Missing data estimation using polynomial kernels - Archive ouverte HAL
Article Dans Une Revue Lecture Notes in Computer Science Année : 2005

Missing data estimation using polynomial kernels

Maxime Berar
Michel Desvignes
  • Fonction : Auteur
  • PersonId : 961345
Gérard Bailly

Résumé

In this paper, we deal with the problem of partially observed objects. These objects are defined by a set of points and their shape variations are represented by a statistical model. We presents two model in this paper : a linear model based on PCA and a non-linear model based on KPCA. The present work attempts to localize of non visible parts of an object, from the visible part and from the model, using the variability represented by the models. Both are applied to synthesis data and to cephalometric data with good results.
Fichier principal
Vignette du fichier
LNCS_2005_Berar.pdf (823.71 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00081903 , version 1 (26-06-2006)

Identifiants

  • HAL Id : hal-00081903 , version 1

Citer

Maxime Berar, Michel Desvignes, Gérard Bailly, Yohan Payan. Missing data estimation using polynomial kernels. Lecture Notes in Computer Science, 2005, 3686, pp.390-399. ⟨hal-00081903⟩
2013 Consultations
144 Téléchargements

Partager

More