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Abstract. In the context of computer assst surgicd tech-
niques, a new elastic registration method d 3D meshesis pre-
sented. In ou applications, one mesh is a high density mesh
(30000 \ertexes), the secondis a low density one (1000 \er-
texes). Registration is based uponthe minimisation d a sym-
metric distance between bah meshes, defined onthe vertexes,
inamulti resolution approadh. Results on synthetic images are
first presented. Then, thanks to this registration method, a sta-
tisticd model of the skull is build from Computer Tomogra-
phy exams colleded for twelve patients.

1 Introduction

Medical Imaging and computer asssted surgical techniques may im-
prove arrent maxill o-facial surgical protocol as an aid in diagnostic,
planning and surgical procedure [1]. The steps of a complete asssted
protocol may be summarized as : (1) Morphological data acquisition,
including 3D imaging computed from Computer Tomography (CT)
scanner, (2) Data integration which requires a 3D cephalometry analy-
sis, (3) Surgica planning , (4) Surgical simulation for bone osteotomy
and prediction of facial soft tissue deformation, (5) Per operative as-
sistancefor respeding surgical planning.

Threedimensional cephalometric analysis, being essntial for clinica
use of computer aided techniques in maxill ofacial, are airrently in
development [2,3,4].In most methods, the main drawback is the man-
ual location of the points used to kuild the maxill ofacial framework.
The relationship between the cephalometry and the whole scans datais



flawed by the amount of data and the variability of the exams. A com-
mon hypothesisis a virtual link between alow dimension model of the
skull and these paints.

We choose to first construct a statistical model of the skull, which will
be link to a cephalometrics points model. This paper first presents data
acquisition. In a second part, registration is described. Then, results on
synthetic images are discussed and the construction of a dtatistical
skull model is presented.

2 Method

The literature treating registration methods is very extensive (e.g., [5]
for a survey). On one side are geometry based registration, which used
a few selected points or features, where Iterative Closest Point and
Active Shape Model are two classical approaches [6]. The main draw-
back of most of these methods is the need for the manual location of
the landmarks used to drive the correspondence between objects in
advance. On the other side are intensity-based algorithms, which use
most of the intensity information in both data set [7].

2.1 DataAcquisition and 3D Reoonstruction of the Patient’ s Skull

Coronal CT dlices were collected for the partial skulls of 12 patients
(helical scan with a 1-mm pitch and slices reconstructed every 0.31
mm or 0.48 mm). The Marching Cubes algorithm has been imple-
mented to reconstruct the skull from CT dlices on isosurfaces. The
mandible and the skull are separated before the beginning of the
matching process, our patients having different mandible relative po-
sition. (Figure 1, |eft pand).

In order to construct the statistical skull model, we need to register all
the high density / low density meshes in a patient-shared reference
system [8]. In this system, the triangles for a region of the skull are the
same for all patients, the variability of the position of the vertexes will
figurate the specificity of each density mesh in a patient. The vertex of
these shared mesh can be considered as semilandmarks, i.e. as points
that do not have names but that correspond across all the cases of a
data set under a reasonable model of deformation from their common
mean [9,10].

This shared mesh was not obtained with a decimation algorithm. Be-
cause our goal is to predict anatomical landmarks (some of cephalo-
metric points) from the statistical skull model, we choose not to use a
landmark based deformation [as in 11] but a method that does not
require specification of corresponding features. The low definition



mode (Figure 1, right panel) was therefore taken from the Visible
Woman Project.

Fig. 1. high definition mesh (left), low definition mesh(right).

2.2 Shaping a generic model to patient-specific data : 3D Meshes
registration

The deformation of a high definition 3D surface towards a low defini-
tion 3D surface is obtained by an origina 3D-to-3D matching algo-
rithm.

%

Fig. 2. Applying atrilinear transformation to a cube

2.2.1 3D to 3D matching

The basic principle of the 3D-to-3D matching procedure devel oped by
Lavall éeand colleagues [12] consists basically in deforming the initial
3D space by a series of trili near transformations applied to e ementary
cubes (seeaso figure2) :
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The elementary cubes are determined by iteratively subdividing the
input space in a multi resolution scheme (see figure 3) in order to
minimize the distance between the 3D surfaces:

m’in i %j (T(a. p),S)Z% P( p)E

where S is the surface to be adjusted to the set of points g, p the pa-
rameters of the transformation T (initial rototrandation of the refer-
ence coordinates system and further a set of trilinear transformations).
P(p) is a regularization function that guaranties the continuity of the
transformations at the limits of each subdivision of the 3D space and
that authorizes larger deformations for smaller subdivisions. The
minimization is performed using the Levenberg-Marquardt algorithm
[13].

Subdivision level k Subdivision level k+1
Fig. 3. Subdivision of n elementary volume of the original space and new

transformations vectors (2D simplification) (left). Subdividing the space
and applying the transformation (right).

2.2.2 Symmetric distances

Fig. 4. Matching a cone (source) toward a sphere (target) (left). Mis-
matched cone using the single distance method (centre); matched cone
using the symmetric distance method (right).

In some cases, the transformed surface is well-matched to the closest
surface but the correspondence between the two surfaces is false [see
figure 4]. This mismatching can be explained by the two distances
between each surfaces, which are not equivalent due to the difference
of density between the two meshes. In this case, the distance from the
source to the target (expressed in the minimization function) is very
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low whereas the distance from the target to the sourceis important (see
Table 1).
We therefore included the two distances in the minimizaion function

asin[14] :

rﬂ”%@ﬁ(q' D. g)ZHEH(T(q, D) ,mr(rS))ZHP(p)E

To compute the distance between the target and the source the dosest
points of the low density vertexes towards the high density (points g; in
equation 2) are stored. Bar(ry) is the barycentre of this st of points in
the distance between the high density mesh (target) and the low den-
sity mesh (source).

Table 1. Evaluation d the two methods, matching a ane to a sphere

Distances (mm) Cone ->Sphere Sphere->Cone
mean max. mean max.
Single 0.15 155 18,03 36,42
Symmetric 0.29 3.79 0.72 7.81
3 Results

3.1 Synthetic images

We firg try these two methods on a set of four forms obtained with the
same procedure. Each form is generated with two levels of density (low
and high) before or after dedmation. The following table show the
benefits of the “symmetric distance’ method for these 8 oheds, com-
pared to the “single distance’ method.

Table 2 : Distance Gain (mm)

Target Sphere Cube Open Ring Core
Source Low | High | Low | High | Low | High | Low [ High
Sphere low
0 |-017] 977 | 01| 438 | 49 | 499
Sphere high 0 055 | -019 ] -03 | 009 | 258 | 2,04
Cubelow
21 358 044 | 32 | 592 | 2006 | 1783
Cubehigh | 15 45| o 6,63 | 574 | 954 | 848
Open Ring|
PENRINGIOW 1 5416 | 2175 | -0,05 | 372 0 |1394] 1502
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Open Ring high

1302 | 1626 | 001 | o 0
ConeLow

26,41 | 2861 | 1454 | 2541 44
Conehigh 1 11 59 | 2169 | 604 | 054 | 167

Table 2 summarises results : The method is well suited for shapes of
same topology. But different topologies are not registered: a sphere
deformed to the open ring shape will not capture the aperture of the
ring, and a cone will “flat” himsdlf in the centre of the ring.

3.2 Real Data : Mandible M eshes

The low density mandible meshes are generated using the “symmetric
distance’” method. The single distance approach leads to many mis
matches in the condyle and goniac angle regions (figure 5).

The maximal distances are located on the teeth (which will not be
included in the model, but are used for correspondences during the
registration) and in the coronoid regions.

The mean distances can be considered as the registration noise, due to
the difference of density (see Table 3).

Table 3 : Mean distances between meshes

Distances Low->High High->Low
(mm) mean max. mean max.
Single 1.27 9.28 5.80 56.87

Symmetric 1.33 8.42 2.57 22.78




Fig. 5. mismatched parts of mandible using the single distance method
(left : condyle, center : goniac angle) and matched low density mesh to
high density mesh using symmetric distance method.

3.3 Application : Skull Statistical M odel

12 CT patient’s <ans with different pathologies are used. Half of them
suffer from sinus pathol ogies, whil e the other half suffer from pathol-
ogy of the orbits. The CT scans are cantred around the pathology and
do not include (except for one patient) the skull vault. The patients
have different mandible positions, so the skull and the mandible were
registered separately.

After jointing these two parts of our model, they are aligned using
Procrustes registration on the mean individual, as the statistical shape
model must be independent from the rigid transformations (trandation,
rotation). Gravity centres are first aligned. Then the optimal rotation
that minimizes the distance between the two set of pointsis obtained.
The statistical modd can only have 12 degrees-of-freedom (DOF), for
a set of 3938 mwints (potentially 11814 gometrical DOF), as the num-
ber of DOF is limited by the number of patients. Using a simple statis-
tical analysis, we show that 95% of the variance of the data can be
explained with only 5 parameters (see Table 4). These ‘Sshape’ p a
rameters are linear and additive :

P=M+ A*q.

where M is the mean shape, A the ‘Shape’ vedor, and o the shape
coefficients.

Table4: variance eplained by prameters

Parameter 1 2 3 4 5
Variances % 5211 19,81 11,14 9,55 2,97
Cumulated Variance % 5211 71,92 83.06 9261 95.58

Figure 6 shows the dfeds of the two first parameters. The first pa-
rameter islinked to a global size factor, whereas the seand influences
the shapes of the forehead and of the aanial vault.

(4)



Fig. 6. Effects of thefirst (left) and second (right) parametersfor 3 times
the standard deviations.

4 Conclusion

In this paper, a new registration approach for 3D meshes has been
presented. In our application, one mesh is a high density mesh, the
send a low density one. To enhance the registration, a symmetric
distance has been proposed in a multi resolution approach. Results on
synthetic and real images exhibit good gualitative performances. This
method isthen used to elaborate a statistical skull modd.
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