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Abstract. This paper presents a method to register a preoperative CT volume to
a sparse set of intraoperative US slices. In the context of percutaneous renal
puncture, the aim is to transfer a planning information to an intraoperative co-
ordinate system. The spatial position of the US slices is measured by localizing
a calibrated probe. Our method consists in optimizing a rigid 6 degree of free-
dom (DOF) transform by evaluating at each step the similarity between the set
of US images and the CT volume. The images have been preprocessed in order
to  increase  the  relationship  between  CT  and  US pixels.  Correlation  Ratio
turned out to be the most accurate and appropriate similarity measure to be
used in a Powell-Brent minimization scheme. Results are compared to a stan-
dard rigid point-to-point registration involving segmentation, and discussed.

1   Introduction 

Percutaneous  Renal  Puncture  (PRP)  is  becoming  a  common  surgical  procedure,
whose accuracy could benefit from computer assistance. The pre-operative imaging
modality is CT, whereas either fluoroscopy or echography is used for intra-operative
target visualization. A feasibility study on Computer-Assisted PRP has been carried
out [3], in which the kidney surface, segmented from CT and localized US images,
was registered using ICP. The study showed satisfying results; however it required a
manual segmentation in both image modalities, which is not acceptable for a clinical
use, especially intra-operatively.

We therefore investigated automatic  CT/US registration.  It  was decided for  the
present study to propose and evaluate an automatic  voxel-based registration algo-
rithm, to avoid segmentation steps and to minimize user intervention.

Voxel-based registration  methods  have  been  deeply  studied  since 1995.  Every
method proposes a similarity measure and a cost minimization algorithm. Wells [12]
first introduced Mutual Information (MI) combined with histogram windowing and a
gradient descent algorithm. Maes [4] presented an interesting combination of MI and
Powell-Brent (PB) search strategy. He also compared various search and multi-reso-
lution strategies, and showed that PB was efficient with image subsampling [5]. Jenk-
inson [2], Studholme [11] and Sarrut [10] made a thorough comparison of different
functional and statistical similarity measures.

Although those studies constitute the base of our research, none of them is applied
to registering US images. We will therefore focus on the works of Roche [9], who



registered 3D US of the brain with MRI, and Penney [6], who registered 2.5D US of
the liver with MRI. The theoretical difficulty in registering CT and US is that the for-
mer gives information on tissues intensity, whereas the latter contains a speckled im-
age of their boundaries. So a complex similarity measure and specific image prepro-
cessing must be chosen.

This paper introduces a method to automatically register localized US images of
the kidney onto a high-quality abdominal CT volume. The final algorithm uses image
preprocessing in both modalities, Powell-Brent method as a search strategy, and Cor-
relation Ratio (CR) as a similarity measure. Preliminary tests have been carried out on
one data set, that allows us to draw the first conclusions on the method.

2   Image Preprocessing

2.1   CT Preprocessing

Penney [6] basically transformed the blurred MRI and US images of the liver into
maps giving the probability of a pixel to be liver tissue or vessel lumen. However, as
this process requires manual thresholding of the MRI, and as the segmentation of the
kidney parenchyma is not a binary process, especially in the US images, we do not
think that the technique can apply to our problem. Roche [9] proposed the combined
use of the MRI image and its derivate, that we again decided not to use, because of
the complexity of the bivariate correlation method and because of the observed chaot-
ic correlation between CT gradient and US.

Our goal was to highlight the major boundaries in CT in order to increase the cor-
relation with the US. The preprocessing of a CT slice consists in the superposition of
a median blur and a bi-directional Sobel gradient from which we kept the largest con-
nex components (fig. 1).

  

Fig. 1. Preprocessing of a CT oblique slice. The major boundaries are highlighted

2.2   US Preprocessing

Speckle Removal. US images are known to be low-quality gradient images, blurred
by speckle noise. Still, the kidney, due to its small size and echogenic capsule, can be
well and fully visualized through anterior access. The aim of preprocessing US im-
ages is to reduce the speckle, while preserving the boundaries of the organ. We ap-
plied the “sticks” filter proposed by Czerwinski [1], designed for that purpose.



Fig. 2. Preprocessing of a US slice. Most speckle is removed while boundaries are preserved

Shadow Removal. Because they  convey  no relevant  information for  registration,
acoustic shadows are removed in the US images, as proposed in [6]. The shadows are
produced by large interfaces like the ribs or the colon that reflect quasi-totally the
acoustic  signal,  the remaining waves decreasing in the distance in an exponential
way. Shadow removal is based on the correlation between a US line profile and a
heuristic exponential function. A shadow is detected when the correlation is higher
than a given threshold, and when the maximum acoustic interface is close enough to
the skin. Fig. 3 and 4 show the result of our automatic method on a sample slice.

Fig. 3. Correlation profile (black curve) and height of shadow interface (grey curve) along the
US fan. Left and right white areas correspond to shadow regions (high correlation, low height)

Fig. 4. US shadow removal. Left image shows the shadow profiles induced by the ribs (left)
and the colon (right). Middle image shows the generated mask, superimposed on right image



3   Search Strategy: Powell-Brent Algorithm

PB algorithm [2][4] appears as a fairly efficient search strategy when the differentia-
tion of the cost function is unknown [4]. Our implementation is based on [7]. We ap-
plied some changes since we found the method too slow and too sensitive to local
minima, which are frequent in image registration.

3.1   Initial Attitude and Parameter Space

The minimization process consists in optimizing a 6D vector (TX,TY,TZ,RX,RY,RZ).
From the Arun-based Initial Attitude (IA) computation, we define the longitudinal
axis of the CT kidney as the Z’ axis of the new parameter space; this allows us to fol-
low  Maes’  advice  [5]  to  optimize  the  vector  in  the  better-conditioned  order
(TX’ ,TY’ ,RZ’,TZ’,RX’ ,RY’).

3.2   Search Interval

Contrary to fundamental PB method, whose Brent 1D search interval, for each DOF,
is defined by a time-consuming automatic bracketing, we chose an arbitrary interval
length of 2*RMSARUN (20 to 30mm) around the IA.

Since PB tends to reach the solution very fast (only the first iteration makes a sig-
nificant step), it was decided, for computation time improvement, to reduce the inter-
val length at each Powell iteration.

3.3   1D Initial search

As PB method tends to converge to local minima, and as the similarity between regis-
tered CT and US shows in most cases a non-ambiguous global minimum (fig. 6), we
chose to perform before each Brent 1D optimization an initial search, with a step of
10% of the interval  length,  to find an approximate global minimum in that DOF.
Then Brent method is applied around that minimum in a very restrained interval (fig.
5). This strategy does not significantly increase the computation time. Jenkinson [2]
also proposed an initial search on the rotational DOF, previously to PB iterations, to
make the solution “more reliable”.



Fig. 5. CR profile along the search interval for TX. The converging curve represents Brent iter-
ations around the global minimum of the profile

4   Similarity Measure: Correlation Ratio

4.1   Definition

Let X be the base image (CT), and Y the match image (US). CR is a functional simi-
larity measure [2][8][10] based on conditional moments. It measures the functional
relationship between the match pixels and the base pixels. Roche [8] writes:
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where N is the number of overlapped pixels, and  their variance in Y.
where Ni is the number of overlapped pixels in X of value i, i their variance in Y.

4.2   Motivation

Theoretically, the functional relationship between an intensity CT image and a gradi-
ent US image is not obvious, thus a statistical similarity measure like normalized mu-
tual information (NMI) should be more appropriate. However, although US images
best enhance the boundaries between organs, they also convey an information on the
tissues, as each of them diffuses the US waves its own way, in both intensity and fre-
quency. So CR is somehow justified, especially with the preprocessing we presented
above. We also chose CR against NMI for several reasons: 
 CR looks more continuous than NMI (fig. 6); few local minima appear, even

when subsampling: it is more precise, discriminative and robust [10].
 CR algorithm complexity is O(NX), where NX is the number of overlapped

grey levels in X, whereas NMI algorithm complexity is O(NXNY) [8].
 CR continuous profile is particularly adapted to PB search algorithm, since

Brent minimization is based on the fitting of a parabola onto the function
curve [7].



Fig. 6. CR (left) and NMI (right) profiles mapped along TX and TY while registering 2 images.
Note the continuous aspect of CR and the unambiguous minimum

4.3   2.5D Correlation Ratio

In the context of 2.5D US, the CR is computed as follows: for every rigid transform
estimate, the CT volume is resliced in the plane of each US slice, using linear interpo-
lation. Then the region of interest (ROI) defined in each US image is superimposed
onto the corresponding CT slice. Finally, the CR is estimated on the set of pixels of
the superimposed ROIs.

5   Preliminary Results and Discussion

5.1   Material and Methods

We  worked  on  a  single  data  set.  The  isotropic  abdominal  CT  volume  has
287x517x517 voxels, the voxel size being 0.6mm. Our experiments were carried out
on a late acquisition CT, after iodine injection. Besides, for the use of our experi-
ments, 100 US images (axial and longitudinal) of the right kidney were acquired with
a localized calibrated echographic probe, through anterior access. Those images are
then resized to match CT voxel size. In the final protocol, each registration will be
carried out on only 5 slices of various orientations out of the whole set.

The accuracy study consists in performing 2 series of 10 registrations: on the one
hand, by fixing the IA and changing the set of 5 US slices to match; on the other
hand, by computing a new IA at each attempt, while keeping the same set of slices.
Every IA is determined by the user from the choice of 4 points at the axial and lateral
extremities of the kidney.

From our previous study [3] we have a “Bronze” Standard (BS) transform based
on ICP matching, and segmented  US and CT meshes. The quality of the solution is
evaluated by the distance of the registered CT mesh to the BS CT mesh, and the dif-
ference between their gravity centers and their major axes inclinations.



5.2   Results

The registrations took on average 80s1. The algorithm appeared stable since a second
matching pass kept the kidney in place. Table 1 shows matching statistics between the
CT mesh transformed by our algorithm and the CT mesh obtained by the BS trans-
form. D(CT,BS) (mm) shows the distance of the CT mesh to the BS mesh.  Center
(mm) and  Inclination (°) are the differences between gravity centers and major axis
inclinations. The choice of the criteria will be discussed later. Generally the IA sets
the kidney at about 10mm in translation and 10° in inclination from the solution. For
example, with IA n°1 we obtained: 12.3mm2.6 ; 9.6mm ; 9.0°. With 1mm to 6mm
error we can say that every registration has succeeded, except n°13 and n°17 whose
position and orientation hardly improved.

Table 1. Matching statistics when the IA is constant and when the set of slices is fixed
Constant IA Constant set of slices

Nb D(CT,BS)   Cent.   Inclin. Nb D(CT,GS)   Cent.   Inclin.

1 5.6+/-2.1 2.7 4.1 11 3.7+/-1.3 1.3 4.3

2 6.8+/-2.0 3.2 6.7 12 3.2+/-0.8 2.9 1.5

3 5.2+/-1.5 3.2 1.3 13 8.8+/-2.5 5.7 10.5

4 6.2+/-1.8 4.0 5.3 14 5.7+/-2.0 4.0 5.3

5 5.8+/-1.8 2.3 9.5 15 6.7+/-2.6 5.1 8.2

6 6.0+/-2.0 4.3 4.7 16 6.0+/-1.3 5.8 3.2

7 4.1+/-1.1 2.7 5.5 17 11.9+/-4.8 8.1 6.4

8 5.1+/-1.1 3.4 5.2 18 6.5+/-2.1 5.0 7.6

9 5.1+/-1.9 3.0 5.4 19 6.2+/-1.6 5.6 6.0

10 3.7+/-0.9 2.1 2.9 20 5.4+/-0.9 4.1 4.3

Fig. 7. Illustration of registration n°1 showing the US (black) and CT (white) meshes.

5.3   Discussion

We chose to compare homogeneous data, instead of computing the distance between
the transformed CT mesh and the US cloud of points, as the bare information of an
average distance between two sets of points does not appear relevant. To illustrate
that, fig. 7 shows the result of matching n°1, which is visually very good. However,
the distance of the US points to the IA-transformed CT mesh was 3.1mm2.4 while
the distance to the registered mesh was no smaller than 2.9mm2.0. Furthermore, be-
side the quantitative evaluation of the solution, we also checked it visually, since the

1  Tests performed on a Pentium IV 1.7GHz



BS does not give an exact solution: in most cases the kidney position was acceptable
for a further guiding procedure.

Although the results are satisfying in regard with accuracy, robustness and com-
putation time, we must bear in mind that they highly depend on the choice of slices,
the manual ROI, the manual IA and the search interval. The two failure cases were
due to a bad IA. We expect to validate our method on other patient data sets in the
following weeks. Anyway, the theoretical and practical difficulties in registering CT
with US, particularly in terms of patient-dependent parameters settings,  lead us to
think that our method should be part of a higher-level algorithm that would also in-
volve elastic registration, or the combination of rigid matching and deformable con-
tour fitting, and certainly a minimal user intervention.
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