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Abstract. In the context of computer assist surgical tech-
niques, a new elastic registration method of 3D meshes is pre-
sented. In our appli cations, one mesh is a high density mesh
(30000 vertexes), the second is a low density one (1000 ver-
texes). Registration is based upon the minimisation of a sym-
metric distance between both meshes, defined on the vertexes,
in a multi resolution approach. Results on synthetic images are
first presented. Then, thanks to this registration method, a sta-
tistical model of the skull i s build from Computer Tomogra-
phy exams collected for twelve patients.

1   Introduction

Medical Imaging and computer assisted surgical techniques may im-
prove current maxill o-facial surgical protocol as an aid in diagnostic,
planning and surgical procedure [1]. The steps of a complete assisted
protocol may be summarized as : (1) Morphological data acquisition,
including 3D imaging computed from Computer Tomography (CT)
scanner, (2) Data integration which requires a 3D cephalometry analy-
sis, (3) Surgical planning , (4) Surgical simulation for bone osteotomy
and prediction of facial soft tissue deformation, (5) Per operative as-
sistance for respecting surgical planning.
Three-dimensional cephalometric analysis, being essential for clinical
use of computer aided techniques in maxill ofacial, are currently in
development [2,3,4].In most methods, the main drawback is the man-
ual location of the points used to build the maxill ofacial framework.
The relationship between the cephalometry and the whole scans data is



flawed by the amount of data and the variability of the exams. A com-
mon hypothesis is a virtual link between a low dimension model of the
skull and these points.
We choose to first construct a statistical model of the skull, which will
be link to a cephalometrics points model. This paper first presents data
acquisition. In a second part, registration is described. Then, results on
synthetic images are discussed and the construction of a statistical
skull model is presented.

2   Method

The literature treating registration methods is very extensive (e.g., [5]
for a survey). On one side are geometry based registration, which used
a few selected points or features, where Iterative Closest Point and
Active Shape Model are two classical approaches [6]. The main draw-
back of most of these methods is the need for the manual location of
the landmarks used to drive the correspondence between objects in
advance. On the other side are intensity-based algorithms, which use
most of the intensity information in both data set [7].

2.1   Data Acquisition and 3D Reconstruction of the Patient’ s Skull

Coronal CT slices were collected for the partial skulls of 12 patients
(helical scan with a 1-mm pitch and slices reconstructed every 0.31
mm or 0.48 mm). The Marching Cubes algorithm has been imple-
mented to reconstruct the skull from CT slices on isosurfaces. The
mandible and the skull are separated before the beginning of the
matching process, our patients having different mandible relative po-
sition. (Figure 1, left panel).
In order to construct the statistical skull model, we need to register all
the high density / low density meshes in a patient-shared reference
system [8]. In this system, the triangles for a region of the skull are the
same for all patients, the variability of the position of the vertexes will
figurate the specificity of each density mesh in a patient. The vertex of
these shared mesh can be considered as semilandmarks, i.e. as points
that do not have names but that correspond across all the cases of a
data set under a reasonable model of deformation from their common
mean [9,10].
This shared mesh was not obtained with a decimation algorithm. Be-
cause our goal is to predict anatomical landmarks (some of cephalo-
metric points) from the statistical skull model, we choose not to use a
landmark based deformation [as in 11] but a method that does not
require specification of corresponding features. The low definition



model (Figure 1, right panel) was therefore taken from the Visible
Woman Project.

Fig. 1.  high definition mesh (left), low definition mesh(right).

2.2  Shaping a generic model to patient-specific data : 3D Meshes
registration

The deformation of a high definition 3D surface towards a low defini-
tion 3D surface is obtained by an original 3D-to-3D matching algo-
rithm.
 

Fig. 2. Applying a trilinear transformation to a cube

2.2.1 3D to 3D matching

The basic principle of the 3D-to-3D matching procedure developed by
Lavallée and colleagues [12] consists basicall y in deforming the initial
3D space by a series of trili near transformations applied to elementary
cubes (see also figure 2 ) :
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The elementary cubes are determined by iteratively subdividing the
input space in a multi resolution scheme (see figure 3) in order to
minimize the distance between the 3D surfaces:
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where S is the surface to be adjusted to the set of points q, p the pa-
rameters of the transformation T (initial rototranslation of the refer-
ence coordinates system and further a set of trilinear transformations).
P(p) is a regularization function that guaranties the continuity of the
transformations at the limits of each subdivision of the 3D space and
that authorizes larger deformations for smaller subdivisions. The
minimization is performed using the Levenberg-Marquardt algorithm
[13].

              Subdivision level  k Subdivision level  k+1 

Fig. 3. Subdivision of n elementary volume of the original space and new
transformations vectors (2D simplification) (left). Subdividing the space
and applying the transformation (right).

2.2.2 Symmetric distances

Fig. 4.  Matching a cone (source) toward a sphere (target) (left). Mis-
matched cone using the single distance method (centre); matched cone
using the symmetric distance method (right).

In some cases, the transformed surface is well-matched to the closest
surface but the correspondence between the two surfaces is false [see
figure 4]. This mismatching can be explained by the two distances
between each surfaces, which are not equivalent due to the difference
of density between the two meshes. In this case, the distance from the
source to the target (expressed in the minimization function) is very



low whereas the distance from the target to the source is important (see
Table 1).
We therefore included the two distances in the minimization function
as in [14] :
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To compute the distance between the target and the source, the closest
points of the low density vertexes towards the high density (points qi in
equation 2) are stored. Bar(rs) is the barycentre of this set of points  in
the distance between the high density mesh (target) and the low den-
sity mesh (source).

Table 1. Evaluation of the two methods, matching a cone to a sphere

Cone ->Sphere Sphere->ConeDistances (mm)
mean max. mean max.

Single 0.15 1.55 18,03 36,42

Symmetric 0.29 3.79 0.72 7.81

3 Results

3.1 Synthetic images

We first try these two methods on a set of four forms obtained with the
same procedure. Each form is generated with two levels of density (low
and high) before or after decimation. The following table show the
benefits of the “symmetric distance” method for these 8 objects, com-
pared to the “single distance” method.

Table 2 : Distance Gain (mm)

Target Sphere Cube Open Ring Cone
Source Low High Low High Low High Low High

Sphere  low
0 -0,17 9,77 -0,1 4,38 4,9 4,99

Sphere high
0 0,55 -0,19 -0,3 0,09 2,58 2,94

Cube low
2,1 3,58 0,44 3,2 5,92 20,06 17,83

Cube high
-1,3 -0,5 0 6,63 5,74 9,54 8,48

Open Ring low
24,16 21,75 -0,05 3,72 0 13,94 15,02



Open Ring high
13,02 16,26 -0,01 0 0 4,5 12,41

Cone Low
26,41 28,61 14,54 25,41 4,4 5,63 0

Cone high
11,99 21,69 6,04 9,54 1,67 1,11 -0,01

Table 2 summarises results : The method is well suited for shapes of
same topology. But different topologies are not registered: a sphere
deformed to the open ring shape will not capture the aperture of the
ring, and a cone will “flat” himself in the centre of the ring.

3.2 Real Data : Mandible Meshes

The low density mandible meshes are generated using the “symmetric
distance” method. The single distance approach leads to many mi s-
matches in the condyle and goniac angle regions (figure 5).
The maximal distances are located on the teeth (which will not be
included in the model, but are used for correspondences during the
registration) and in the coronoid regions.
The mean distances can be considered as the registration noise, due to
the difference of density (see Table 3).

Table 3 : Mean distances between meshes

Low->High High->LowDistances
(mm) mean max. mean max.
Single 1.27 9.28 5.80 56.87

Symmetric 1.33 8.42 2.57 22.78



Fig. 5. mismatched parts of mandible using the single distance method
(left : condyle, center : goniac angle) and matched low density mesh to
high density mesh using symmetric distance method.

3.3 Application :  Skull Statistical Model

12 CT patient’s scans with different pathologies are used. Half of them
suffer from sinus pathologies, while the other half suffer from pathol-
ogy of the orbits. The CT scans are centred around the pathology and
do not include (except for one patient) the skull vault. The patients
have different mandible positions, so the skull and the mandible were
registered separately.
After jointing these two parts of our model, they are aligned using
Procrustes registration on the mean individual, as the statistical shape
model must be independent from the rigid transformations (translation,
rotation). Gravity centres are first aligned. Then the optimal rotation
that minimizes the distance between the two set of points is obtained.
The statistical model can only have 12 degrees-of-freedom (DOF), for
a set of 3938 points (potentiall y 11814 geometrical DOF), as the num-
ber of DOF is limited by the number of patients. Using a simple statis-
tical analysis, we show that 95% of the variance of the data can be
explained with only 5 parameters (see Table 4). These “shape” p a-
rameters are linear and additi ve :

P = M+ A*α. (4)

where M is the mean shape, A the “shape” vector, and  α the shape
coeff icients.

Table 4 : variance explained by  parameters

Parameter 1 2 3 4 5
Variances  % 52,11 19,81 11,14 9,55 2,97
Cumulated Variance % 52,11 71,92 83.06 92.61 95.58

Figure 6 shows the effects of the two first parameters. The first pa-
rameter is linked to a global size factor, whereas the second influences
the shapes of the forehead and of the cranial vault.



Fig. 6. Effects of the first (left) and second (right) parameters for 3 times
the standard deviations.

4 Conclusion

In this paper, a new registration approach for 3D meshes has been
presented. In our application, one mesh is a high density mesh, the
second a low density one. To enhance the registration, a symmetric
distance has been proposed in a multi resolution approach. Results on
synthetic and real images exhibit good qualitative performances.  This
method is then used to elaborate a statistical skull model.
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