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Abstract 

 
In vector quantization the number of vectors used to 
construct the codebook is always an undefined problem, 
there is always a compromise between the number of 
vectors and the quantity of information lost during the 
compression. In this text we present a minimum of 
Entropy principle that gives solution to this compromise 
and represents an Entropy point of view of signal 
compression in general. Also we present a new adaptive 
Object Quantization technique that is the same for the 
compression and the perception.  

 
 
I. Introduction  

 
Vector quantization [2] is the process of classification of a group of vectors 
{ } : 0 1i i Mv

= −…

, k
iv R∈  into a smaller number of vectors group { } : 0, 1

, k
i ii N

v v R
= −

′ ′ ∈ , 

N M� , the classification of each vector iv is the mapping  

( )I i  :{ } { }0,1, 2, 1 0,1,2, 1M N− → −… … . By this, a vector iv would be classified 
by the vector ( )I iv ′ . The mapping is always from the vector iv to the « nearest » vector 

jv ′ , so that  

( )I i = arg min i j
j

v v ′− .  (1) 

The classification vectors or what is called the codebook should minimize the distance 
between each vector and its class vector, and for that the group of vectors { }iv ′ should 
take values minimizing  

Min  { } { }( ) ( )

1

0
, :

M

i j i I i
i

D v v v v
−

=

′ ′= −∑ .  (2) 

Subject to { }iv ′  
 

The process of vector quantization is used in many applications. In this text we are 
interested of its informational aspect. We point by the informational aspect its 
capability to resume or « compress » a group of vectors and provide a reasonable 
quantification of this group distribution. This ability to “compress” –or summarize- 
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which got a mental-or qualitative importance in application when a person needs to 
have an intelligent mathematical view of the data; got also a quantitative importance 
that find a direct application in image compression, and data compression in general. 
In what concerns image compression, usually the image is divided into M blocks of 
pixels, each corresponding to a vector iv . We found that the percentage in which the 
data size reduction happens is  

{ } { }( )
2

, :
log

i j
PkT v v PkNN

M

′ =
+

  (3)2 

where k is the dimension of the vector space, and P is the number of bits needed to 
store each value h

iv  composing the vectors { }iv  
: 0... 1

: h
i i h k

v v
= −

 =   .  

In real application the numbers M , P  and k are usually predefined. On the other 
hand the number N imply a direct decision over the values of each of { }iv ′ , and 

{ } { }( ),i jD v v ′ . The selection of N , is always a compromise between the efficiency 

of the data reduction ( )T , and the sincerity of the classification 1
D

 
 
 

. In this text we 

will answer the question about the appropriate selection of N as a solution to this 
compromise. 
 
 
II. Quantization From Entropy perspective  
 
It is very natural to say that quantization tries to minimize the Entropy [1] of the 
signal in an effort to be able have an efficient data size reduction. To formalize this 
we can transfer the problem in ( )3  as  
 

Min ( ) ( )( ). . .logi i
i

a b P v P vδ ′ ′− ∑   (4) 

Subject to { } , , : , :i i j i jv N M v v v vδ δ′ ′ ′≤ ∀ ∃ − <  

Where the probability of iv ′ is the number of vectors iv classified as iv ′ ,  

( )
( ){ }:

:
j

i

v I j i
P v

N

=
′ = . 

What is advantageous in this formalization is that it is an accurate expression of the 
compromise as we come to explain in the introduction. The difference between (4) 
and (3) is that the number N  is not fixed. The values a and b are constants that 
balance between data size reduction, and the accuracy of the solution, or in other 
words, they balance between T and D . To help interpreting the formalization in (4) 
one could observe that a very accurate matching would give a minimal δ , with a 

                                                 
2 The explanation of this relation is that the percentage of compression is the number of bits needed to 
store each image vector (block) before compression divided on the needed number of bits needed to 
store that block after. The later is the number of bits needed to store the class number of that block 

( )2log N , and with it the actual number of bits needed to store the code book itself 

( )PkN distributed over all blocks ( )M .    
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maximum of Entropy. On the other side, for a given N there is an optimum minimum 
of Entropy with a given δ that could make the solution unrepresentative. 
This contradiction is only technical, meaning, that when presenting a given number 
N the same process minimizing the distance according to (3) is actually minimizing 
the Entropy. And from that it is quite reasonable to wonder if there is another form 
that is more expressive of the quantization process.  
 
This goes very profoundly in the manner in which the visual system estimates the 
data, which as we will argue in the next section is an informational manner, which put 
in synchronization the quality and the quantity.  
 
 
III. The Submerging Entropy Estimate 
 
 The Submerging Entropy Estimate is defined as the following  
 

{ }( )
( ) ( ) ( )

( )
{ } ( )( )

{ }
{ }

{ }

1 1min log 1
1
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i i

i i i i i
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SEE v
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 ′∆ 
′ ′+ + ∆   ′ ′ >   =

′

≤
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  (5) 
where ( ) ( ){ }: : 0,i j i j iv v v v v I j i′ ′ ′∆ = − − ≠ =  
 
The next theorem is a direct explanation of the previous definition  
 
Definition 1 We call an N -level auto generative events group, any group of events 
for which each event do generate a new events group, in a recursive manner for 
N levels. We note i

tG  for the events group generated at the level t  from the event i  
at the level 1t − ,1 t N≤ < , with the source events group noted as 0G .  
 
Theorem 1 The entropy of N -level auto generative events group is equal to  

( )0
N

TH G  
where  

( )
( ) ( ) ( )

( )

1
1log 1

:

1

t

N i
T tN

i GT t

t

P i H G if t N
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H G if t N

+
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+ < −   =    

= −
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and ( ) ( ) ( )
1: .log

i G
H G P i

P i∈

 
=   

 
∑ . 

The previous structure represents what we can call a non-stationary Active Markov 
Chain. Figure 1 sketches the topology of this kind of chain compared to the other 
types of Markov chains. Active Markov Chains are the generalization of static 
Markov Chains; here are some of the properties of the process following an Active 
Markov Chains model:  

•  It got entropy.  
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•  It is Active, meaning it got an adaptive model minimizing its entropy.   
  

 
Figure 1, (a) stationary, (b) non-stationary static, (c) non-stationary active. 

The definition (5) has a recursive nature. Actually it defines a hierarchical Entropy 
Tree that adapt to the data in a way that realize an optimum compression. It depends 
as its structure explains on the principle of “nothing is left behind”. Meaning, that a 
global view for the multilevel compression of the vector space { }jv is always 
considered, even that for real application only part of the top-level nodes –down to a 
given depth- would be preserved to reconstruct the signal. Each node got a quantity 
value expressing its data size, and by that when selecting the nodes that will 
participate in the construction we have always a criteria to differentiate between the 
perceptional quality of each configuration. Also the advantage in here is that N is 
taken out of the equation, and instead, we got a global point of view of all possible 
combinations of Vector Quantization which are independent from N, and at the same 
time depending on a consistent value which is the Entropy.  
 
From Theorem 1 we can see the logical structure of (5), the difference in (5) is that 
not every event would produce events at the next level. More precisely, when there is 
a zero mach then the population of the next level is altered (reduced), this is taken into 

consideration by the correcting factor 
( )

( )
{ }

1 i

i i

v
P v v

′∆
′

. Also 1 is added to count for 

coding the situation when an event stops at a level. 
 
The convergence of (5) according to Theorem 1 is guided by two contradictions: 

1- The need to stop the recursion by approaching the elements { }iv when there is 
no entropy left.  

2- The need to extend the recursion to have a good compression at each step 
when there is a possibility to that. 

 
This multilevel view of the data is not new, it was implicitly considered for Vector 
Quantization by [3], [6]. What is new in the definition of SEE is the explicit 
expression of this point of view in the Entropy sense. In other words it is a 
quantization of the vector quantization it self.  It also could help providing a unique 
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gate to all kind of possible quantization scenario, not only vectors of square parts-
blocks- of the image.  
 
 
IV. Toward a global framework for the compression  
 
In the previous section we introduced an Entropy point of view of the compression 
using Vector Quantization. At the same time there is many different methods for 
image compression, each with its advantages and disadvantages. Fractal image 
compression is one of the most intriguing image compression methods. In the original 
fractal image compression, which could be considered is a “more intelligent” 
compression; only the relations between different parts of the image are saved to 
construct the entire image without the need of any of the actual data present in each 
part. The origin of the fractal compression idea is the definition of a class of operators 
called contractive operators having the property: 

( )( )0 0, : limNx R x f f x x∀ ∈ ∃ =…  
This process, of fractal compression, is to build the operator f so that it is contractive 
toward x -the image. There is many ways to define this operator in a function of the 
image subject of the compression. One of these ways is to divide the image 
recursively into overlapping triangles –or squares, and after, to project each triangle-
or square- on a triangle-or square- of smaller size [11].   
Also as in the Vector Quantization compression this could have multiple solutions. In 
other words, there could be multiples of f , each contractive toward the same x . By 
the same way, as in Vector Quantization, this ambiguity could find in the Entropy 
expression a reasonable quantifying measure.   
For an example, and in the vector quantization sense, the vector that we are trying to 
get quantized contains the difference between the projected part and the projected-on 
part, the index number of the projected-on part –i.e. triangle number, when using 
triangles- and the other parameters like the rotational parameters and the shrinking 
parameter.  
Of course the relation in here is not direct as in the Vector Quantization situations. 
Especially, in what connect the quantity of the information to the visual aspect of the 
reconstruction -decoding. From which we can understand that the Entropy expression 
of the vector quantization in (5) is not sufficient as a general model.  The development 
of such a model starts from observing that all kind of compression methods follows 
the following primitive steps: 

1- Compression 
2- Compressed situation Data. 
3- Decompression 

This scheme, as simple as it is, is very fundamental, and when expressed in algebra it 
becomes as  

( )x f x= .  (6) 
In matrix algebra this could be expressed as  

F x x= ,  (7) 
where F is the compression matrix of size N N× ,  N is the signal size.  
The global model that we will call the Compression Gate take the following form: 

( )
min ( , )

subject to x f x
Entropy f x

=
  (8) 
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The Entropy term ( ),f x is by definition the quantity of information needed to obtain 
f , and x .  The previous model is not a magical tool that realizes the optimum 
compression; it is just a chance to realize that. What is advantageous according to the 
(8) relation is that f is not only a theoretical representation of other methods for the 
compression, but instead it could be expressed according to (7) to represent the 
calculation of many compression methods.  
For an example in the compression by Fourier Transform it take the form: 

( ) ( )1 2: ,H Hf x X w w x= =e e e  

where e  is the Fourier Transformation matrix and ( )1 2,X w w is the image in the 

frequency domain.  The Entropy of ( )1 2,X w w , which is in this context equivalent to 
f , has the maximum quantity of information in the low frequencies components. In 
other words when considering a vector quantization of ( )1 2,X w w  into blocks 

( ){ }1 2,i i
X w w : 

( )( ){ }( ) ( )( ){ }( )1 2 1 2Re , Im ,i iSEE X w w SEE X w w+ ,  

the end nodes with the lower quantity of information correspond to those dealing with 
the high frequencies. One could roughly say that the Fourier transformation is an 
implicit search into the SEE operator.  
For the compression using the wavelet, which is superior to the Fourier compression 
in compression efficiency, the same kind of discussion does apply.  
 
 
 
 
V. Object and Entropy 
 
Until here we have considered quantization, and eventually the compression, using 
only vectors of equal size. Segmenting the image into blocks of equal size produces 
these vectors. A more adaptive form for modeling the image would be not to limit our 
self to this constraint. In [12] we proposed an Object point of view of the image. In 
this context the vector of values become a surface of points into a binary space. To 
expose the problem in this form it is necessary to be able to define an adaptive 
configuration of the quantization “vector”-Object.  
The Object point of view as it was presented in [12] was presented in the context of 
Object Perception context. On the other hand there is an inherent relation between the 
compression and the perception that we had reported in the past, and was reported 
also in [10], and we are clarifying more in this text. In fact the relation (8) is a clear 
proof of that relation, since we have showed how object perception and compression 
performs in the same space; the space of ( )x f x= . 

To start we will consider the image ( ) [ ] [ ]0 1, : 0,1, 1 0,1, 1S x y N N R +− × − →… … , 

and more generally any signal ( ) [ ]
1

0

: 0,1, , 1
d

k
k

S x N R
−

=

′ − →∏ … , where d  is the signal 

dimension, and { } : 0,1 1k k d
N

= −…

 is the signal size in each dimension, as an Object of 
1

0

d

k
k

N
−

=
∏  points into a binary space. This is formalized according to 



Entropy And Vision 

7 

( ) [ ] { }
0

: 0,1, , 1 0,1
d

S k
k

I x N
=

− →∏ … .   

( ) [ ]( )
[ ]( )

0 1 1

0 1 1

1 , , ,
:

0 , , ,
d d

S
d d

if S x x x x
I x

if S x x x x
−

−

 == 
≠

…

…

  (9) 

with dN is the maximum discreet value the signal could have.  
In [12] the Objects was presumed of infinite support. This is not appropriate for real 
application. For that the distance between two Objects with the same number of points 
N , would be defined as a function of two values as the following  

( ) ( ) ( ) ( )( )
1 1

, 1 2
,

, : , . ,
x y

I I dist x y dist x yα γ γ γχ α
∈ℑ ∈ℑ

= − Ω Ω∑   (10) 

1 2:γΩ ℑ → ℑ , where ( ){ }: : 0u ux I xℑ = ≠  
The value α is the projection parameter, and the γ value is the combination 
parameter. In [12] we have showed how the combinatorial space of 1 2:Ω ℑ → ℑ , 
could be projected on the line. And for that we noted in here γΩ  as the permutation 
corresponding to the value γ  on the combinatorial line. In matrix notation we would 
have  

( ), 1 2 2 1
1, T

ij ij

I I D W DWα γ γ γχ
α

 = −  
∑   (11) 

where uD is the auto-distance matrix corresponding to the signal uI , defined as 

: 0, , 1
:u ij ij N

D d
= −

 =  
…

, ( ): ,ij i jd dist x x= .   (12) 

And W γ is the permutation matrix defined as  

( )
( ): 0, 1

1
: , :

0ij ijij N

if j i
W w w

if j iγ = −

 = Ω
 = =   ≠ Ω

…

.   (13) 

Before that we get into the Entropy expression in the Object sense we will need few 
definitions. 
 
Definition 2 an Object is a finite group of points { }{ }1: : 0, , 1d

iO x R i N+= ∈ ∈ −… , 

we call 1: ,O i i
i

C x x O
O

= ∈∑  as the center of O . 

 
Definition 3 the distance between each two Objects of the same number of points is 

defined as ( ) ( ) ( ) ( )( )
1 1

, 1 2
,

, : , . ,
x O y O

O O dist x y dist x yα γ γ γχ α
∈ ∈

= − Ω Ω∑  

1 2:O OγΩ → . 
 
Definition 4 we define the difference between two Objects 1 2,O O  as  

( ) ( )( )( ){ }1 2
, 1 2 1, : : , . ,i i i i iO O

diff O O x x dist y C y C y Oα γ γα= = − Ω − ∈ . 
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Definition 5 we call a Generalization Operator NG any Object operator that produce 
from any given Object, and for any N  a new Object having an N number of points, 
so that ( )

22 2, : NO N G O N∀ = .  
 
Definition 6 we call the space ( )OΡ any space of objects belonging to O so that  

( )O OΡ =∪ , ( ) ( )1 2 1 2, ,O O O O O O φ∀ ∈Ρ ∈Ρ ∩ = . 
 
The Entropy expression in the Object sense would become  

{ }( )
( ) ( ) ( )

( )
{ } ( )( )

{ }
{ }

{ }

1 1min . log 1
1

0 1

i
i i

i i i i i
i

i

i

O
P O SEE O

P O P O O if O
SEE O

subject to O

if O

 ′∆ 
′ ′+ + ∆   ′ ′ >   =

′

≤

∑

  (14) 
where 

( ) ( )( ) ( )( ) ( ) ( )( )( ){ }, ,: , : , , , , arg min ,
j j j

i i j i j i jO O O
O diff G O O diff G O O i G O Oα γ α γ α γ χ′ ′ ′ ′∆ = ≠ =0

  
In the previous formalization, and for simplicity, we did not take the elements ,α γ  
into consideration. Meanwhile, this could be done by increasing the dimension of 
each Object in ( )iO ′∆ . For a given Object –or image, the problem { }( )iSEE O  is also 
subject to the problem  

( )( )
( )

min
subject to O

SEE O
Ρ

Ρ   (15) 

 
 
VI. Conclusion  
 
We had the chance to provide an Entropy point of view to both of quantization and 
perception. In what concern Vector Quantization we provided a more logical manner 
for the decision on the number of the quantization vectors. The principle of “nothing 
is left behind” is very fundamental. It represents a new technique to provide an in 
depth understanding of many compression techniques, and helps having a unified 
perspective for both of the compression without lost with the compression with lost.  
The new concept of Active Markov Chains is very fundamental, from one side it 
could be used in any compression (identification) scenario, and at the same time it 
defines stochastic processes that are of a great degree of adaptability. 
Also we have presented an Entropy expression for Object Analysis, which could 
provide an enhanced compression ratio. Of course the compression according to (15), 
or (14) is not an optimal compression, but explain how there is always a way to 
minimize the Entropy of: 

( )x f x= . 
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