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Abstract— This paper provides a bound on the number of
numeric operations (fixed or floating point) that can safely be
performed before accuracy is lost. This work has important
implications for control systems with safety-critical software, as
these systems are now running fast enough and long enough
for their errors to impact on their functionality. Furthermore,
worst-case analysis would blindly advise the replacement of
existing systems that have been successfully running for years.
We present here a set of formal theorems validated by the PVS
proof assistant. These theorems will allow code analyzing tools
to produce formal certificates of accurate behavior. For example,
FAA regulations for aircraft require that the probability of an
error be below 10−9 for a 10 hour flight [1].

I. INTRODUCTION

Formal proof assistants are used in areas where errors can

cause loss of life or significant financial damage as well as

in areas where common misunderstandings can falsify key

assumptions. For this reason, formal proof assistants have been

much used in floating point arithmetic [2], [3], [4], [5], [6].

Previous references just link to a few projects using proof

assistants such as ACL2, HOL [7], Coq [8] and PVS [9].

All these projects deal with worst case behavior. Recent

work has shown that worst case analysis is meaningless for

applications that run for a long time. For example, a process

adds numbers in ±1 to single precision, and therefore has a

round-off error of ±2−25. If this process adds 225 items, then

the accumulated error is ±1, and note that 10 hours of flight

time at operating frequency of 1 kHz is approximately 225

operations. Yet we easily agree that provided the round-off

errors are not correlated, the actual accumulated error will be

much smaller.

Developments in probability share many features with de-

velopments in floating point arithmetic:

1) Each result usually relies on a long list of hypotheses. No

hypothesis can be removed, but slight variations induce

a large number of results that look almost identical.

2) Most people that use the results are not specialists in

the specific field. They want a trustworthy result but

they are not proficient enough to either select the best

scheme or detect minor faults that can quickly lead to

huge problems.

For these reasons, we are strongly of the opinion that

validation of a safety-critical numeric software using prob-

ability should be done using an automatic proof checker. We

present in Section II the model that we are using. Section III

presents our formal developments in probability. The Doobs-

Kolmogorov inequality provides an effective way to compute

the probability that a piece of software will successfully run

within an acceptable error bound.

This work is connected to continuous space Markov random

walks or renewal-reward processes though these applications

focus on asymptotic behavior [10], [11]. We want to precisely

bound the probability of remaining within bounds for a given

number of steps. This is connected to ruin probabilities [12]

and the Doobs-Kolmogorov inequality for martingales [13]. In

the rest of this text, we assume that the created round-off and

measure errors are unbiased independent random variables or

that their expectation conditional to the previous errors is zero.

II. STOCHASTIC MODEL

A. Individual round-off errors of fixed and floating point
operations

We are dealing with fixed or floating point numbers. A

floating point number represents v = m × 2e where e is an

integer and m is a fixed point number [14]. IEEE 754 standard

[15] uses sign-magnitude notation for the mantissa and the

first bit of the mantissa is implicit in most cases leading to

the following definition where s and all the bi are either 0 or

1 (bits).

v = (−1)s × 1.b1 · · · bp−1 × 2e

Some circuits such as TMS320 uses two’s complement nota-

tion for m leading to the following definition [16].

v = (1.b1 · · · bp−1 − 2 × s) × 2e

For both notations, we define for any representable number

x, the unit in the last place function where e is the exponent

of x as above. In fixed point notation, e is a constant provided

by the data type.

ulp(v) = 2e−p+1

A variable v is set either by an external sensor or by an

operation. Trailing digits of numbers randomly chosen from

a logarithmic distribution [17, p. 254-264] are approximately

uniformly distributed [18]. So we can assume that if v is a
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data obtained by an accurate sensor, the difference between

v and the actual value v is uniformly distributed in the range

±ulp(v)/2. We can model the representation error v − v by a

random variable X with expectation E(X) = 0 and variance

E(X2) = ulp(v)2/12. The sensor may be less accurate leading

to a larger variance but it should not be biased.

Round-off errors created by operators are discrete and

they are not necessarily distributed uniformly [19]. For each

operator � implementing the real operation ∗, we define

X = V � W − V ∗ W

where V and W are number distributed logarithmically over

specified ranges. The distribution of X is very specific but

we verify that the expectation is E(X) = 0 and we bound its

variance E(X2).
Fixed point additions do not create any additional round-

off error provided its output is in the same format as its

inputs. Reducing the format of a fixed point number creates a

uniformly distributed round off error provided the input was

logarithmically distributed [18].

B. Round off errors of an accumulation loop

We will use two examples. The first one is given in listing 1.

It sums data produced by a fixed point sensor xi with a

measure error Xi.

Listing 1. Simple discrete integration from [20]

1 a0 = 0
2 f o r ( i = 0 ; i < n ; i = i + 1 )
3 ai+1 = ai + xi

We can safely assume that Xi are independent identical

uniformly distributed random variables over ±ulp(xi)/2. Data

are fixed point meaning that the sum ai + xi does not

introduce any rounding error and the weigth of one unit in

the last place does not depend on xi so we write ulp instead

of ulp(xi). After n iterations, we want the probability that

the accumulated measure error have always been constrained

into user specified bounds ε. Using the Doobs-Kolmogorov

inequality of Theorem 3 where Si =
∑i

j=1 Xj , we have that

P

(
max

1≤i≤n
(|Si|) ≤ ε

)
≤ 1 − nulp2

12ε2
.

The second example is given in listing 2. It solves initial

value problem (IVP) ordinary differential equations (ODE) by

computing an incremental slope Φ(ti, hi, xi, f) based on the

current time ti, the current step size hi, the current value of

the function xi and the differential equation x′(t) = f(t, x(t)).
The function Φ may be very simple using Euler’s explicit

method or more complex using any Runge-Kutta method or

any implicit method. We focus here on scalar ODEs although

our analysis may apply to vectors. Line 4 assume for the

sake of simplicity that hi is a constant although this is not

neccessary.

Listing 2. Solving initial value problem ordinary differential equations [21]

1 f o r ( i = 0 ; i < n ; i = i + 1 ) {
2 xi+1 = xi + hi × Φ(ti, xi, hi, f)
3 ti+1 = ti + hi

4 hi+1 = hi

5 }

Our first guess was to introduce a sequence of random

variables {Xn} that models the difference introduced by

round-off errors at step i. In most cases, Φ introduces a drift

due to higher order effect of random variables and a drifted

correlation between the error introduced at step i+1 and errors

on the previous steps. For example, the square of a rounded

value v + V where v is the stored value and V is a random

variable, introduces a positive drift due to V 2 term that is

always positive. So we model the effect of the round-off error

by two terms Xi and Yi. We use the Doobs-Kolomogorov

inequality of Theorem 3 for the sequence {Xn} and worst

case error analysis for the sequence {Yn} setting the following

conditional expectation

E(Xn; X1 · · ·Xn−1) = 0.

Random variables Xi+1 and Yi+1 account for the round-off

and propagated errors introduced by replacing

xi + Xi + Yi + hi × Φ(ti, xi + Xi + Yi, hi, f)

with

xi ⊕ hi ⊗ Φ̃(ti, xi, hi, f)

where Φ̃ is evalaution of Φ in computer. First order effect of

round-off errors created are accounted in Xi+1. Higher order

effect of round-off errors created and propagated effect of Xi

and Yi in Φ are accounted in Yi+1.

{Xn} is constructed to contain only independent random

variables with no drift E(Xi) = 0 and we only need to bound

their variance E(X2
i ). We will do worst case analysis on {Yn}

and we bound each Yi with interval arithmetic [22]. Software

such as Fluctuat [23] is already able to distinguish between

first order and higher order error terms.

III. PROBABILITY DISTRIBUTION OF BEING SAFE

A. Probability

We have two main choices in presenting an account of

probability: one is to take an informal approach, the second

involves taking foundational matters seriously. In this paper we

will consistently try to present matters informally except for

Section III-B, however the reader should be aware that the PVS

system underlying these results is built on the firm foundations

for probability theory (using measure theory) [24], [25]. A

middle way between extreme formality and an accessible level

of informality is to be found in [13].

We begin by defining the distribution function of a random

variable.

Definition 1: A random variable X has distribution func-
tion F , if P(X ≤ x) = F (x)
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As we will be studying continuous random variables, these

are defined as follows:

Definition 2: A random variable X is continuous if its

distribution function can be expressed as

F (x) =
∫ x

−∞
f(x)dx

for some integrable function f : R → [0,∞). We call the

function f the probability density function for the random

variable X .

As an example of a continuous random variable, consider the

temperature T at a certain point in an industrial process. Even

if an attempt is being made to hold this temperature constant,

there will be minor fluctuations, and these can be modeled

mathematically by assuming that T is a continuous random

variable.

The other concept we will need is that of dependent

and independent random variables. Suppose we model the

outcomes of the tossing of two coins C1 and C2 by random

variables. Provided there is nothing underhand going on, we

would expect the result of tossing the first coin to have no

effect on the result of the second coin, and vice versa. If this

is the case, then we say that C1 and C2 are independent.
Consider an alternative scenario in which having tossed the

coin C1 and discovered that it has come up “heads”, and we

now define the random variable C2 to be: the outcome: “the

downward facing side of the coin C1 is tails”. In this case the

random variables C1 and C2 are dependent.
The other idea we must address is that of conditional

probability.

Definition 3: We define the probability of “A given B”

(written P(A; B)) as:

P(A; B) =
P(A ∩ B)

P(B)

whenever P(B) > 0.

As an example: if event A is “I am carrying an umbrella” and

event B is “it is raining”, then Pr(A; B) is the probability

that “I am carrying an umbrella given that it is raining”.

Note that although in general P(A; B) �= P(B; A), in this

particular case, if you live in Perpignan or Manchester, then on

most days: P(A; B) = P(B; A), though for rather different

reasons.

B. A Formal Development of probability

Definition 4: A σ-algebra over a type T , is a subset of

the power-set of T , which includes the empty set {}, and is

closed under the operations of complement, countable union

and countable intersection.

If T is countable – as it is for discrete random variables –

then we may take σ = ℘(T ); if the set T is the reals – as it

is for continuous random variables – then we make σ = B:

the Borel sets.

Definition 5: A Measurable Space (T, σ) is a set (or in PVS

a type) T, and a σ-algebra over T .

Definition 6: A function µ : σ → R≥0 is a Measure over

the σ-algebra σ, when µ({}) = 0, and for a sequence of

disjoint elements {En} of σ:

µ

( ∞⋃
n=0

En

)
=

∞∑
n=0

µ(En).

Definition 7: A Measure Space (T, σ, µ) is a measurable

space (T, σ) equipped with a measure µ.

Definition 8: A Probability Space (T, σ, P) is a measure

space (T, σ, P) in which the measure P is finite for any set in

σ, and in which:

P(Xc) = 1 − P(X).
The PVS development of probability spaces in Figure 1,

takes three parameters: T , the sample space, S, a σ-algebra of

permitted events, and, P, a probability measure, which assigns

to each permitted event in S, a probability between 0 and 1.

Properties of probability that are independent of the particular

details of T , S and P are then provided in this file. If we

wished to discuss continuous random variables then we would

partially instantiate this PVS file with T = real, and S =
borel_set. If we go further and also specify P, we will

have described the random variable distributions as well. Of

particular interest later is the fact that the sum of two random

variables is itself a random variable, and consequently any

finite sum of random variables will be a random variable.

Definition 9: If (T1, σ1, P1) and (T2, σ2, P2) are probability

spaces then we can construct a product probability space
(T3, σ3, P3), where:

T3 = T1 × T2

σ3 = σ(σ1 × σ2)
P
′
3(a, b) = P1(a)P2(b)

where P3 is the extension of P
′
3 that has the whole of σ3 as

its domain.

Note that the product probability P3 has the effect of

declaring that the experiments carried out in probability spaces

(T1, σ1, P1) and (T2, σ2, P2) are independent. Obviously, the

process of forming products can be extended to any finite

product of finitely many probability spaces. Currently, it is not

clear whether PVS is powerful enough to capture the notion of

a countably infinite sequence of random variables {Xn}∞n=1;

fortunately, in this work we don’t currently require this result.

In Figure 2, we define the conditional probability P(A; B)
(written P(A,B) as PVS will not permit the use of “;” as an

operator). We take the opportunity to prove Bayes’ Theorem

along the way.

C. Continuous Uniform Random Variables

If X is a continuous random variable distributed uniformly

over the interval [a, b], then informally it takes any value within

the interval [a, b] with equal probability.

To make this more formal, we define the characteristic
function of a set S as the function χS , which takes the values

1 or 0 depending on whether it is applied to a member of S.
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probability_space[T:TYPE+, (IMPORTING finite_measure@subset_algebra_def[T]) % sample space
S:sigma_algebra, (IMPORTING probability_measure[T,S]) % permitted events
P:probability_measure % probability measure

]: THEORY

BEGIN
IMPORTING finite_measure@sigma_algebra[T,S],probability_measure[T,S],continuous_functions_aux[real]

A,B: VAR (S)
x,y: VAR real
n0z: VAR nzreal
t: VAR T
n: VAR nat

null?(A) :bool = P(A) = 0
non_null?(A) :bool = NOT null?(A)
independent?(A,B):bool = P(intersection(A,B)) = P(A) * P(B) % Note that it DOES NOT say = 0
random_variable?(X:[T->real]):bool = FORALL x: member({t | X(t) <= x},S)
zero: (random_variable?) = (LAMBDA t: 0)
random_variable: TYPE+ = (random_variable?) CONTAINING zero

X,Y: VAR random_variable
XS: VAR [nat->random_variable]

<=(X,x):(S) = {t | X(t) <= x}; % Needed for syntax purposes! < > = /= >= omitted

complement_le1: LEMMA complement(X <= x) = (x < X)
complement_lt1: LEMMA complement(x < X) = (X <= x)
complement_eq : LEMMA complement(X = x) = (X /= x)
complement_lt2: LEMMA complement(X < x) = (x <= X)
complement_le2: LEMMA complement(x <= X) = (X < x)
complement_ne: LEMMA complement(X /= x) = (X = x)

-(X) :random_variable = (LAMBDA t: -X(t)); % Needed for syntax purposes! + - * / omitted

+(X,Y) :random_variable = (LAMBDA t: X(t) + Y(t));
-(X,Y) :random_variable = (LAMBDA t: X(t) - Y(t));

partial_sum_is_random_variable:
LEMMA random_variable?(LAMBDA t: sigma(0,n,LAMBDA n: XS(n)(t)))

distribution_function?(F:[real->probability]):bool
= EXISTS X: FORALL x: F(x) = P(X <= x)

distribution_function: TYPE+ = (distribution_function?) CONTAINING
(LAMBDA x: IF x < 0 THEN 0 ELSE 1 ENDIF)

distribution_function(X)(x):probability = P(X <= x)

F: VAR distribution_function

convergence_in_distribution?(XS,X):bool
= FORALL x: continuous(distribution_function(X),x) IMPLIES

convergence((LAMBDA n: distribution_function(XS(n))(x)),
distribution_function(X)(x))

invert_distribution: LEMMA LET F = distribution_function(X) IN
P(x < X) = 1 - F(x) % Lemma 2.1.11-a (G&S)

interval_distribution: LEMMA LET F = distribution_function(X) IN
x <= y IMPLIES
P(intersection(x < X, X <= y)) = F(y) - F(x) % Lemma 2.1.11-b (G&S)

limit_distribution: LEMMA LET F = distribution_function(X) IN
P(X = x) = F(x) - limit(LAMBDA n: F(x-1/(n+1))) % Lemma 2.1.11-c (G&S)

distribution_0: LEMMA convergence(F o (lambda (n:nat): -n),0) % Lemma 2.1.6-a0 (G&S)
distribution_1: LEMMA convergence(F,1) % Lemma 2.1.6-a1 (G&S)
distribution_increasing: LEMMA increasing?(F) % Lemma 2.1.6-b (G&S)
distribution_right_continuous: LEMMA right_continuous(F) % Lemma 2.1.6-c (G&S)

END probability_space

Fig. 1. Abbreviated probability space file in PVS
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conditional[T:TYPE+, (IMPORTING finite_measure@subset_algebra_def[T]) % sample space
S:sigma_algebra, (IMPORTING probability_measure[T,S]) % permitted events
P:probability_measure % probability measure
]: THEORY

BEGIN

IMPORTING probability_space[T,S,P],finite_measure@sigma_algebra[T,S]

A,B: VAR (S)
n,i,j: VAR nat
AA,BB: VAR disjoint_sequence

P(A,B):probability = IF null?(B) THEN 0 ELSE P(intersection(A,B))/P(B) ENDIF

conditional_complement: LEMMA
P(A,B) * P(B) + P(A,complement(B)) * P(complement(B)) = P(A)

conditional_partition: LEMMA
Union(image(BB,fullset[below[n+1]])) = fullset[T] IMPLIES
P(A) = sigma(0,n, LAMBDA i: P(A, BB(i)) * P(BB(i)))

bayes_theorem: THEOREM
NOT null?(B) AND
Union(image(AA,fullset[below[n+1]])) = fullset[T] IMPLIES
P(AA(j),B) = P(B,AA(j))*P(AA(j))/

sigma(0,n, LAMBDA i: P(B, AA(i)) * P(AA(i)))

END conditional

Fig. 2. Conditional probability file in PVS

Definition 10:

χS(x) =
{

1 x ∈ S
0 x �∈ S

Now the probability density function f of the uniform random

variable over the closed interval [a, b] is 1
b−aχ(a,b]. From this

we can calculate the distribution function:

F (x) =
∫ x

−∞
f(x)dx,

from which we can calculate the probability

P(x < X <= y) = F (y) − F (x).

In the case where X is distributed U[0,1], and because – for

any f(x) with
∫

f = F – we have∫ ∞

−∞
f(x)χ(a,b](x)dx =

(F (x) − F (a))χ(a,b](x) + (F (b) − F (a))χ(b,∞)(x).

We also observe that if X is distributed U[a,b], then E(X) =
a+b
2 , and Var(X) = (a−b)2

12 . So, with a = 0, b = 1 we get:

µ = 1
2 , σ2 = 1

12 .

D. Sums of Continuous Random Variables

Definition 11: If we have a sequence of continuous random

variables {Xn}, then we define their partial sums as a se-

quence of continuous random variables {Sn} with the property

Sn =
n∑

i=1

Xi.

Theorem 1: If continuous random variables X and Y have

joint probability density functions f , then Z = X + Y has

probability density function:

fZ(z) =
∫ ∞

−∞
f(x, z − x)dx.

In the special case where X and Y are independent, then

(because the joint probability density function f(x, y) can be

expressed as the product fX(x)fY (y)) we have the Continuous
Convolution Theorem:

Theorem 2: If continuous random variables X and Y are

independent and have probability density functions fX and fY

respectively, then Z = X+Y has probability density function:

fZ(z) =
∫ ∞

−∞
fX(x)fY (z−x)dx =

∫ ∞

−∞
fX(z−x)fY (x)dx.

E. Reliability of long calculations

What we are actually interested in is whether a series of

calculations might accumulate a sufficiently large error to

become meaningless. In the language we have developed, we

are asking what is the probability that all calculations of length

upto n is correct:

P

(
max

1≤i≤n
(|Si|) ≤ ε

)
.

Because they have nice convergence properties, we are

especially interested in martingales
Definition 12: A sequence {Sn} is a martingale with re-

spect to the sequence {Xn}, if for all n:

1) E(|Sn|) < ∞; and

2) E(Sn+1; X1, X2, . . . , Xn) = Sn
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We first observe that the sequence Sn = Σn
i=1Xi (as pre-

viously defined) is a martingale with respect to the sequence

{Xn}.

Lemma 1: The sequence {Sn}, where Sn =
∑n

i=1 Xi, and

each Xn is an independent random variable with E(Xn) = 0,

is martingale with respect to the sequence {Xn}.

Alternatively as could be needed for program 2:

Lemma 2: The sequence {Sn}, where Sn =
∑n

i=1 Xi, and

{Xn} satisfies for all i

E(Xi) = 0
E(Xi; X1 · · ·Xi−1) = 0,

the sequence {Sn} is martingale with respect to the sequence

{Xn}.

We now make use of the Doobs-Kolmogorov Inequality

presented Figure 3. The statement of Theorem 3 is deceptively

simple. The key as the astute reader will observe is that we

have a restricted form of the Doobs-Kolmogorov Inequality

in which the sample spaces of the underlying sequence of

random variables are identical. This is an artifact of the PVS

type system which would require us to prove multiple version

of the theorem at each tuple of instantiated types.

Although the type system used in PVS is extraordinarily

flexible, it is not as malleable as that used by professional

mathematicians. To capture mathematics in its entirety using

a theorem prover, we would need to dispense with any form

of type checking1. For its intended use as an aide to proving

programs correct, this would fatally weaken PVS as a useful

tool. In addition, in many practice areas of mathematics, the

full generality of categorical constructs is an unnecessary

luxury, albeit one with a seductive, siren-like, appeal.

Theorem 3 (Doobs-Kolmogorov Inequality): If {Sn} is a

martingale with respect to {Xn} then, provided that ε > 0:

P

(
max

1≤i≤n
(|Si|) ≥ ε

)
≤ 1

ε2
E(S2

n)

In our particular case where each Xi is an independent

random variable with E(Xi) = 0, and Var(Xi) = σ2
i , we

observe that

P

(
max

1≤i≤n
(|Si|) ≤ ε

)
≥ 1 − 1

ε2

n∑
i=1

σ2
i

The short conclusion is therefore that eventually errors will

accumulate and overwhelm the accuracy of any numerical

software. However, if ε is large enough and each of the σ2
i are

small enough, then the number of iterations required for this

to occur will be high enough to be of no practical significance.

Crucially, the results hinge critically on the errors {Xn} being

independent.

IV. FUTURE WORK

This work will be continued in two directions. The first

direction is to modify Fluctuat to generate theorems that can be

checked automatically by PVS using ProofLite2 as proposed

1A weak form of type consistency is used in category theory, but this is so
weak that we can introduce the Russel Paradox.

2http://research.nianet.org/~munoz/ProofLite/.

in [5], [6]. This work will be carried in collaboration with

the developers of Fluctuat. The software will conservatively

estimate the final effect of the error introduces by each

individual floating point operations and compute upper bounds

of their variances.

The second direction is to develop and check accurate proofs

about the round-off errors of individual equations. A uniformly

distributed random variable whose variance depends only on

the operation and the computed result might provide a too

pessimistic bound. For example the floating point addition of

a large number with a small number absorbs the small number

meaning that the round-off error may be far below half an ulp

of the computed result.

Two’s complement operation of TMS320 circuit can either

round or truncate the result. If truncation is used, it introduces

a drift and Doobs-Kolmogorov inequality for martingales can-

not be used. Should we wish to extend this work to account for

drifts (non-zero means for the random variables {Xn}), then

we anticipate making use of Wald Identity. Such developments

will also be necessary to address higher order error terms that

introduce a drift.

This library and future work will be included into NASA

Langley PVS library3 as soon as it becomes stable.

We saw with the example of listing 2 that inductions on the

variances of the random variables can be crudely bounded.

Yet, we may expect tighter results if we use tools that are

able to infer inductions and solve them mathematically but

this domain is far from the authors’ research areas.

V. CONCLUSIONS

To the best of our knowledge this paper presents the first

application of the Doobs-Kolmogorov Inequality to software

reliability and the first generic formal developpment able to

handle continuous, discrete and non-continuous non-discrete

random variable in higher order logic proof assistants. In

addition, we have demonstrated a slightly weaker version of

this result in PVS. We claim that the utility of this weaker

result is not unduly restrictive, when compared to the general

result. The major restriction lies in the fact that we have to

demonstrate that a sequence of overall errors is martingale

with respect to the sequence of individual errors. We have been

forced to make simplifications to the mathematical model of

our software to ensure that this is the case. In particular, we

have been forced to insist that our individual errors have no

drift, and are independent.

We have been surprised that the limit on the reliability of

a piece of numeric software could be expressed so succinctly.

Notice that even with a high tolerance of error, and with

independent errors, we will still eventually fail. Our results

permit the development of safe upper limits on the number

of operations that a piece of numeric software should be

permitted to undertake.

It is worth pointing out that violating our assumptions

(independence of errors, and zero drift) would lead to worse

3http://shemesh.larc.nasa.gov/fm/ftp/larc/
PVS-library/pvslib.html.
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doobs[T:TYPE+, (IMPORTING finite_measure@subset_algebra_def[T]) % sample space
S:sigma_algebra, (IMPORTING probability_measure[T,S]) % permitted events
P:probability_measure % probability measure

]: THEORY

BEGIN

IMPORTING probability[T,S,P],martingale,reals@bounded_reals

epsilon: VAR posreal
X,S: VAR [nat -> random_variable]
pn: VAR posnat

doobs_kolmogorov: THEOREM martingale?(X,S) IMPLIES
P(max(image(abs o S,below(pn))) >= epsilon)

<= E(sq(S(pn)))/sq(epsilon)

END doobs

Fig. 3. Doobs-Kolmogorov inequality in PVS

results, so one should treat the limits we have deduced with

caution, should these assumptions not be met.
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