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Abstract. This paper presents a method to register a preoperative CTestdum
a sparse set of intraoperative US slices. In the context ofifa@eous renal
puncture, the aim is to transfer a planning information tinaaoperative co-
ordinate system. The spatial position of the US slices isunea by localizing
a calibrated probe. Our method consists in optimizing a rigiddgee of free-
dom (DOF) transform by evaluating at each step the simyilagtween the set
of US images and the CT volume. The images have been preprocessaer
to increase the relationship between CT and US pixels. @torel Ratio
turned out to be the most accurate and appropriate similaggsume to be
used in a Powell-Brent minimization scheme. Results amgpaced to a stan-
dard rigid point-to-point registration involving segmentation, asdwutised.

1 Introduction

Percutaneous Renal Puncture (PRP) is becoming a commormasypgbcedure,
whose accuracy could benefit from computer assistartoe.pfe-operative imaging
modality is CT, whereas either fluoroscopy or echography is fesedtra-operative
target visualization. A feasibility study on Computer-AgisPRP has been carried
out [3], in which the kidney surface, segmented from CT andizechUS images,
was registered using ICP. The study showed satisfyindtsetowever it required a
manual segmentation in both image modalities, which isootptable for a clinical
use, especially intra-operatively.

We therefore investigated automatic CT/US registratiorwds decided for the
present study to propose and evaluate an automatic vosedibagistration algo-
rithm, to avoid segmentation steps and to minimize user intéowvent

Voxel-based registration methods have been deeply studied si@ée H@ery
method proposes a similarity measure and a cost minimizatgorithm. Wells [12]
first introduced Mutual Information (MI) combined with higtam windowing and a
gradient descent algorithm. Maes [4] presented an ititggesombination of MI and
Powell-Brent (PB) search strategy. He also comparedussearch and multi-reso-
lution strategies, and showed that PB was efficiertt imiage subsampling [5]. Jenk-
inson [2], Studholme [11] and Sarrut [10] made a thorough cosgraof different
functional and statistical similarity measures.

Although those studies constitute the base of our research, ntirenrofs applied
to registering US images. We will therefore focus om works of Roche [9], who



registered 3D US of the brain with MRI, and Penney [6], wdwistered 2.5D US of
the liver with MRI. The theoretical difficulty in registag CT and US is that the for-
mer gives information on tissues intensity, whereas ther labntains a speckled im-
age of their boundaries. So a complex similarity measuwtlespecific image prepro-
cessing must be chosen.

This paper introduces a method to automatically registslived US images of
the kidney onto a high-quality abdominal CT volume. The final &lyoruses image
preprocessing in both modalities, Powell-Brent methoa ssarch strategy, and Cor-
relation Ratio (CR) as a similarity measure. Prelimirtasgs have been carried out on
one data set, that allows us to draw the first conclusions on thedne

2 Image Preprocessing

2.1 CT Preprocessing

Penney [6] basically transformed the blurred MRI and USgeweof the liver into
maps giving the probability of a pixel to be liver tissue oseekimen. However, as
this process requires manual thresholding of the MRI, and aetmentation of the
kidney parenchyma is not a binary process, especially in thend§es, we do not
think that the technique can apply to our problem. Roche [$Josed the combined
use of the MRI image and its derivate, that we again decidetb use, because of
the complexity of the bivariate correlation method and becaute afbserved chaot-
ic correlation between CT gradient and US.

Our goal was to highlight the major boundaries in CT in ordéndrease the cor-
relation with the US. The preprocessing of a CT slmesists in the superposition of
a median blur and a bi-directional Sobel gradient from whietkept the largest con-
nex components (fig. 1).

Fig. 1. Preprocessing of a CT oblique slice. The major boundaridsgtghted
2.2 USPreprocessing

Speckle Removal. US images are known to be low-quality gradient imagesrdd
by speckle noise. Still, the kidney, due to its small sizeeghdgenic capsule, can be
well and fully visualized through anterior access. The @fimpreprocessing US im-
ages is to reduce the speckle, while preserving the boundarike ofgan. We ap-
plied the “sticks” filter proposed by Czerwinski [1], designed fat purpose.



Fig. 2. Preprocessing of a US slice. Most speckle is removed while boesidae preserved

Shadow Removal. Because they convey no relevant information for registrati
acoustic shadows are removed in the US images, as propdéédTine shadows are
produced by large interfaces like the ribs or the colon rifdgct quasi-totally the

acoustic signal, the remaining waves decreasing in thandsstin an exponential
way. Shadow removal is based on the correlation betwed$ line profile and a
heuristic exponential function. A shadow is detected when thelation is higher

than a given threshold, and when the maximum acoustid¢dogeis close enough to
the skin. Fig. 3 and 4 show the result of our automatic methadsample slice.
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Fig. 3. Correlation profile (black curve) and height of shadow interfgoey(curve) along the
US fan. Left and right white areas correspond to shadow rediats ¢orrelation, low height)

Fig. 4. US shadow removal. Left image shows the shadow profiles inducétehybs (left)
and the colon (right). Middle image shows the generated mask, sppse&chon right image



3 Search Strategy: Powell-Brent Algorithm

PB algorithm [2][4] appears as a fairly efficient s#astrategy when the differentia-
tion of the cost function is unknown [4]. Our implementai®based on [7]. We ap-
plied some changes since we found the method too slow amsktsitive to local
minima, which are frequent in image registration.

3.1 Initial Attitude and Parameter Space

The minimization process consists in optimizing a 6D vectrT¢TTz,Rx,Ry,Rz).
From the Arun-based Initial Attitude (IA) computation, define the longitudinal
axis of the CT kidney as the Z' axis of the new parameter spg@sellows us to fol-
low Maes’ advice [5] to optimize the vector in the bettenditioned order
(Tx,Tv,Rz,T2,R¢,Ry").

3.2 Search Interval

Contrary to fundamental PB method, whose Brent 1D seatetval, for each DOF,
is defined by a time-consuming automatic bracketing, we choseb#trary interval
length of 2*RMSgrun (20 to 30mm) around the IA.

Since PB tends to reach the solution very fast (onlyitheiferation makes a sig-
nificant step), it was decided, for computation time impnoest, to reduce the inter-
val length at each Powell iteration.

3.3 1D Initial search

As PB method tends to converge to local minima, and as thiausiynbetween regis-
tered CT and US shows in most cases a non-ambiguous glotiaum (fig. 6), we
chose to perform before each Brent 1D optimization an irsgatch, with a step of
10% of the interval length, to find an approximate global mininmionthat DOF.
Then Brent method is applied around that minimum in a e&sirained interval (fig.
5). This strategy does not significantly increase the ctatipn time. Jenkinson [2]
also proposed an initial search on the rotational DOF, prdyitu$B iterations, to
make the solution “more reliable”.
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Fig. 5. CR profile along the search interval for. The converging curve represents Brent iter-
ations around the global minimum of the profile

4 Similarity Measure: Correlation Ratio

4.1 Déefinition

Let X be the base image (CT), and Y the match image (CRS)is a functional simi-
larity measure [2][8][10] based on conditional momentsnéiasures the functional
relationship between the match pixels and the base pixels. [Bjchistes:
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where N is the number of overlapped pixels, anteir variance in Y.
where Ni is the number of overlapped pixels in X of value their variance in Y.

4.2 Motivation

Theoretically, the functional relationship between an sitgrCT image and a gradi-

ent US image is not obvious, thus a statistical similaritysonealike normalized mu-

tual information (NMI) should be more appropriate. Howewadthough US images

best enhance the boundaries between organs, they also conmégriamation on the

tissues, as each of them diffuses the US waves itsa@ynin both intensity and fre-

guency. So CR is somehow justified, especially with the pregeitg we presented

above. We also chose CR against NMI for several reasons:

- CR looks more continuous than NMI (fig. 6); few local minima appaan
when subsampling: it is more precise, discriminative and robust [10].

- CR algorithm complexity is O®, where N is the number of overlapped
grey levels in X, whereas NMI algorithm complexity is QKN) [8].

- CR continuous profile is particularly adapted to PB sealgbrithm, since
Brent minimization is based on the fitting of a parabolaodhe function
curve [7].



Fig. 6. CR (left) and NMI (right) profiles mapped along and T while registering 2 images.
Note the continuous aspect of CR and the unambiguous minimum

4.3 2.5D Correation Ratio

In the context of 2.5D US, the CR is computed as followsef@ry rigid transform
estimate, the CT volume is resliced in the plane of each &S sking linear interpo-
lation. Then the region of interest (ROI) defined in ed&image is superimposed
onto the corresponding CT slice. Finally, the CR is estidhatethe set of pixels of
the superimposed ROIs.

5 Preliminary Results and Discussion

5.1 Material and Methods

We worked on a single data set. The isotropic abdominal CTmeol has
287x517x517 voxels, the voxel size being 0.6mm. Our experimarts carried out
on a late acquisition CT, after iodine injection. Besides the use of our experi-
ments, 100 US images (axial and longitudinal) of the righteidmere acquired with
a localized calibrated echographic probe, through anteriosgact@ose images are
then resized to match CT voxel size. In the final protoeath registration will be
carried out on only 5 slices of various orientations out of the wdatle

The accuracy study consists in performing 2 series of 10tna&giss: on the one
hand, by fixing the IA and changing the set of 5 US slicematch; on the other
hand, by computing a new IA at each attempt, while keepingah® set of slices.
Every IA is determined by the user from the choice of 4 poirtseatxial and lateral
extremities of the kidney.

From our previous study [3] we have a “Bronze” Standard (BS)sform based
on ICP matching, and segmented US and CT meshes. Thiy aguidhie solution is
evaluated by the distance of the registered CT mesh toSheTBmesh, and the dif-
ference between their gravity centers and their major axes ingtinat



5.2 Results

The registrations took on average :80%ie algorithm appeared stable since a second
matching pass kept the kidney in place. Table 1 shows matchimgiiss between the
CT mesh transformed by our algorithm and the CT mesh auotdig the BS trans-
form. D(CT,BS) (mm) shows the distance of the CT mesh to the BS meSknter
(mm) andA Inclination (°) are the differences between gravity centers and raajsr
inclinations. The choice of the criteria will be discussedrlaBenerally the IA sets
the kidney at about 10mm in translation and 10° in inclindtiom the solution. For
example, with IA n°1 we obtained: 12.3mfh6 ; 9.6mm ; 9.0°. With 1mm to 6mm
error we can say that every registration has succeegeehten°13 and n°17 whose
position and orientation hardly improved.

Table 1. Matching statistics when the IA is constant and when thef stices is fixed

Constant IA Constant set of slices
Nb | D(CT,BS) | A Cent. Alnclin. || Nb | D(CT,GS) | A Cent. A Inclin.
T 5.6H-2.1 2.7 %] 11 3.7H-1.3 13 13
2 6.8+/-2.0 32 6.7 12 | 3.2+/-0.8 29 15
3 5.2+-15 3.2 13 13 | 8.8+/-25 5.7 105
4 6.2+/-1.8 4.0 5.3 14 5.7+-2.0 4.0 53
5 5.8+/-1.8 2.3 9.5 15 6.7+/-2.6 5.1 8.2
6 6.0+/-2.0 13 17 16 | 6.0+/-1.3 53 3.2
7 ZA+-11 2.7 55 17 | 11.9+-4.8 8.1 6.4
8 S A+-1.1 34 5.2 18 | 6.5+-2.1 5.0 76
9 5A+-1.9 3.0 54 10 | 6.2+/-16 56 6.0
T0 | 3.77-09 77 79 20 | 5.4F-09 I I3

Fig. 7. lllustration of registration n°1 showing the US (black) and(®fite) meshes.
5.3 Discussion

We chose to compare homogeneous data, instead of computingténee between
the transformed CT mesh and the US cloud of points, abateeinformation of an
average distance between two sets of points does not agfeant. To illustrate
that, fig. 7 shows the result of matching n°1, which is Vigueery good. However,
the distance of the US points to the IA-transformed CThnvess 3.1mm2.4 while

the distance to the registered mesh was no smaller tAam®2.0. Furthermore, be-
side the quantitative evaluation of the solution, we also ertkeitkvisually, since the

1 Tests performed on a Pentium IV 1.7GHz



BS does not give an exact solution: in most cases the kidneyoposiis acceptable
for a further guiding procedure.

Although the results are satisfying in regard with accuramystness and com-
putation time, we must bear in mind that they highly depentherchoice of slices,
the manual ROI, the manual IA and the search intefua. two failure cases were
due to a bad IA. We expect to validate our method on othempalita sets in the
following weeks. Anyway, the theoretical and practical diffiies in registering CT
with US, particularly in terms of patient-dependent pararmsesettings, lead us to
think that our method should be part of a higher-level alyorithat would also in-
volve elastic registration, or the combination of rigid matctand deformable con-
tour fitting, and certainly a minimal user intervention.
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