt∈[0,1] |N(t, 0)| ≤ k
}
∩
{

supt∈[0,1] |h(t, 0)| ≤ k
}
∩{Rk = 1} . Let C be

a compact set of Rd, x, y in C, and k in N. Using arguments already employed
in the proof of lemma 3.29, it is not difficult to show that if α = pq

p+q > 2, there
exists a constant dk > 0, depending on C and k, such that,

E

[
sup

t∈[0,Rk]

|M(t, x)−M(t, y)|α
]

= E

[
sup
t∈[0,1]

∣∣Mk(t, x)−Mk(t, y)
∣∣α
]

≤ dk |x− y|γ ,

with γ =
γpα
p ∧

γqα
q > 2d. This concludes the proof.

From proposition 3.32 and lemma 3.27 we can easily derive the following corol-
lary.

Corollary 3.34. Suppose that M(·, x) =
∫ ·

0
h(t, x)dN where N is a continuous

F-local martingale and h belongs to Aq,γq , q > 2, γq > 2d. Then the function
x 7→ [M(·, x),M(·, x)] admits a continuous version, the process M(·, L) has
finite quadratic variation and [M(·, L),M(·, L)] = [M(·, x),M(·, x)]x=L .

3.3.4. Chain rule formula

We conclude this section by proving the associative property of forward integrals
for the processes studied in this part of the paper.

Proposition 3.35. Let h and k be respectively in Ap,γp and Aq,γq , with p > 1,

q > p
p−1 , γp >

d(q+p)
q , γq >

d(q+p)
p . Let N be a continuous F-local martingale.

Then x 7→
∫ ·

0
k(t, x)d−

∫ t
0
h(s, x)dNs =

∫ ·
0
h(t, x)k(t, x)dNs admits a continuous

version,
∫ ·

0
k(t, L)d−

∫ t
0
h(s, L)d−Ns exists as limit ucp of its regularizations and

∫ ·

0

k(t, L)d−
∫ t

0

h(s, L)dNs =

∫ ·

0

k(t, L)h(t, L)d−Nt.

Proof. By point 3. of lemma 3.27 we know that
∫ ·

0
h(t, x)dNt belongs to Ap,γp .

Then, by proposition 3.30, x 7→
∫ ·

0
k(t, x)d

∫ t
0
h(s, x)dNs =

∫ ·
0
k(t, x)h(t, x)dNt

admits a continuous version and
∫ ·

0

k(t, L)d−
∫ t

0

h(s, L)dNs =

(∫ ·

0

k(t, x)d−
∫ t

0

h(s, x)dNs

)

x=L

=

(∫ ·

0

k(t, x)h(t, x)dNt

)

x=L

.
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Point 2. of lemma 3.27 again shows that hk satisfies the hypotheses of corollary
3.31. As a consequence of of this

∫ ·

0

h(t, L)k(t, L)d−Nt =

(∫ ·

0

k(t, x)h(t, x)dNt

)

x=L

,

and we achieve the end of the proof.

Definition 3.36. 1. For p > 1 and γ > d, we define Ap,γ(L) as the set of
all processes (h(t, L), 0 ≤ t ≤ 1) with h belonging to Ap,γ .

2. S(Ap,γ(L)) will be the set of all processes h = h0I{0} +
∑m
i=1 h

iI(ti−1,ti]

where 0 = t0 ≤ t1, · · · , tm = 1, and hi belongs to Ap,γ(L) for i = 1, ...,m.

Using similar arguments employed in the proof of proposition 3.7, it is possible
to demonstrate the following one.

Proposition 3.37. Let N be a continuous F-local martingale and h be a process
in S(Ap,γ(L)) for some p > 1, and γ > d. Then the following statements are
true.

1. h is N -forward integrable and the forward integral
∫ ·

0
htd
−Nt still belongs

to S(Ap,γ(L)).
2. If p > 2 and γ > 2d,

∫ ·
0
htd
−Nt has finite quadratic variation equal to∫ ·

0
h2
td [N ]t .

3. If k belongs to S(Aq,γq (L)) with q > p
p−1 , γp >

d(p+q)
q and γq >

d(p+q)
p ,

then k is forward integrable with respect to
∫ ·

0
htd
−Nt and

∫ ·

0

ktd
−
∫ t

0

hsd
−Ns =

∫ ·

0

kthtd
−Nt.

4. A-martingales

Throughout this section A will be a real linear set of measurable processes
indexed by [0, 1) with paths which are bounded on each compact interval of
[0, 1).

We will denote with F = (Ft)t∈[0,1] a filtration indexed by [0, 1] and with P(F)
the σ-algebra generated by all left continuous and F-adapted processes. In the
remainder of the paper we will adopt the notations F and P(F) even when the
filtration F is indexed by [0, 1). At the same way, if X is a process indexed by
[0, 1], we shall continue to denote with X its restriction to [0, 1).

4.1. Definitions and properties

Definition 4.1. A process X = (Xt, 0 ≤ t ≤ 1) is said A-martingale if every

θ in A is X-improperly forward integrable and E
[∫ t

0
θsd
−Xs

]
= 0 for every

0 ≤ t ≤ 1.
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Definition 4.2. A process X = (Xt, 0 ≤ t ≤ 1) is said A-semimartingale
if it can be written as the sum of an A-martingale M and a bounded variation
process V, with V0 = 0.

Remark 4.3. 1. If X is a continuous A-martingale with X belonging to
A, its quadratic variation exists improperly. In fact, if

∫ ·
0
Xtd

−Xt ex-
ists improperly, it is possible to show that [X,X] exists improperly and
[X,X] = X2 −X2

0 − 2
∫ ·

0
Xsd

−Xs. We refer to proposition 4.1 of [28] for
details.

2. Let X a continuous square integrable martingale with respect to some fil-
tration F. Suppose that every process in A is the restriction to [0, 1) of a
process (θt, 0 ≤ t ≤ 1) which is F-adapted, it has left continuous with right

limit paths and E
[∫ 1

0
θ2
t d [X]t

]
< +∞. Then X is an A-martingale.

3. In [13] the authors introduced the notion of weak-martingale. A semi-

martingale X is a weak-martingale if E
[∫ t

0
f(s,Xs)dXs

]
= 0, 0 ≤ t ≤ 1,

for every f : R+×R→ R, bounded Borel-measurable. Clearly we can affirm
the following. Suppose that A contains all processes of the form f(·, X),
with f as above. Let X be a semimartingale X which is an A-martingale.
Then X is a weak-martingale.

Proposition 4.4. Let X be a continuous A-martingale. The following state-
ments hold true.

1. If X belongs to A, X0 = 0 and [X,X] = 0. Then X ≡ 0.
2. Suppose that A contains all bounded P(F)-measurable processes. Then X

is an F-martingale.

Proof. From point 1. of remark 4.3, E
[
X2
t

]
= 0, for all 0 ≤ t ≤ 1.

Regarding point 2. it is sufficient to observe that processes of type IAI(s,t], with

0 ≤ s ≤ t ≤ 1, and A in Fs belong to A. Moreover
∫ 1

0
IAI(s,t](r)d

−Xr =
IA(Xt −Xs). This imply E[Xt −Xs | Fs] = 0, 0 ≤ s ≤ t ≤ 1.

Corollary 4.5. The decomposition of an A-semimartingale X in definition 4.2
is unique among the class of processes of type M + V, being M a continuous
A-martingale in A and V a bounded variation process.

Proof. If M+V and N+W are two decompositions of that type, then M−N is
a continuous A-martingale in A starting at zero with zero quadratic variation.
Point 1. of proposition 4.4 permits to conclude.

The following proposition gives sufficient conditions for an A-martingale to be
a martingale with respect to some filtration F, when A is made up of P(F)-
measurable processes. It constitutes a generalization of point 2. in proposition
4.4.

Definition 4.6. We will say that A satisfies assumption D with respect to a
filtration F if
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1. Every θ in A is F-adapted;
2. For every 0 ≤ s < 1 there exists a basis Bs for Fs, with the following prop-

erty. For every A in Bs there exists a sequence of Fs-measurable random
variables (Θn)n∈N, such that for each n the process ΘnI[0,1) belongs to A,
supn∈N |Θn| ≤ 1, almost surely and

lim
n→+∞

Θn = IA, a.s.

Proposition 4.7. Let X = (Xt, 0 ≤ t ≤ 1) be a continuous A-martingale
adapted to some filtration F, with Xt belonging to L1(Ω) for every 0 ≤ t ≤ 1.
Suppose that A satisfies assumption D with respect to F. Then X is an F-
martingale.

Proof. We have to show that for all 0 ≤ s ≤ t ≤ 1, E [IA (Xt −Xs)] = 0, for
all A in Fs. We fix 0 ≤ s < t ≤ 1 and A in Bs. Let (Θn)n∈N be a sequence of
random variables converging almost surely to IA as in the hypothesis. Since X
is an A-martingale, E [Θn (Xt −Xs)] = 0, for all n in N. We note that Xt −Xs

belongs to L1(Ω), then, by Lebesgue dominated convergence theorem,

|E [IA (Xt −Xs)]| ≤ lim
n→+∞

E [|IA −Θn| |Xt −Xs|] = 0.

Previous result extends to the whole σ-algebra Fs and this permits to achieve
the end of the proof.

Some interesting properties can be derived taking inspiration from [13].

For a process X, we will denote

AX = {(ψ(t,Xt)), 0 ≤ t < 1 | ψ : [0, 1]× R→ R, Borel-measurable (8)

with polynomial growth and lower bounded} .

Remark 4.8. At this stage we could avoid to impose a lower bound on functions
in AX . Nevertheless, we prefer to consider this qualitative restriction in view
of further applications to finance. Indeed, AX will play the role of a possible
class of admissible portfolios and we are interested in excluding among them
the so called doubling strategies. Generally speaking, a doubling strategy is an
arbitrage which can be realized if unbounded accumulation of losses are allowed.
For more details about this arguments the reader is referred to Harrison and
Pliska (1979).

Proposition 4.9. Let X be a continuous A-martingale with A = AX .
Then, for every ψ in C2(R) with bounded first and second derivatives, the process

ψ(X)− 1

2

∫ ·

0

ψ′′(Xs)d [X,X]s

is an A-martingale.
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Proof. The process X belongs to A. In particular, X admits improper quadratic
variation. We set Y = ψ(X) − 1

2

∫ ·
0
ψ′′(Xs)d [X,X]s . Let θ in AX . By lemma

2.12, for every 0 ≤ t < 1
∫ t

0

θsd
−Ys =

∫ t

0

θsψ
′(Xs)d

−Xs.

Since θψ′(X) still belongs to A, θ is Y -improperly integrable and
∫ ·

0

θtd
−Yt =

∫ ·

0

θtψ
′(Xt)d

−Xt. (9)

We conclude taking the expectation in equality (9).

Proposition 4.10. Suppose that A is an algebra. Let X and Y be two contin-
uous A-martingales with X and Y in A.
Then the process XY − [X,Y ] is an A-martingale .

Proof. Since A is a real linear space, (X + Y ) belongs to A. In particular by
point 1. of remark 4.3, [X + Y,X + Y ] , [X,X] and [Y, Y ] exist improperly. This
implies that [X,Y ] exists improperly too and that it is a bounded variation
process. Therefore the vector (X,Y ) admits all its mutual brackets on each
compact set of [0, 1). Let θ be in A. Since A is an algebra, θX and θY belong
to A and so both

∫ ·
0
θsXsd

−Ys and
∫ ·

0
θsYsd

−Xs locally exist. By lemma 2.12∫ ·
0
θtd
− (XtYt − [X,Y ]) exists improperly too and
∫ ·

0

θtd
− (XtYt − [X,Y ]t) =

∫ ·

0

Ytθtd
−Xt +

∫ ·

0

Xtθtd
−Yt.

Taking the expectation in the last expression we then get the result.

We recall a notion and a related result of [6].

A process R is strongly predictable with respect to a filtration F, if

∃ δ > 0, such that Rε+· is F-adapted, for every ε ≤ δ.
Proposition 4.11. Let R be an F-strongly predictable continuous process. Then
for every continuous F-local martingale Y, [R, Y ] = 0.

Proposition 4.11 combined with proposition 4.10 implies proposition 4.12 and
corollary 4.13.

Proposition 4.12. Let A, X and Y be as in proposition 4.10. Assume, more-
over, that X is an F-local martingale, and that Y is strongly predictable with
respect to F. Then XY is an A-martingale.

Corollary 4.13. Let A, X and Y be as in proposition 4.10. Assume that X
is a local martingale with respect to some filtration G and that Y is either F-
independent, or G0-measurable. Then XY is an A-martingale.

Proof. If Y is G-independent, it is sufficient to apply previous proposition with
F =

(⋂
ε>0 Gt+ε ∨ σ(Y )

)
t∈[0,1]

.

imsart ver. 2006/01/04 file: NSModelsJune06.tex date: June 26, 2006



28 Rosanna Coviello and Francesco Russo

4.2. A-martingales and Weak Brownian motion

We proceed defining and discussing processes which are weak-Brownian motions
in order to exhibit explicit examples of A-martingales.

Definition 4.14. ([13]) A stochastic process (Xt, 0 ≤ t ≤ 1) is a weak Brow-
nian motion of order k if for every k-tuple (t1, t2, ..., tk)

(Xt1 , Xt2 , . . . , Xtk)
law
= (Wt1 ,Wt2 , . . . ,Wtk)

where (Wt, 0 ≤ t ≤ 1) is a Brownian motion.

We set, for a process (Xt, 0 ≤ t ≤ 1),

A1
X = {(ψ(t, x), 0 ≤ t ≤ 1, with polynomial growth s.t ψ = ∂xΨ

Ψ ∈ C1,2([0, 1]× R) with |∂tΨ|+ |∂xxΨ| bounded
}
.

Assumption 4.15. We suppose that σ : [0, 1] × R → R is a Borel-measurable
and bounded function such that the following equation has a unique solution
(νt)t∈[0,1] in the sense of distribution

{
∂tνt(dx) = 1

2

(
σ(t, x)2νt(dx)

)′′

ν0(dx) = δ0.
(10)

Remark 4.16. Assumption 4.15 is verified for σ(t, x) ≡ σ, being σ a positive
real constant and, in that case, νt = N(0, σ2t), for every 0 ≤ t ≤ 1.

Proposition 4.17. Let (Xt, 0 ≤ t ≤ 1) be a continuous finite quadratic varia-
tion process with X0 = 0, and d [X]t = (σ(t,Xt))

2dt, where σ fulfills assumption
4.15. Then the following statements are true.

1. Suppose that A = A1
X . Then X is an A-martingale if and only if, for

every 0 ≤ t ≤ 1, Xt
law
= Zt, for every (Z,B) solution of equation dZ =

σ(·, Z)dB,Z0 = 0, in the sense of definition 1.2 in chapter IX of [23]. In
particular, if σ ≡ 1, X is a weak Brownian motion of order 1, if and only
if it is an A1

X-martingale.
2. Suppose that d [X]t = ftdt, with f B([0, 1])-measurable and bounded. If X

is a weak Brownian motion of order k = 1, then X is an A-semimartingale.
Moreover the process

X +

∫ ·

0

(1− fs)Xs

2s
ds.

is an A-martingale.

Proof. 1. Using Itô inverse formula recalled in proposition 2.11 we can write,
for every 0 ≤ t ≤ 1 and ψ = ∂xΨ in A1

X

∫ t

0

ψ(s,Xs)d
−Xs = Ψ(t,Xt)−Ψ(0, X0)

−
∫ t

0

(
∂sΨ +

1

2
∂(2)
xx Ψσ2

)
(s,Xs)ds. (11)

imsart ver. 2006/01/04 file: NSModelsJune06.tex date: June 26, 2006



29

For every 0 ≤ t ≤ 1, we denote with µt(dx) the law of Xt. If X is an
A1
X -martingale, from (11) we derive

0 =

∫

R
Ψ(t, x)dµt(x)−

∫

R
Ψ(0, x)µ0(dx)−

∫ t

0

∫

R
∂sΨ(s, x)µs(dx)ds

− 1

2

∫ t

0

∫

R
∂(2)
xx Ψ(s, x)σ(s, x)2µs(dx)ds. (12)

In particular, the law of X solves equation (10).
On the other hand, let (Z,B) be a solution of equation Z =

∫ ·
0
σ(s, Zs)dBs.

The law of Z fulfills equation (12) too. Indeed, Z is a finite quadratic
variation process with d [Z]t = (σ(t, Zt))

2dt which is an A1
X -martingale

by point 2. of remark 4.3. By assumption (4.15) Xt must have the same
law of Zt. This establishes the converse implication of point 1.
Suppose, on the contrary, that Xt has the same law of Zt, for every 0 ≤
t ≤ 1. Using the fact that Z is an A1

X -martingale which solves equation
(11) we get

E
[
Ψ(t, Zt)−Ψ(0, Z0)−

∫ t

0

(
∂sΨ +

1

2
∂(2)
xx Ψσ2

)
(s,Xs)ds

]
= 0.

for every Ψ in C1,2([0, 1]×R) with ∂xΨ = ψ in A1
X . Since Xt has the same

law of Zt, for every 0 ≤ t ≤ 1, equality (11) implies that

E
[∫ ·

0

ψ(t,Xt)d
−Xt

]
= E

[∫ ·

0

ψ(t, Zt)d
−Zt

]
= 0,

The proof of the first point is now achieved.
2. Suppose that σ(t, x)2 = ft, for every (t, x) in [0, 1] × R. Let Ψ be in
C1,2 ([0, 1]× R) such that ψ = ∂xΨ belongs to A1

X . Proposition 2.11 yields
∫ t

0

ψ(s,Xs)d
−Xs = Y Ψ

t +
1

2

∫ t

0

∂(2)
xx Ψ(s,Xs)(1− fs)ds, 0 ≤ t ≤ 1,

with

Y Ψ
t = Ψ(t,Xt)−Ψ(0, X0)−

∫ t

0

∂sΨs(s,Xs)ds−
1

2

∫ t

0

∂(2)
xx Ψ(s,Xs)ds.

Moreover X is a weak Brownian motion of order 1. This implies E
[
Y Ψ
t

]
=

0, for every 0 ≤ t ≤ 1. We derive that

E
[∫ t

0

ψ(s,Xs)d
−Xs +

1

2

∫ t

0

∂(2)
xx Ψ(s,Xs)(fs − 1)ds

]
= E

[
Y Ψ
t

]
= 0.

Since the law of Xt is N(0, t), by Fubini theorem and integration by parts
on the real line we obtain

E
[∫ t

0

∂(2)
xx Ψ(s,Xs)(fs − 1)ds

]
= E

[∫ t

0

ψ(s,Xs)
(1− fs)Xs

s
ds

]
.

This concludes the proof of the second point.
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From [13] we can extract an example of an A-semimartingale which is not a
semimartingale.

Example 4.18. Suppose that (Bt, 0 ≤ t ≤ 1) is a Brownian motion on the prob-
ability space (Ω,G, P ) , being G some filtration on (Ω,F , P ). Set

Xt =

{
Bt, 0 ≤ t ≤ 1

2

B 1
2

+ (
√

2− 1)Bt− 1
2
, 1

2 < t ≤ 1.

Then X is a continuous weak Brownian motion of order 1, which is not a G-
semimartingale. Moreover it is possible to show that d [X]t = ftdt, with f =

I[0, 12 ] + (
√

2− 1)2I[ 1
2 ,1]. In particular, thanks to point 2. of previous proposition,

X +
∫ ·

0
(1−fs)Xs

2s ds is an A1
X-martingale.

A natural question is the following. Supposing that X is an A-martingale with
respect to a probability measure Q equivalent to P, what can we say about the
nature of X under P ?. The following proposition provides a partial answer to
this problem when A = A1

X .

Proposition 4.19. Let X be as in proposition 4.17, and σ satisfy assumption
4.15. Assume, furthermore, that X is an A1

X-martingale under a probability
measure Q with P << Q, Then the law of Xt is absolutely continuous with
respect to Lebesgue measure, for every 0 ≤ t ≤ 1.

Proof. Since P << Q, for every 0 ≤ t ≤ 1, Xt(P ) << Xt(Q). Then it is
sufficient to observe that by proposition 4.17, for every 0 ≤ t ≤ 1, the law of Xt

under Q is absolutely continuous with respect to Lebesgue.

Corollary 4.20. Let X be as in proposition 4.17, and σ satisfy assumption
4.15. Assume, furthermore, that X is an AX-martingale under a probability
measure Q with P << Q, Then the law of Xt is absolutely continuous with
respect to Lebesgue measure, for every 0 ≤ t ≤ 1.

Proof. Clearly A1
X is contained in AX . The result is then a consequence of

previous proposition.

Proposition 4.21. Let (Xt, 0 ≤ t ≤ 1) be a continuous weak Brownian motion
of order 8. Then, for every ψ : [0, 1]×R→ R, Borel measurable with polynomial
growth, the forward integral

∫ ·
0
ψ(t,Xt)d

−Xt, exists and

E
[∫ ·

0

ψ(t,Xt)d
−Xt,

]
= 0.

In particular, X is an AX-martingale.

Proof. Let ψ : [0, 1]× R → R be Borel measurable and t in 0 ≤ t ≤ 1 be fixed.
Set

IXε (t) = I(ε, ψ(·, X), X) IBε (t) = I(ε, ψ(·, B), B),

being B a Brownian motion on a filtered probability space (ΩB ,FB, PB).

imsart ver. 2006/01/04 file: NSModelsJune06.tex date: June 26, 2006



31

Since X is a weak Brownian motion of order 8, it follows that

E
[∣∣IXε (t)− IXδ (t)

∣∣4
]

= EP
B
[∣∣IBε (t)− IBδ (t)

∣∣4
]
, ∀ ε, δ > 0.

We show now that IBε (t) converges in L4(Ω). This implies that IXε (t) is of
Cauchy in L4(Ω).

In [29], chapter 3.5, it is proved that IBε (t) converges in probability when ε goes

to zero, and the limit equals the Itô integral
∫ t

0
ψ(s,Bs)dBs. Applying Fubini

theorem for Itô integrals, theorem 45 of [22], chapter IV and Burkholder-Davies-
Gundy inequality, we can perform the following estimate, for every p > 4 :

EP
B
[∣∣IBε (t)

∣∣p
]

= EP
B

[∣∣∣∣
∫ t

0

(
1

ε

∫ r

r−ε
ψ(s,Bs)ds

)
dBr

∣∣∣∣
p
]

≤ cEP
B

[∫ 1

0

1

ε

∫ r

r−ε
|ψ(s,Bs)|p dsdr

]

≤ c sup
t∈[0,1]

EP
B

[|ψ(t, Bt)|p] < +∞,

for some positive constant c. This implies the uniformly integrability of the fam-
ily of random variables

(
(IBε (t))4

)
ε>0

and therefore the convergence in L4(ΩB , PB)

of
(
IBε (t)

)
ε>0

.

Consequently,
(
IXε (t)

)
ε>0

converges in L4(Ω) toward a random variable I(t).

It is clear that E [I(t)] = 0, being I(t) the limit in L2(Ω) of random variables
having zero expectation.

To conclude we show that Kolmogorov lemma applies to find a continuous ver-
sion of (I(t), 0 ≤ t ≤ 1) . Let 0 ≤ s ≤ t ≤ 1. Applying the same arguments used
above

E
[
|I(t)− I(s)|4

]
= lim

ε→0
EP

B

[∣∣∣∣
∫ t

s

(
1

ε

∫ u+ε

u

ψ(u,Bu)dBr

)
du

∣∣∣∣
4
]

≤ cEP
B



∣∣∣∣∣

∫ t

s

(
1

ε

∫ r

r−ε
ψ(u,Bu)du

)2

dr

∣∣∣∣∣

2



≤ |t− s|EPB
[∫ t

s

1

ε

∫ r

r−ε
|ψ(u,Bu)|4 dudr

]

≤ sup
u∈[0,1]

EP
B
[
|ψ(u,Bu)|4

]
|t− s|2 , c > 0.
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4.3. Optimization problems and A-martingale property

4.3.1. Gâteaux-derivative: recalls

In this part of the paper we recall the notion of Gâteaux differentiability and
we list some related properties.

Definition 4.22. A function f : A → R is said Gâteaux-differentiable at
π ∈ A, if there exists Dfπ : A → R such that

lim
ε→0

f(π + εθ)− f(π)

ε
= Dfπ(θ), ∀θ ∈ A.

If f is Gâteaux-differentiable at every π ∈ A, then f is said Gâteaux-differentiable
on A.

Definition 4.23. Let f : A → R. A process π is said optimal for f in A if

f(π) ≥ f(θ), ∀θ ∈ A.

We state this useful lemma omitting its straightforward proof.

Lemma 4.24. Let f : A → R. For every π and θ in A define fπ,θ : R −→ R in
the following way:

fπ,θ(λ) = f(π + λ(θ − π)).

Then it holds:

1. f is Gâteaux-differentiable if and only if for every π and θ in A, fπ,θ is
differentiable on R. Moreover f ′π,θ(λ) = Dfπ+λ(θ−π)(θ − π).

2. f is concave if and only if fπ,θ is concave for every π and θ in A.

Proposition 4.25. Let f : A → R be Gâteaux-differentiable. Then, if π is
optimal for f in A, Dfπ = 0. If f is concave

π is optimal for f in A ⇐⇒ Dfπ = 0.

Proof. It is immediate to prove that π is optimal for f if and only if λ = 0 is a
maximum for fπ,θ, for every θ in A. By lemma 4.24 f

′
π,θ(0) = Dfπ(θ), for every

θ in A. The conclusion follows easily.

4.3.2. An optimization problem

In this part of the paper F will be supposed to be a measurable function on
(Ω×R,F⊗B(R)), almost surely in C1(R), strictly increasing, with F ′ being the
derivative of F with respect to x, bounded on R, uniformly in Ω. In the sequel
ξ will be a continuous finite quadratic variation process with ξ0 = 0.

The starting point of our construction is the following hypothesis.
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Assumption 4.26. 1. If θ belongs to A, then θI[0,t] belongs to A for every
0 ≤ t < 1.

2. Every θ in A ξ-improperly forward integrable, and

E
[∣∣∣∣
∫ 1

0

θtd
−ξt

∣∣∣∣+

∣∣∣∣
∫ 1

0

θ2
t d[ξ]t

∣∣∣∣
]
< +∞.

Definition 4.27. Let θ be in A. We denote

Lθ =

∫ 1

0

θtd
−ξt −

1

2

∫ 1

0

θ2d[ξ]t, dQθ =
F ′(Lθ)
E [F ′(Lθ)]

and we set f(θ) = E
[
F (Lθ)

]
.

We observe that point 2. of assumption 4.26 and the boundedness of F ′ implies
that E

[∣∣F (Lθ)
∣∣] < +∞. Therefore f is well defined.

Remark 4.28. Point 2. of assumption 4.26 implies that E [|ξt|+ [ξ]t] ≤ +∞,
for every 0 ≤ t ≤ 1. This is due to the fact that A must contain real constants.

We are interested in describing a link between the existence of an optimal process
for f in A and the A-semimartingale property for ξ under some probability
measure equivalent to P, depending on the optimal process.

Lemma 4.29. The function f is Gâteaux-differentiable on A. Moreover for
every π and θ in A

Dfπ(θ) = E
[
F ′(Lπ)

∫ 1

0

θtd
−
(
ξt −

∫ t

0

πsd [ξ]s

)]
.

If F is concave, then f inherits the property.

Proof. Regarding the concavity of f, we recall that if F is increasing and con-
cave, it is sufficient to verify that, for every θ and π in A, it holds

Lπ+λ(θ−π) − Lπ − λ
(
Lθ − Lπ

)
≥ 0, 0 ≤ λ ≤ 1.

A short calculus shows that, for every 0 ≤ λ ≤ 1,

Lπ+λ(θ−π) − Lπ − λ
(
Lθ − Lπ

)
=

1

2
λ(1− λ)

∫ 1

0

(θt − πt)2d [ξ]t ≥ 0.

Using the differentiability of F we can write

aε =
1

ε
(f(π + εθ)− f(π)) = E

[
Hε
π,θ

∫ 1

0

F ′
(
Lπ + µεHε

π,θ

)
dµ

]
,

with

Hε
π,θ =

∫ 1

0

θtd
−ξt −

1

2

∫ 1

0

(θ2
t ε+ 2θtπt)d [ξ]t .

The conclusion follows by Lebesgue dominated convergence theorem, which ap-
plies thanks to the boundedness of F ′ and point 2. in assumption 4.26.
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Putting together lemma 4.29 and proposition 4.25 we can formulate the follow-
ing.

Proposition 4.30. If a process π in A is optimal for θ 7→ E
[
F
(
Lθ
)]
, then the

process ξ−
∫ ·

0
πtd [ξ]t is an A-martingale under Qπ. If F is concave the converse

holds.

Proof. Thanks to lemma 4.29 and point 1. in assumption 4.26, for every θ in A
and 0 ≤ t ≤ 1

0 = Dfπ(θI[0,t]) = E
[
F ′(Lπ)

∫ t

0

θsd
−
(
ξs −

∫ s

0

πrd [ξ]r

)]

= EQ
π

[∫ t

0

θsd
−
(
ξs −

∫ s

0

πrd [ξ]r

)]
.

The following proposition describes some sufficient conditions to recover the
semimartingale property for ξ with respect to a filtration G on (Ω,F), when the
set A is made up of G-adapted processes. It can be proved using proposition
4.7.

Proposition 4.31. Assume that ξ is adapted with respect to some filtration G
and that A satisfies the hypothesis D with respect to G. If a process π in A is
optimal for θ 7→ E

[
F (Lθ)

]
, then the process ξ −

∫ ·
0
βtd [ξ]t is a G-martingale

under P, where β = π + 1
pπ

d[pπ,ξ]
d[ξ,ξ] , and pπ = E

[
dP
dQπ | G·

]
. If F is concave, then

the converse holds.

Proof. Thanks to point 2. of assumption 4.26, for every 0 ≤ t < 1, the random
variable ξt −

∫ t
0
πtd [ξ]t is in L1 (Ω) and so in L1 (Ω, Qπ) being dQπ

dP bounded.

Then proposition 4.7 applies to state that ξ−
∫ ·

0
πtd [ξ]t is a G-martingale under

Qπ. Using Girsanov theorem, chapter 6 of [22], we get the necessity condition.
As far as the converse is concerned, we observe that, thanks to the hypotheses
on A, if ξ −

∫ ·
0
πtd [ξ]t is a G-martingale, then for every θ in A, the process

∫ ·
0
θtd
−
(
ξt −

∫ t
0
πsd [ξ]s

)
is a G-martingale starting at zero with zero expecta-

tion. This concludes the proof.

Proposition 4.32. Suppose that there exists a measurable process (γt, 0 ≤ t ≤
1) such that the process ξ−

∫ ·
0
γtd [ξ]t is an A-martingale. Assume, furthermore,

the existence of a sequence of processes (θn)n∈N ⊂ A with

lim
n→+∞

E
[∫ 1

0

|θnt − γt|2 d [ξ]t

]
= 0.

If γ belongs to A then γ is optimal for θ 7→ E
[
Lθ
]
. Moreover if there exists an

optimal process π, then d |[ξ]| {t ∈ [0, 1), γt 6= πt} = 0, almost surely.
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Proof. Using proposition 4.30 we deduce that a process π is optimal for f if
and only if the process

∫ ·
0
(γt − πt)d [ξ]t is an A-martingale under P. Then π is

optimal if and only if for every θ is in A it holds: E
[∫ ·

0
θt(γt − πt)d [ξ]t

]
= 0.

This permits to achieve immediately the end of the proof.

4.3.3. An example of A-martingale and a related optimization problem

We illustrate a setting where proposition 4.32 applies. It will be deduced by [18].
In that paper the authors study a particular case of the optimization problem
considered in proposition 4.32. As process ξ they take a Brownian motion W,
and they find sufficient conditions in order to have existence of a process γ
such that W −

∫ ·
0
γtdt is an A-martingale, being A some specific set we shall

clarify later. To get their goal, they consider an anticipating setting and combine
Malliavin calculus with substitution formulae, the anticipation being generated
by a random variable possibly depending on the whole trajectory of W.

We work into the specific framework of subsection 3.2.

Assumption 4.33. We suppose the existence of a random variable L in D1,2,
satisfying the following assumption:

1.
∫
R E
[
|L|2 I{0≤x≤L}∪{0≥x≥L}

]
dx < +∞;

2. for a.a. t in [0, 1] the process

I(·, t, L) := I[t,1](·)I{R 1
t

(DsL)2ds>0}
(∫ 1

t

(DsL)2ds

)−1

(DtL)(D·L)

belongs to Domδ and there exists a P(F)×B(R)-measurable random field
(h(t, x), 0 ≤ t ≤ 1, x ∈ R) such that h(·, L) belongs to L2 (Ω× [0, 1]) and

E
[∫ 1

0

I(u, t, L)dWu | Ft ∨ σ(L)

]
= h(t, L), 0 ≤ t ≤ 1.

Let Θ(L) be the set of processes (θt, 0 ≤ t < 1) such that there exists a random
field (u(t, x), 0 ≤ t ≤ 1, x ∈ R) with θt = u(t, L), 0 ≤ t < 1 and





u(t, ·) ∈ C1(R) ∀ 0 ≤ t ≤ 1.

∫ n
−n
∫ 1

0
(∂xu(t, x))2dtdx < +∞, ∀n ∈ N a.s..

E
[∫
R

(∫ 1

0
(∂xu(t, x))2dt

)2

dx+
∫ 1

0
(u(t, 0))2dt

]
< +∞.

E
[∫ 1

0
(∂xu(t, L))2(DtL)2dt+

(∫ 1

0
(∂xu(t, L))2dt

)(∫ 1

0
(DtL)2dt

)]
< +∞.

Suppose that A equals Θ(L). With the specifications above we have the follow-
ing.
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Corollary 4.34. Let b be a process in L2(Ω×[0, 1]), such that h(·, L)+b belongs
to the closure of A in L2(Ω× [0, 1]). There exists an optimal process π in A for
the function

θ 7→ E
[∫ 1

0

θtd
−
(
Wt +

∫ t

0

bsds

)
− 1

2

∫ 1

0

θ2
t dt

]

if and only if h(·, L) + b belongs to A and h(·, L) + b = π.

Proof. It is clear that A is a real linear set of measurable and with bounded
paths processes verifying condition 1. of assumption 4.26. Proposition 2.8 of [18]
shows that every θ in A is in L2(Ω × [0, 1]), that it is W -improperly forward
integrable and that the improper integral belongs to L2(Ω). In particular, con-
dition 2. of assumption 4.26 is verified. Furthermore, the proof of theorem 3.2 of
[18] implicitly shows that the process W −

∫ ·
0
h(t, L)dt, is a A-martingale. This

implies that W +
∫ ·

0
btdt−

∫ ·
0
γtdt, with γ = h(·, L) + b, is an A-martingale. The

end of the proof follows then by proposition 4.32.

5. The market model

We consider a market offering two investing possibilities in the time interval
[0, 1]. Prices of the two traded assets follow the evolution of two stochastic
processes

(
S0
t , 0 ≤ t ≤ 1

)
and (St, 0 ≤ t ≤ 1) . We assume that

S0 = (exp(Vt), 0 ≤ t ≤ 1) ,

where (Vt, 0 ≤ t ≤ 1) is a positive process starting at zero with bounded varia-
tion, and S is a continuous strictly positive process, with finite quadratic vari-
ation.

Remark 5.1. If V =
∫ ·

0
rsds, being (rt, 0 ≤ t ≤ 1) the short interest rate, S0

represents the price process of the so called money market account. Here we do
not assume that V is a riskless asset, being that assumption not necessary to
develop our calculus. We only suppose that S0 is less risky then S.

Assuming that S has a finite quadratic variation is not restrictive at least for
two reasons.

Consider a market model involving an inside trader: that means an investor
having additional informations with respect to the honest agent. Let F and G
be the filtrations representing the information flow of the honest and the inside
investor, respectively. Then it could be worthwhile to demand the absence of free
lunches with vanishing risk (FLVR) among all simple F-predictable strategies.
Under the hypothesis of absence of (FLVR), by theorem 7.2, page 504 of [7], S
is a semimartingale on the underlying probability space (Ω, P,F). On the other
hand S could fail to be a G-semimartingale, since (FLVR) possibly exist for the
insider. Nevertheless, the inside investor is still allowed to suppose that S has
finite quadratic variation thanks to proposition 2.7.
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Secondly, as already specified in the introduction, if we want to include S as a
self-financing-portfolio, we have to require that

∫ ·
0
Sd−S exists. This is equivalent

to assume that S has finite quadratic variation, see proposition 4.1 of [28].

5.1. Portfolio strategies

We assume the point of view of an investor whose flow of information is modeled
by a filtration G= (Gt)t∈[0,1] of F , which satisfies the usual assumptions.

We denote with C−b ([0, 1)) the set of processes which have paths being left
continuous and bounded on each compact set of [0, 1).

Definition 5.2. A portfolio strategy is a couple of G-adapted processes φ =((
h0
t , ht

)
, 0 ≤ t < 1

)
. The market value X of the portfolio strategy φ is the so

called wealth process X = h0S0 + hS.

We stress that there is no point in defining the portfolio strategy at the end of
the trading period, that is for t = 1. Indeed, at time 1, the agent has to liquidate
his portfolio.

Definition 5.3. A portfolio strategy φ =
(
h0, h

)
is self-financing if both h0

and h belong to C−b ([0, 1)), the process h is locally S-forward integrable and its
wealth process X verifies

X = X0 +

∫ ·

0

h0
tdS

0
t +

∫ ·

0

htd
−St. (13)

The interpretation of the first two items is straightforward: h0 and h repre-
sent, respectively, the number of shares of S0 and S held in the portfolio; X is
its market value. The self-financing condition (13) seems to be an appropriate
formalization of the intuitive idea of trading strategy not involving exogenous
sources of money. Among its justifications we can include the following ones.

As already explained in the introduction, the discrete time version of condition
(13) reads as the classical self-financing condition. Furthermore, if S is a G-
semimartingale, forward integrals of G-adapted processes with left continuous
and bounded paths, agree with classical Itô integrals, see proposition 2.8 and
2.7.

In the sequel we will choose as numéraire the positive process S0. That means
that prices will be expressed in terms of S0. We will denote with Ỹ the value of a
stochastic process (Yt, 0 ≤ t ≤ 1) discounted with respect to S0 : Ỹt = Yt(S

0
t )−1,

for every 0 ≤ t ≤ 1.

The following lemma shows that, as well as in a semimartingale model, a port-
folio strategy which is self-financing is uniquely determined by its initial value
and the process representing the number of shares of S held in the portfolio.
We remark that previous definitions and considerations can be made without
supposing that the investor is able to observe prices of S and S0. However, we
need to make this hypothesis for the following characterization of self-financing
portfolio strategies.
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Assumption 5.4. From now on we suppose that S and S0 are G-adapted pro-
cesses.

Lemma 5.5. Let φ =
((
h0
t , ht

)
, 0 ≤ t < 1

)
be a couple of G-adapted processes

in C−b ([0, 1)). Suppose that h is locally S-forward integrable. Then the portfolio

strategy φ is self-financing if and only if its discounted wealth process X̃ verifies

X̃ = X0 −
∫ ·

0

e−VthtStdVt +

∫ ·

0

e−Vtd−
∫ t

0

hsd
−Ss. (14)

On the other hand, let (ht, 0 ≤ t < 1) be a G-adapted process in C−b ([0, 1)), which
is locally S-forward integrable, and X0 be a G0-random variable. Then the couple

φ =
((

(Xt − htSt)(S0
t )−1, ht

)
, 0 ≤ t < 1

)
,

with X defined as in equality (14), is a self-financing portfolio strategy with
wealth process X.

Proof. Regarding the first part of the statement we observe that corollary 2.9
and equality X = h0B + hS imply the equivalence between equalities (14) and
(13).

Let h, X0 and X be as in the second part of the statement. It is clear that
h0 =

(
(Xt − htSt) (S0

t )−1, 0 ≤ t < 1
)

is G-adapted and belongs to C−b ([0, 1)).
By construction, the wealth process corresponding to the strategy φ = (h0, h)
is equal to X. The conclusion follows by the first part of the statement.

Remark 5.6. Suppose that (h0, h) is a self-financing portfolio strategy with h

locally forward integrable with respect to S̃. Corollary 2.9 and previous lemma
imply that its discounted wealth process X̃ can be also be rewritten in the fol-
lowing way

X̃ = X0 +

∫ ·

0

htd
−S̃t +R,

with

R =

∫ ·

0

e−Vtd−
∫ t

0

hsd
−Ss −

∫ ·

0

htd
−
∫ t

0

e−Vsd−Ss.

Lemma 5.5 leads to conceive the following definition.

Definition 5.7. 1. A self-financing portfolio is a couple (X0, h) of a G0-
measurable random variable X0, and a process h in C−b ([0, 1)) which is
G-adapted and locally S-forward integrable.

2. The discounted wealth process X̃ of the self financing portfolio (X0, h) ,
and the number of shares h0 of S0 held in that portfolio are given by

{
X̃ = X0 −

∫ ·
0
e−VthtStdVt +

∫ ·
0
e−Vtd−

∫ t
0
hsd
−Ss

h0 = (X − hS)(S0)−1.

3. In the sequel we let us employ the term portfolio to denote the process
h, in a self-financing portfolio, representing the number of shares of S
held. Without further specifications the initial wealth of an investor will be
assumed to be equal to zero.
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Lemma 5.5 and remark 5.6 immediately imply the following.

Corollary 5.8. Let (X0, h) be a self-financing portfolio such that h is locally

S̃-forward integrable and
∫ ·

0
e−Vtd−

∫ t
0
hsd
−Ss =

∫ ·
0
htd
− ∫ t

0
e−Vsd−Ss. Then its

discounted value X̃ verifies the equality X̃ = X0 +
∫ ·

0
hd−S̃.

Remark 5.9. If S is a G-semimartingale, the hypothesis required on h in pre-
vious remark is always verified. Indeed, forward integrals coincide with classical
Itô integrals for which the associative property holds true, see proposition 2.7.

Some conditions to insure the existence of chain-rule formulae, when the semi-
martingale property of the integrator process fails to hold, can be found in section
3. For more informations about this topic we also refer to [10] and [9].

Assumption 5.10. We assume the existence of a real linear space of portfolios
A, that is of G-adapted processes h belonging to C−b ([0, 1)), which are locally S-
forward integrable. The set A will represent the set of all admissible strategies
for the investor.

We proceed furnishing examples of sets behaving as the set A in assumption
5.10. They correspond to the examples discussed in section 3.

5.1.1. Admissible strategies via Itô fields

We refer the reader to subsection 3.1 for notations and definitions.

The following proposition is a straightforward consequence of proposition 3.7.

Proposition 5.11. Let A be the set of processes (ht, 0 ≤ t < 1) such that for
every 0 ≤ t < 1 the process in hI[0,t] belongs to S(C1

S(G)). Then A is a real
linear space satisfying the hypotheses of assumption 5.10.

5.1.2. Admissible strategies via Malliavin calculus

For this example we refer to subsection 3.2. We recall that there, W was a real
valued Wiener process defined on the canonical probability space (Ω,F,F , P ) .
Regarding the price of S we make the following assumption.

Assumption 5.12. We suppose that S = S0 exp
(∫ ·

0
σtdWt +

∫ ·
0

(
µt − 1

2σ
2
t

)
dt
)
,

where µ and σ are F-adapted, µ belongs to L1,q for some q > 4, σ has bounded
and left continuous paths, it belongs L1,2

− ∩ L2,2 and the random variable

sup
t∈[0,1]

(
|σt|+ sup

s∈[0,1]

|Dsσt| sup
s,u∈[0,1]

|DsDuσt|
)

is bounded.

Remark 5.13. By remark of page 32, section 1.2 of [19] σ is in L1,2
− and

D−σ = 0.
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Using remarks 3.9 and 3.12, lemma 3.15 and lemma 3.16, it is not difficult to
prove that the process log (S) belongs to L1,q

− .

Proposition 5.14. Let A be the set of all G-adapted processes h in C−b ([0, 1)),

such that for every 0 ≤ t < 1, the process hI[0,t] belongs to L1,p
− , for some p > 4.

Then A is a real linear space satisfying the hypotheses of assumption 5.10.

Proof. Let h be in A. We set A = log(S) − log(S0) + 1
2

∫ ·
0
σ2
t dt =

∫ ·
0
σtdWt +∫ ·

0
µtdt. We recall that, thanks to lemma 2.12, for every 0 ≤ t < 1, hI[0,t]

is S-forward integrable if and only if hI[0,t]S is forward integrable with re-
spect to A. Let 0 ≤ t < 1, be fixed. Each component of the vector process
u =

(
hI[0,t], log(S)

)
belongs to L1,p

− for some p > 4 and it has left continuous
and bounded paths. We can thus apply proposition 3.21 to state that hI[0,t]S

is forward integrable with respect to
∫ ·

0
σtdWt. This implies that hI[0,t]S is

A-forward integrable. Letting t vary in [0, 1) we find that h is S-improperly
integrable and we get the end of the proof.

5.1.3. Admissible strategies via substitution

We consider the setting of subsection 3.3. More precisely, we assume the ex-
istence of a filtration F = (Ft)t∈[0,1] on (Ω,F , P ) , with F1 = F , and of an

F-measurable random variable L with values in Rd such that Gt = (Ft ∨ σ(L)),
for every 0 ≤ t ≤ 1. We suppose that G is right continuous. We assume that S
and S0 are F-adapted, and that S is an F-semimartingale.

We observe that this situation arises when the investor trades as an insider,
that is having an extra information about prices, at time 0, represented by the
random variable L.

Proposition 5.15. Let A be the set of processes h such that, for every 0 ≤ t < 1,
the process hI[0,t] belongs to S(Ap,γ(L)), for some p > 1 and γ > d. Then A
satisfies the hypotheses of assumption 5.10.

Proof. Processes in A are clearly G-adapted and in C−b ([0, 1)). The end of the
proof is a consequence of proposition 3.37 and remark 3.28.

The following lemma shows that is not so reductive to restrict the class of
possible portfolio strategies to the collection of sets (S (Ap,γ(L)) , p > 1, γ > d).

Lemma 5.16. Let (πt, 0 ≤ t < 1) be a bounded PG-measurable process. Then
there exists a PF ⊗ B(R)-measurable function

(
h(t, x), 0 ≤ t < 1, x ∈ Rd

)
, such

that π = h(·, L), almost surely.

Proof. Define L0,PF as the set of all functions (h(t, x), 0 ≤ t < 1, x ∈ Rd) which
are PF ⊗ B(Rd)-measurable. Set

M =
{
u : Ω× [0, 1)→ R, | ∃h ∈ L0,PF , s.t. h(·, L) = u a.s.

}
.
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The setM is a monotone vector space, see definition in chapter 1 of [22]. Indeed,
it is a linear vector space of bounded real functions containing all constants and,
if (un)n∈N is an increasing sequence of positive random elements in M, with
u = supn∈N un bounded, then u belongs to M. In fact h = supnhn is still in

L0,PF and u = h(·, L). Consider the set SG of all PG-measurable processes of

the form u = I{0}h0(L)f0 +
∑k−2

i=0 I(ti,ti+1]hi(L)fi+ I(tk−1,1)hk−1(L)fk−1, where
0 = t0 < t1 < ... < tk = 1, and hi is B(R)-measurable and bounded, fi is Fti-
measurable and bounded, for every i = 0, ..., k. It is clear that SG is stable with
respect to multiplication. Moreover σ

(
SG
)

contains the σ-algebra generated by
all bounded and PG ⊗ B(Rd)-measurable function. We can thus apply theorem
8 of [22] to get the result.

5.2. Completeness and arbitrage: A-martingale measures

Definition 5.17. Let h be a self financing portfolio in A, which is S-improperly
forward integrable and X its wealth process. Then h is an A-arbitrage if X1 =
limt→1 Xt exists almost surely, P ({X1 ≥ 0}) = 1 and P ({X1 > 0}) > 0.

Definition 5.18. If there are no A-arbitrages we say that the market is A-
arbitrage free.

Definition 5.19. A probability measure Q ∼ P is said A-martingale mea-
sure if under Q the process S̃ is an A-martingale according to definition 4.1.

We will need the following assumption.

Assumption 5.20. Suppose that for all h in A the following conditions hold.

1. The process eV h belongs to A.
2. h is S̃-improperly forward integrable and

∫ ·

0

e−Vtd−
∫ t

0

hsd
−Ss =

∫ ·

0

hte
−Vtd−St =

∫ ·

0

htd
−
∫ t

0

e−Vsd−Ss. (15)

For the following proposition the reader should keep in mind the notation in
equality (8). We omit its proof which is a direct application of corollary 4.20.

Proposition 5.21. Let A = AS . Suppose that d [S]t = σ(t, St)
2dt, where σ

satisfies assumption 4.15. If there exists a A-martingale measure then the law of
S̃t is absolutely continuous with respect to Lebesgue measure, for every 0 ≤ t ≤ 1.

Proposition 5.22. Under assumption 5.20, if there exists an A-martingale
measure Q, the market is A-arbitrage free.

Proof. Suppose that h is an A-arbitrage. Since S̃ is an A-martingale under Q,

using corollary 5.8 we find EQ[X̃1] = EQ[
∫ 1

0
htd
−S̃t] = 0. This contradicts the

arbitrage condition Q({X1 > 0}) > 0.

The proposition which follows characterizes the set of allA-martingale measures.
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Proposition 5.23. Under assumption 5.20 the process S̃ is an A-martingale
under Q, if and only if the process S −

∫ ·
0
StdVt is an A-martingale under Q.

Proof. If h is in A by assumption 5.20 we have

EQ
[∫ ·

0

htd
−
(
St −

∫ t

0

SsdVs

)]
= EQ

[∫ ·

0

(hte
Vt)e−Vtd−

(
S −

∫ t

0

SsdVs

)]

= EQ
[∫ ·

0

(hte
Vt)d−

∫ t

0

e−Vsd−Ss

]

+ EQ
[∫ ·

0

(hte
Vt)d−

∫ t

0

Ssde
−Vs
]

= EQ
[∫ ·

0

(hte
Vt)d−S̃t

]
= 0.

We proceed discussing completeness.

Definition 5.24. A contingent claim is an F-measurable random variable.
L will be a set of F-measurable random variables; it will represent all the con-
tingent claims the investor is interested in.

Definition 5.25. 1. A contingent claim C is said A-attainable if there
exists a self financing portfolio (X0, h) with h in A, which is S-improperly
forward integrable, such that the corresponding wealth process X verifies
limt→1Xt = C, almost surely. The portfolio h is said the replicating or
hedging portfolio for C, X0 is said the replication price for C.

2. The market is said to be (A,L)-complete if every contingent claim in L
is attainable trough a portfolio in A.

Assumption 5.26. For every G0-measurable random variable η, and h in A
the process u = hη, belongs to A.
Proposition 5.27. Suppose that the market is A-arbitrage free, and that as-
sumption 5.26 is realized. Then the replication price of an attainable contingent
claim is unique.

Proof. Let (X0, h) and (Y0, k) be two replicating portfolios for a contingent
claim C, with h and k in A, and wealth processes X and Y , respectively. We
have to prove that

P ({X0 − Y0 6= 0}) = 0.

Suppose, for instance, that P (X0 − Y0 > 0) 6= 0. We set A = {X0 − Y0 > 0} .
By assumption 5.26, IA(k−h) is a portfolio inA with wealth process IA(Yt−Xt).
Since both (X0, h) and (Y0, k) replicate C, limt→1 IA(Yt −Xt) = IA(X0 − Y0),
with P ({IA(X0 − Y0 > 0)}) > 0. Then IA(k − h) is an A-arbitrage and this
contradicts the hypotheses.

Proposition 5.28. Suppose that there exists an A-martingale measure Q. Then
the following statements are true.
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1. Under assumptions 5.20 and 5.26, the replication price of an A-attainable

contingent claim C is unique and equal to EQ
[
C̃ | G0

]
.

2. Let G0 be trivial. If Q and Q1 are two A-martingale measures, then EQ[C̃] =

EQ1 [C̃], for every A-attainable contingent claim C. In particular, if the
market is (A,L)-complete and L is an algebra, all A-martingale measures
coincide on the σ-algebra generated by all bounded discounted contingent
claims in L.

Proof. Let (X0, h) be a replicating A-portfolio for C. By corollary 5.8

EQ
[
C̃ | G0

]
= X0 + EQ

[∫ 1

0

htd
−S̃t | G0

]
.

We observe that EQ
[∫ 1

0
htd
−S̃t | G0

]
= 0. In fact, if η is a G0-measurable ran-

dom variable, then, thanks to assumption 5.26, ηh belongs to A, so as to have

EQ
[(∫ 1

0
htd
−S̃t

)
η
]

= EQ
[∫ 1

0
ηhtd

−S̃t
]

= 0. This implies point 1.

If G0 is trivial, we deduce that, if Q and Q1 are two A-martingale measures,
EQ[C̃] = EQ1 [C̃], for every A-attainable contingent claim. The proof of the last
point is then an application of theorem 8, chapter 1 of [22].

5.3. Hedging

In this part of the paper we price contingent claims via partial differential equa-
tions. In particular we show robustness of Black-Scholes formula for European
and Asian contingent claims within a non-semimartingale model.

The following proposition generalizes a result obtained in a slight different form
in [33], when the process S is supposed to be the sum of a Wiener process and
a continuous process with zero quadratic variation.

We suppose here that d [S]t = σ(t, St)
2S2

t dt and dVt = rdt, with r > 0 and
σ : [0, 1]× (0,+∞)→ R.

Proposition 5.29. Let ψ be a function in C0(R). Suppose that there exists
(v(t, x), 0 ≤ t ≤ 1, x ∈ R) of class C1,2([0, 1) × R) ∩ C0([0, 1] × R), which is a
solution of the following Cauchy problem

{
∂tv(t, y) + 1

2 (σ̃(t, y))2y2∂
(2)
yy v(t, y) = 0 on [0, 1)× R

v(1, y) = ψ̃(y),
(16)

where {
σ̃(t, y) = σ(t, yert) ∀(t, y) ∈ [0, 1]× R,
ψ̃(y) = ψ(yer)e−r ∀y ∈ R.

Set
ht = ∂yv(t, S̃t), 0 ≤ t < 1, X0 = v(0, S0).

Then (X0, h) is a self-financing portfolio replicating the contingent claim ψ(S1).
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Proof. Assumption 5.4 tells us that h is a G-adapted process in C−b ([0, 1)). By

proposition 2.11, h is locally S̃-forward integrable. Combining lemma 2.12 and
proposition 2.11, it is possible to prove that

∫ ·

0

e−Vtd−
∫ t

0

hsd
−Ss =

∫ ·

0

hte
−Vtd−St =

∫ ·

0

htd
−
∫ t

0

e−Vsd−Ss.

Similar arguments were used in [10], corollary 23. Corollary 5.8 implies then
that its discounted wealth process verifies

X̃ = X0 +

∫ ·

0

hd−S̃. (17)

On the other hand by point 2. of proposition 3.7

[S̃] =

∫ ·

0

S̃2
s σ̃(s, S̃s)

2ds. (18)

Applying proposition 2.11, recalling equation (16), equalities (17) and (18) we
find that

X̃t = v(t, S̃t), ∀0 ≤ t < 1.

In particular X0 + limt→1

∫ t
0
hsd
−S̃s exists finite and coincides with v(1, S̃1) =

ψ̃(S̃1) = ψ(S1)e−r.

Remark 5.30. In particular, under some minimal regularity assumptions on
σ and no degeneracy, the market is (AS ,L)-complete, if L equals the set of all
contingent claims of type ψ(S1) with ψ in C0(R) with linear growth.

The result of proposition 5.29 can also be adapted to hedge Asian contingent
claims, that is contingent claims C depending on the mean of S over the traded

period: C = ψ
(

1
S1

(∫ 1

0
Stdt

))
, for some ψ in C0(R).

Proposition 5.31. Suppose that σ(t, x) = σ, for every (t, x) in [0, 1] × R, for
some σ > 0. Let ψ be a function in C0(R) and v(t, y) a continuous solution of
class C1,2([0, 1)× R) ∩ C0([0, 1]× R) of the following Cauchy problem

{
1
2σ

2y2∂
(2)
yy v(t, y) + (1− ry)∂yv(t, y) + ∂tv(t, y) = 0, on [0, 1)× R

v(1, y) = ψ(y).

Set Zt =
∫ t

0
Ssds − K, for some K > 0, X0 = v(0, KS0

)S0 and ht = v(t, ZtSt ) −
∂yv(t, ZtSt )ZtSt , for all 0 ≤ t ≤ 1. Then (X0, h) is a self-financing portfolio which

replicates the contingent claim ψ
(

1
S1

(∫ 1

0
Stdt−K

))
S1.

Proof. We set ξt = Zt
St
, 0 ≤ t ≤ 1. Applying proposition 2.11 to the function

u(t, z, s) = v(t, zse
−rt)s and using the equation fulfilled by v we can expand the

process (e−rtv(t, ξt)St, 0 ≤ t < 1) as follows:

u(t, Zt, S̃t) = v (t, ξt) S̃t = v (0, ξ0)S0 +

∫ t

0

htd
−S̃t. (19)
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By arguments which are similar to those used in the proof of previous propo-
sition, it is possible to show that h is a self-financing portfolio and that (19)

implies that u(t, Zt, S̃t) = X̃t for every 0 ≤ t < 1. Therefore limt→1 X̃t is finite
and equal to ψ (ξ1)S1e

−r. This concludes the proof.

5.4. Utility maximization

5.4.1. Formulation of the problem

We consider the problem of maximization of expected utility from terminal
wealth starting from initial capital X0 > 0, being X0 a G0-measurable random
variable. We define the function U(x) modeling the utility of an agent with
wealth x at the end of the trading period. The function U is supposed to be of
class C2((0,+∞)), strictly increasing, with U ′(x)x bounded.

We will need the following assumption.

Assumption 5.32. The utility function U verifies U
′′

(x)x
U ′(x) ≤ −1, ∀x > 0.

A typical example of function U verifying assumption 5.32 is U(x) = log(x).

We will focus on portfolios with strictly positive value. As a consequence of
this, before starting analyzing the problem of maximization, we show how it is
possible to construct portfolio strategies when only positive wealth is allowed.

Definition 5.33. For simplicity of calculation we introduce the process

A = log(S)− log(S0) +
1

2

∫ ·

0

1

S2
t

d [S]t .

Lemma 5.34. Let θ = (θt, 0 ≤ t < 1) be a G-adapted process in C−b ([0, 1)) such
that

1. θ is A-improperly forward integrable.
2. The process Aθ =

∫ ·
0
θsd
−As has finite quadratic variation.

3. If Xθ is the process defined by

Xθ = X0 exp

(∫ ·

0

θtd
−At +

∫ ·

0

(1− θt) dVt −
1

2

[
Aθ
])

,

then
∫ ·

0
Xθ
t θtd

−At and
∫ ·

0
Xθ
t d
− ∫ t

0
θsd
−As improperly exist and

∫ ·

0

Xθ
t θtd

−At =

∫ ·

0

Xθ
t d
−
∫ t

0

θsd
−As. (20)

Then the couple (X0, h), with ht =
θXθt
St
, 0 ≤ t < 1, is a self-financing portfolio

with strictly positive wealth Xθ. In particular, limt→1 X
θ
t = Xθ

1 exists and it is
strictly positive.
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Proof. Thanks to lemma 2.12 h is locally S-forward integrable and
∫ ·

0
htd
−St =∫ ·

0
θtX

θ
t d
−At. Applying corollary 2.9, proposition 2.11, and using hypothesis 3.,

X̃θ can be rewritten in the following way:

X̃θ
t = X0 +

∫ ·

0

X̃θ
t d
−
∫ t

0

θsd
−As −

∫ ·

0

X̃θ
t θtdVt

= X0 +

∫ ·

0

e−Vtd−
∫ t

0

hsd
−Ss −

∫ ·

0

e−VthtStdVt. (21)

Remark 5.6 tells us that Xθ is the wealth of the self-financing portfolio (X0, h) .

Remark 5.35. The process θ in previous lemma represents the proportion of
wealth invested in S.

Remark 5.36. Let θ be as in lemma 5.34. Then, for every 0 ≤ t < 1, X is,
indeed, the unique solution, on [0, t], of equation

Xθ = X0 +

∫ ·

0

Xθ
t d
−
(∫ t

0

θsd
−As +

∫ t

0

(1− θs)dVs −
1

2

[
Aθ
]
t

)
.

In fact, uniqueness is insured by corollary 5.5 of [28]. It is important to highlight
that, without the assumption on θ regarding the chain rule in equality (20), we
cannot conclude that Xθ solves equation (21). However we need to require that
Xθ solves the latter equation to interpret it as the value of a portfolio whose
proportion invested in S is constituted by θ. In the sequel we will construct, in
some specific settings, classes of processes defining proportions of wealth as in
lemma 5.34. We will consider, in particular, two cases already contemplated in
[3] and [18]. Our definitions of those sets will result more complicated than the
ones defined in the above cited papers. This happens because, in those works, the
chain rule problem arising when the forward integral replaces the classical Itô
integral is not clarified.

Assumption 5.37. We assume the existence of a real linear space A+ of G-
adapted processes (θt, 0 ≤ t < 1) in C−b ([0, 1)), such that

1. θ verifies condition 1., 2. and 3. of lemma 5.34, and
[
Aθ
]

=
∫ ·

0
θ2
t d [A]t .

2. θI[0,t] belongs to A+ for every 0 ≤ t < 1.

For every θ in A+ we denote with Qθ the probability measure defined by:

dQθ

dP
=

U ′(Xθ
1 )Xθ

1

E
[
U ′(Xθ

1 )Xθ
1

] .

The utility maximization problem consists in finding a process π in A+ maxi-
mizing expected utility from terminal wealth, i.e.:

π = arg max
θ∈A+

E
[
U(Xθ

1 )
]
. (22)
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Problem (22) is not trivial because of the uncertain nature of the processes
A and V and the non zero quadratic variation of A. Indeed, let us suppose
that [A] = 0 and that both A and V are deterministic. Then, it is sufficient to
consider

sup
λ∈R

E
[
U(Xλ

1 )
]

= lim
x→+∞

U(x),

and remind that U is strictly increasing, to see that a maximum can not be
realized. The problem is less clear when the term − 1

2

∫ ·
0
θ2
t d [A]t and a source of

randomness are added.

In the sequel, we will always assume the following.

Assumption 5.38. For every θ in A+,

E
[∣∣∣∣
∫ 1

0

θtd
−(At − Vt)

∣∣∣∣+
1

2

∫ 1

0

θ2
t [A]t

]
< +∞.

Definition 5.39. A process π is said optimal portfolio in A+, if it is optimal
for the function θ 7→ E

[
U(Xθ

1 )
]

in A+, according to definition 4.23.

Remark 5.40. Set ξ = A− V, A = A+, and

F (ω, x) = U
(
X0(ω)ex+V1(ω)

)
, (ω, x) ∈ Ω× R.

According to definitions of section 4.3.2, A satisfies assumption 4.26, the func-
tion F is measurable, almost surely in C1(R), strictly increasing and with bounded
first derivative. If U satisfies assumption 5.32 then F is also concave. Moreover
F (Lθ) = U(Xθ

1 ) for every θ in A+.

Before stating some results about the existence of an optimal portfolio, we
provide examples of sets of admissible strategies with positive wealth.

5.4.2. Admissible strategies via Itô fields

For this example the reader should keep in mind subsection 3.1.

Proposition 5.41. Let A+ be the set of all processes (θt, 0 ≤ t < 1) such that
θ is the restriction to [0, 1) of a process h belonging to S(C1

A(G)). Then A+

satisfies the hypotheses of assumption 5.37.

Proof. Let h be in S(C1
A(G)) and θ its restriction on [0, 1). It is clear that

θ is in C−b ([0, 1)) and G-adapted. Thanks to proposition 3.7, h is A-forward
integrable,

∫ ·
0
htd
−At belongs to S(C2

A(G)) and the process
∫ ·

0
htd
−At has finite

quadratic variation equal to
∫ ·

0
h2
td [A]t. By remark 2.5,

∫ ·
0
htd
−At =

∫ ·
0
θtd
−At,

and conditions 1. and 2. of lemma 5.34 are thus satisfied. Remark 3.6 implies
that the process

exp

(∫ ·

0

θtd
−At +

∫ ·

0

(1− θs)dVs −
1

2

∫ ·

0

θ2
t d [A]t

)
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belongs to S(C1
A(G)). Then, by proposition 3.7, again, θ fulfills also condition 3.

of lemma 5.34. By construction, θI[0,t] is an element of A+ for every 0 ≤ t < 1
and this concludes the proof.

5.4.3. Admissible strategies via Malliavin calculus

We restrict ourselves to the setting of section 5.1.2. We recall that in that case
A =

∫ ·
0
σtdWt +

∫ ·
0
µtdt. We make the following additional assumption:

S0 = e
R ·
0
rtdt,

with r in L1,z for some z > 4 and F-adapted.

Proposition 5.42. Let A+ be the set of all G-adapted processes in C−b ([0, 1))

being the restriction on [0, 1) of processes h in L1,2
− ∩ L2,2, such that D−h is in

L1,2
− , and the random variable

sup
t∈[0,1]

(
|ht|+ sup

s∈[0,1]

|Dsht|+ sup
s,u∈[0,1]

|DsDuht|
)

is bounded.

Then A+ satisfies the hypotheses of assumption 5.37.

Proof. Let h be as in the hypotheses. Proposition 3.18 applies to to state that
h is A-forward integrable and

∫ ·

0

htd
−At =

∫ ·

0

htσtd
−Wt +

∫ ·

0

htµtdt

=

∫ ·

0

htσtδWt +

∫ ·

0

(
htµt + σtD

−
t ht

)
dt.

On the other hand, proposition 3.17 applies to obtain
[∫ ·

0

htd
−At

]
=

[∫ ·

0

htσtδWt

]
=

∫ ·

0

h2
tσ

2
t dt.

In particular, if θ is the restriction of h on [0, 1), then θ fulfills point 1. and 2.
of lemma 5.34.

Consider the vector process
(∫ ·

0
htd
−At,

∫ ·
0
(1− ht)dVt,

∫ ·
0
h2
td [A]

)
t
. We affirm

that each of its components belongs to L1,v
− for some v > 4. In fact, the first

component is equal to the sum of
∫ ·

0
htσtδWt and

∫ ·
0

(
σtD

−
t ht + htµt

)
dt; the

first term of the sum belongs to L1,p
− by lemma 3.16, which applies thanks to

remark 3.9; the second term is in L1,q∧p
− thanks to lemma 3.15; remark 3.9 and

lemma 3.15 again imply that both
∫ ·

0
(1− ht)rtdt and

∫ ·
0
h2
tσ

2
t dt belong to L1,z

− .
We can thus apply proposition 3.21 to find that

∫ ·

0

Xh
t d
−
∫ t

0

hsσsdWs =

∫ ·

0

Xh
t htd

−
∫ t

0

σsdWs,
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with Xh = exp
(∫ ·

0
htd
−At −

∫ ·
0
(1− hs)dVs − 1

2

∫ ·
0
h2d [A]t

)
. This permits to

conclude the proof.

5.4.4. Admissible strategies via substitution

We return here to the framework of subsection 5.1.3.

Proposition 5.43. Let A+ be the set of all processes which are the restriction
to [0, 1) of processes in S(Ap,γ(L)) for some p > 3 and γ > 3d. Then A+

satisfies the hypotheses of assumption 5.37.

Proof. Let h be in S(Ap,γ(L)) for some p > 3 and γ > 3d. Proposition 3.37
insures that h is A-forward integrable, and that

∫ ·
0
htd
−At has finite quadratic

variation equal to
∫ ·

0
h2
td [A]t . The process

Xh = exp

(∫ ·

0

htd
−At −

∫ ·

0

(1− ht)dVt −
1

2

∫ ·

0

h2
td [A]t

)

has bounded paths. Then, thanks to point 1. of remark 2.3, to prove that

∫ ·

0

Xh
t d
−
∫ t

0

hsd
−As =

∫ ·

0

Xh
t htd

−At, (23)

we are allowed to replace Xh by ψ(log(Xh)), being ψ a function of class C∞(R)
with bounded derivative. Using lemma 3.27 it is possible to show that the process
ψ
(
log(Xh)

)
belongs to S(A p

2 ,
γ
2 (L)). Proposition 3.37 again let us get equality

(23).

5.4.5. Optimal portfolios and A+-martingale property

Adapting results contained in section 4.3.2 to the utility maximization prob-
lem, we can formulate the following propositions. We omit their proofs, being
particular cases of the ones contained in that section.

Proposition 5.44. If a process π in A+ is an optimal portfolio, then the process
A−V −

∫ ·
0
πtd [A]t is an A+-martingale under Qπ. If U fulfills assumption 5.32,

then the converse holds.

Proposition 5.45. Suppose that A+ satisfies assumption D with respect to G.
If a process π in A+ is an optimal portfolio, then the process A−V −

∫ ·
0
βtd [A]t

is a G-martingale under P, with

β = π +
1

pπ
d [pπ, A]

d [A]
, and pπ = EQ

π

[
dP

dQπ
| G·
]
.

If U fulfills assumption 5.32, then the converse holds.

Remark 5.46. 1. We emphasize that if U(x) = log(x), then the probability
measure Qπ appearing in propositions 5.44 and 5.45 is equal to P.
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2. In [2] it is proved that if the maximum of expected logarithmic utility over
all simple admissible strategies is finite, then S is a semimartingale with
respect G. This result does not imply proposition 5.45. Indeed, we do not
need to assume that our set of portfolio strategies contains the set of simple
predictable admissible ones. On the contrary, we want to point out that,
as soon as the class of admissible strategies is not large enough, the semi-
martingale property of price processes could fail, even under finite expected
utility.

Proposition 5.47. Suppose that U(x) = log(x), x in (0,+∞). Assume that
there exists a measurable process γ such that A − V −

∫ ·
0
γtd [A]t is an A+-

martingale and there exists a sequence (θn)n∈N ⊂ A+ such that

lim
n→+∞

E
[∫ 1

0

|θnt − γt|2 d [A]t

]
= 0.

Then if γ belongs to A+ it is an optimal portfolio. On the contrary, if an optimal
portfolio π exists, then d |[A]| {t ∈ [0, 1), πt 6= γt} = 0 almost surely.

5.4.6. Example

We adopt the setting of section 5.4.3 and we further assume that σ is a strictly
positive real

Proposition 5.48. If a process π is an optimal portfolio in A+, then the process
W −

∫ ·
0

(
rt−µt
σ + πtσ

)
dt is an A+-martingale under Qπ. If U fulfills assumption

5.32, then the converse holds.

Proof. First of all we observe that it is not difficult to prove that A+ satisfies
assumption 5.38. If a process π is an optimal portfolio in A+ then proposition
5.44 implies that the process Mπ, with Mπ = σ

(
W −

∫ ·
0

(
rt−µt
σ − πtσ

)
dt
)
,

is an A+-martingale under Qπ. We observe that σ−1A+ = A+. Therefore,
σ−1Mπ = W −

∫ ·
0

(
rt−µt
σ + πtσ

)
dt is an A+-martingale.

Similarly, if U satisfies assumption 5.32, the converse follows by proposition
5.44.

Corollary 5.49. Let A+ satisfy assumption D with respect to G. If a process
π in A+ is an optimal portfolio then the process W̃ = W −

∫ ·
0
αtdt with

α = πσ +
r − µ
σ

+
1

pπ
d [pπ,W ]

d [W ]
, and pπ = EQ

π

[
dP

dQπ
| G·
]
,

is a G-Brownian motion under P. If U satisfies assumption 5.32, then the con-
verse holds.

Proof. Let π be an optimal portfolio. By proposition 4.31, the process W̃ is a
G-martingale and so a G-Brownian motion under P.
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The results concerning the example above were proved in [3]. We generalize
them in two directions: we replace the geometric Brownian motion A by a finite
quadratic variation process and we let the set of possible strategies vary in sets
which can, a priori, exclude some simple predictable processes.

5.4.7. Example

We consider the example treated in section 4.3.3. We suppose, for simplicity,
that

St = S0e
σWt+

“
µ−σ2

2

”
t
, S0

t = ert 0 ≤ t ≤ 1,

being σ, µ and r positive constants. This implies At = σWt + µt, and Vt = rt
for 0 ≤ t ≤ 1. We set A+ = Θ(L).

Proposition 5.50. Suppose that U(x) = log(x), x in (0,+∞). Suppose that
h(·, L) belongs to the closure of Θ(L) in L2(Ω× [0, 1]). Then an optimal portfolio
π exists if and only if the process h(·, L) +

∫ ·
0
µ−r
σ dt belongs to Θ(L) and π =

h(·, L) + µ−r
σ .

Proof. The result follows from corollary 4.34.

Sufficiency for the proposition above was shown, with more general σ, r and µ
in theorem 3.2 of [18]. Nevertheless, in this paper we go further in the analysis
of utility maximization problem. Indeed, besides observing that the converse of
that theorem holds true, we find that the existence of an optimal strategy is
strictly connected, even for different choices of the utility function, to the A+-
semimartingale property of W. To be more precise, in that paper the authors
show that an optimal process exists, under the given hypotheses, handling di-
rectly the expression of the expected utility, which has, in the logarithmic case,
a nice expression. Here we reinterpret their techniques at a higher level which
permits us to partially generalize those results.
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