N

N

Stochastic Formal Methods: An application to accuracy
of numeric software

Marc Daumas, David Lester

» To cite this version:

Marc Daumas, David Lester. Stochastic Formal Methods: An application to accuracy of numeric
software. Jan 2007, 7 p, 10.1109/HICSS.2007.499 . hal-00081413v4

HAL Id: hal-00081413
https://hal.science/hal-00081413v4
Submitted on 19 Dec 2006 (v4), last revised 17 May 2007 (v5)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00081413v4
https://hal.archives-ouvertes.fr

hal-00081413, version 4 - 19 Dec 2006

Stochastic Formal Methods:
An application to accuracy of numeric software

Marc Daumas David Lester
CNRS-LIRMM visiting LP2A School of Computer Science
University of Perpignan Via Domitia University of Manchester
Perpignan, France 66860 Manchester, United Kingdom M13 9PL
Email: Marc.Daumas@Univ-Perp.Fr Email: David.R.Lester@Manchester.Ac.UK

Abstract— This paper provides a bound on the number of ability should be done using an automatic proof checker. We
numeric operations (fixed or floating point) that can safely 2 present in Sectiof]ll the model that we are using. Sedtipn Il
performed before accuracy is lost. This work has important resents our formal developments in probability. The Deobs

implications for control systems with safety-critical sofware, as Kol . lit id ffecti t ¢
these systems are now running fast enough and long enough oimogorov Inequalily provides an efiective way to compute

for their errors to impact on their functionality. Furtherm ore, the probability that a piece of software will successfullynr
worst-case analysis would blindly advise the replacementfo within an acceptable error bound.

existing systems that have been successfully running for ges. This work is connected to continuous space Markov random
We present here a set of formal theorems validated by the PVS walks or renewal-reward processes though these applisatio

proof assistant. These theorems will allow code analyzingobls . . .
to produce formal certificates of accurate behavior. For exeple, focus on asymptotic behaV|10|:[11]. We want to pregisel

FAA regulations for aircraft require that the probability o f an Pound the probability of remaining within bounds for a given
error be below 10~° for a 10 hour flight [ﬂ]. number of steps. This is connected to ruin probabilitjeq [12

and the Doobs-Kolmogorov inequality for martingalgs| [13].
Related work on theoretic construction of the probabilpgce
Formal proof assistants are used in areas where errors @8Mg higher order logic can be found "D14D15] and
cause loss of life or significant financial damage as well @sferences herein. In the rest of this text, we assume tieat th
in areas where common misunderstandings can falsify kgjated round-off and measure errors are unbiased independ
assumptions. For this reason, formal proof assistantstes® random variables or that their expectation conditionalhte t

Previous references just link to a few projects using proof

assistants such as ACL2, HO[] [7], Cd{ [8] and P\ [9]. Il. STOCHASTIC MODEL

All these projects deal with worst case behavior. ReceAt Individual round-off errors of fixed and floating point
work has shown that worst case analysis is meaningless émerations
applications that run for a long time. For example, a processywe are dealing with fixed or floating point numbers. A
adds numbers int-1 to single precision, and therefore has @oating point number represents= m x 2¢ wheree is an
round-off error of:272°. If this process adds” items, then jnteger and is a fixed point numbef[}6]. IEEE 754 standard
the accumulated error is1, and note that 10 hours of flight [7] uses sign-magnitude notation for the mantissa and the
time at operating frequency of 1 kHz is approximatel/ first bit of the mantissa is implicit in most cases leading to

operations. Yet we easily agree that provided the round-@ffe following definition wheres and all theb; are either 0 or
errors are not correlated, the actual accumulated erroioeil 1 (pjts).
much smaller. v=(=1)°x1.by---byp_1 x 2°
Developments in probability share many features with de-
velopments in floating point arithmetic: Some circuits such as TMS320 uses two’s complement nota-

1) Each result usually relies on a long list of hypotheses. Nig" for m leading to the following definition[[38].

hypothesis can be removed, but slight variations induce v=(1by by 1 —2xs)x2°

a large number of results that look almost identical. both . define f bl b
2) Most people that use the results are not specialists in” OF Poth hotations, we define for any representable number

the specific field. They want a trustworthy result but: the unit in the I_ast pla<_:e functi_on yvheeeis the expor_lent
they are not proficient enough to either select the bedt? as above. In fixed point notationa,is a constant provided

scheme or detect minor faults that can quickly lead t%y the data type. e—ptl
huge problems. ulp(v) = 2777
For these reasons, we are strongly of the opinion thatA variable v is set either by an external sensor or by an
validation of a safety-critical numeric software using Ipro operation. Trailing digits of numbers randomly chosen from

I. INTRODUCTION



a logarithmic distributionﬂg, p. 254-264] are approxielgt Listing 2. Solving initial value problem ordinary differéial equations[[43]
uniformly distributed ]. So we can assume thawifs a
data obtained by an accurate sensor, the difference betweerfer (1 =0; i<n; i=i+1) {
. . L . 2 @1 = + hy X P(ti, x4, hiy f)
v and the actual value is uniformly distributed in the range , ;" —¢ 4 p,
+ulp(v)/2. We can model the representation ercor v by a  «  hit1 = hy
random variableX with expectationf(X) = 0 and variance ° }
E(X?) = ulp(v)?/12. The sensor may be less accurate leading
to a larger variance but it should not be biased. Our first guess was to introduce a sequence of random
Round-off errors created by operators are discrete awgriables {X,} that models the difference introduced by
they are not necessarily distributed uniformly][21]. Foclea round-off errors at step. In most cases® introduces a drift
operator® implementing the real operation we define due to higher order effect of random variables and a drifted
X=VeW_VsW correlation between the error introduced at step and errors
on the previous steps. For example, the square of a rounded

whereV and W are number distributed logarithmically ovenvaluev + V wherew is the stored value anl is a random
specified ranges. The distribution o&f is very specific but variable, introduces a positive drift due 16% term that is
we verify that the expectation &(X) = 0 and we bound its always positive. So we model the effect of the round-off erro
varianceE(X?). by two termsX; and Y;. We use the Doobs-Kolomogorov

Fixed point additions do not create any additional roundghequality of Theoren{]3 for the sequen¢&,} and worst
off error provided its output is in the same format as itsase error analysis for the sequertg } setting the following
inputs. Reducing the format of a fixed point number createscanditional expectation
uniformly distributed round off error provided the input sva
logarithmically distributed |EO]. E(Xn; X1+ Xpo1) = 0.

B. Round off errors of an accumulation loop Random variables(;; andY;; account for the round-off
1and propagated errors introduced by replacing

We will use two examples. The first one is givenin IistE]\g

It sums data produced by a fixed point sensgrwith a 2o+ Xi + Y+ hi x ©(ts, 25 + X + Vi, ha, )
measure erroi;. ’ s

with
Listing 1. Simple discrete integration frorﬂZZ] z, ®h; ® fi)(t Iy f)
7 (3 1y M1y 10y
ra=0 L where® is evalaution of® in computer. First order effect of
2 for (1=0; i<n; i=1i+1) .
3 aipl = ai 4 round-off errors created are accountedXpn, ;. Higher order

effect of round-off errors created and propagated effecX pf
andY; in ® are accounted ifY;, ;.

{X,} is constructed to contain only independent random
variables with no driffE(X;) = 0 and we only need to bound
Weir varianceE(X?). We will do worst case analysis div,, }

We can safely assume thaf; are independent identical
uniformly distributed random variables oveulp(x;)/2. Data
are fixed point meaning that the sum + x; does not

introduce any rounding error and the weigth of one unit i S . :
the last place does not depend snso we write ulp instead and we bound each; with interval arithmetic[[24]. Software

of ulp(z:). After n iterations, we want the probability thatSUCh as FluctuathS] is already able to distinguish between

first, order and higher order error terms.
the accumulated measure error have always been constralfﬁéa 9

into user specified bounds Using the Doobs-Kolmogorov I1l. PROBABILITY DISTRIBUTION OF BEING SAFE
inequality of Theorenf]3 whers; = > =1 X, we have that

A. Probability
2
P ( max (|S;]) < 6) <1- "UIF; . We have two main choices in presenting an account of
lsisn 12¢ probability: one is to take an informal approach, the second

The second example is given in listifify 2. It solves initidhvolves taking foundational matters seriously. In thip@awe
value problem (IVP) ordinary differential equations (ODy) will consistently try to present matters informally excépt
computing an incremental slopk(t,, h;, z;, f) based on the Sectio, however the reader should be aware that th® PV
current timet;, the current step sizg;, the current value of system underlying these results is built on the firm fou o
the functionz; and the differential equatiarf (£) = f(¢,z(t)). for probability theory (using measure theory) |[26],][27]. A
The function® may be very simple using Euler's explicitmiddle way between extreme formality and an accessible leve
method or more complex using any Runge-Kutta method of informality is to be found in [[23].
any implicit method. We focus here on scalar ODEs althoughWe begin by defining thdistribution functionof a random
our analysis may apply to vectors. Line 4 assume for thvariable.
sake of simplicity thath; is a constant although this is not Definition 1: A random variableX hasdistribution func-
neccessary. tion F, if P(X < z) = F(x)



As we will be studyingcontinuous random variableghese Definition 6: A function i : ¢ — R>( is a Measureover
are defined as follows: the o-algebrac, when u({}) = 0, and for a sequence of
Definition 2: A random variableX is continuousif its disjoint element§ £,,} of o:

distribution function can be expressed as - -
n=0

n=0

F@) = [ fs -
o Definition 7: A Measure Spac€T, o, ) is a measurable

for some integrable functiof : R — [0,00). We call the space(T, o) equipped with a measuye
function f the probability density function for the random Definition 8: A Probability Space(T’,0,IP) is a measure
variable X . space(T, o, P) in which the measur® is finite for any set in
As an example of a continuous random variable, consider theand in which:
temperaturd” at a certain point in an industrial process. Even
if an attempt is being made to hold this temperature constant P(X)=1- P(X)_-. o
there will be minor fluctuations, and these can be modeledThe PVS development of probability spaces in Figfire 1,
mathematically by assuming thdt is a continuous random fakes three parameterE; the sample space, a o-algebra of
variable. permitted events, and®, a probability measure, which assigns

The other concept we will need is that of dependeff €ach permitted event ifi, a probability betweeid and 1.
and independent random variables. Suppose we model ff@Perties of probability that are independent of the pafar
outcomes of the tossing of two coir® and C» by random details of 7', S and " are then provided in this file. If we
variables. Provided there is nothing underhand going on, W#shed to discuss continuous random variables then we would
would expect the result of tossing the first coin to have @rtidlly instantiate this PVS file witi = real , andS =
effect on the result of the second coin, aride versa If this POrel _set . If we go further and also specify, we will
is the case, then we say tha and C» are independent Nave described the random variable distributions as wéll. O
Consider an alternative scenario in which having tossed tR@rticular interest later is the fact that the sum of two @md
coin C; and discovered that it has come up “heads”, and wariables is itself a random variable, and consequently any
now define the random variabtg, to be: the outcome: “the finite sum of random variables will be a random variable.
downward facing side of the coifi; is tails”. In this case the ~ Definition 9: If (T, 01, P1) and(T%, 2, P2) are probability

random variable€; andC, aredependent spaces then we <.:an constructpaoduct probability space
The other idea we must address is that aainditional (73:03,F3), where:
probability. T T xT
Definition 3: We define the probability of A given B” o = o(01 X o)
(written P(A; B)) as: Py(a,b) = Pi(a)Pa(b)
P(A; B) = P40 B) wherePs is the extension oP% that has the whole of; as
P(B) its domain.
wheneverP(B) > 0. Note that the product probabilitf’s has the effect of

As an example: if event is “l am carrying an umbrella” and declaring that the experiments carried out in probabifiigces
eventB is “it is raining”, then Pr(A; B) is the probability (71,01,P1) and(73,02,P2) are independent. Obviously, the
that “I am carrying an umbrella given that it is raining”Process of forming products can be extended to any finite
Note that although in gener@l(A; B) # P(B; A), in this Pproduct of finitely many probability spaces. Currentlysitriot
particular case, if you live in Perpignan or Manchestemthie clear whether PVS is powerful enough to capture the notion of
most daysP(A; B) = P(B; A), though for rather different & countably infinite sequence of random variablés, } 72, ;

reasons. fortunately, in this work we don't currently require thisstet.
In Figure[?, we define the conditional probabili®y4; B)
B. A Formal Development of probability (written P(A,B) as PVS will not permit the use of “;” as an

Definition 4: A o-algebra over a typeT, is a subset of operator). We take the opportunity to prove Bayes’ Theorem

the power-set ofl", which includes the empty s€t}, and is along the way.
closed under the operations of complement, countable unign
and countable intersection. '
If T is countable — as it is for discrete random variables — If X is a continuous random variable distributed uniformly
then we may taker = o(7); if the setT is the reals — as it over the intervala, b], then informally it takes any value within
is for continuous random variables — then we make- B: the interval[a, b] with equal probability.
the Borel sets. To make this more formal, we define tteharacteristic
Definition 5: A Measurable Spacgl’, o) is a set (or in PVS functionof a setS as the functionys, which takes the values
a type) T, and ar-algebraoverT. 1 or 0 depending on whether it is applied to a membeSof

Continuous Uniform Random Variables



probability_space[T:TYPE+,

P:probability_measure

]: THEORY
BEGIN
IMPORTING finite_measure@sigma_algebra[T,S],probabil
AB: VAR (S)
x,y: VAR real
n0z: VAR nzreal
t: VAR T
n: VAR nat
null?(A) :bool = P(A) = 0
non_null?(A) :bool = NOT null?(A)

independent?(A,B):bool = P(intersection(A,B)) = P(A) * P(
random_variable?(X:[T->real]):bool = FORALL x: member({
zero: (random_variable?) = (LAMBDA t: 0)

random_variable: TYPE+ = (random_variable?) CONTAINING z

X,Y: VAR random_variable
XS: VAR [nat->random_variable]

<=(X,x):(S) = {t | X(t) <= x}; % Needed for syntax purposes! < >

complement_lel: LEMMA complement(X <= x) = (x < X)
complement_Itl: LEMMA complement(x < X) = (X <= x)
complement_eq : LEMMA complement(X = x) = (X /= X)

complement_It2: LEMMA complement(X < x) = (x <= X)
complement_le2: LEMMA complement(x <= X) = (X < Xx)
complement_ne: LEMMA complement(X /= x) = (X = X)
-(X) :random_variable = (LAMBDA t: -X(t)); % Needed for synt

+(X,Y) :random_variable = (LAMBDA t: X(t) + Y(t));
-(X,Y) :random_variable = (LAMBDA t: X(t) - Y(b);

partial_sum_is_random_variable:

LEMMA random_variable?(LAMBDA t: sigma(0,n,LAMBDA n: XS(

distribution_function?(F:[real->probability]):bool

(IMPORTING finite_measure@
S:sigma_algebra, (IMPORTING probability_measure[T,S])

subset_algebra_def[T]) % sample space
% permitted events
% probability measure

ity_measure[T,S],continuous_functions_aux[real]

B) % Note that it DOES NOT say = 0
t | X(t) <= x}.5)

ero

= /= >= omitted

ax purposes! + - * / omitted

n)(®))

= EXISTS X: FORALL x: F(x) = P(X <= X)

distribution_function: TYPE+ = (distribution_function?

) CONTAINING

(LAMBDA x: IF x < 0 THEN 0 ELSE 1 ENDIF)

distribution_function(X)(x):probability = P(X <= Xx)
F: VAR distribution_function

convergence_in_distribution?(XS,X):bool

= FORALL x: continuous(distribution_function(X),x) IMPL IES
convergence((LAMBDA n: distribution_function(XS(n))(x ),
distribution_function(X)(x))

invert_distribution: LEMMA LET F = distribution_function (X) IN

Px < X) =1 - FXx) % Lemma 2.1.11-a (G&S)
interval_distribution: LEMMA LET F = distribution_functi on(X) IN

x <=y IMPLIES

P(intersection(x < X, X <=y)) = F(y) - F(X) % Lemma 2.1.11-b (G &S)
limit_distribution: LEMMA LET F = distribution_function( X) IN

P(X = x) = F(x) - limit(LAMBDA n: F(x-1/(n+1))) % Lemma 2.1.11 -c (G&S)
distribution_0: LEMMA convergence(F o (lambda (n:nat): -n ),0) % Lemma 2.1.6-a0 (G&S)
distribution_1: LEMMA convergence(F,1) % Lemma 2.1.6-al ( G&S)
distribution_increasing: LEMMA increasing?(F) % Lemma 2. 1.6-b (G&S)
distribution_right_continuous: LEMMA right_continuous (3 % Lemma 2.1.6-c (G&S)

END probability_space

Fig. 1. Abbreviated probability space file in PVS




conditional[T:TYPE+, (IMPORTING finite_measure@subset _algebra_def[T]) % sample space

S:sigma_algebra, (IMPORTING probability_measure[T,S]) % permitted events
P:probability_measure % probability measure
l: THEORY
BEGIN
IMPORTING probability_space[T,S,P],finite_measure@si gma_algebra[T,S]

AB: VAR (S)
n,i,jj VAR nat
AA,BB: VAR disjoint_sequence

P(A,B):probability = IF null?(B) THEN 0 ELSE P(intersectio n(A,B))/P(B) ENDIF

conditional_complement: LEMMA
P(A,B) * P(B) + P(A,complement(B)) * P(complement(B)) = P(A )

conditional_partition: LEMMA
Union(image(BB,fullset[below[n+1]])) = fullset[T] IMPL IES
P(A) = sigma(0,n, LAMBDA i: P(A, BB(i)) * P(BB(i)))

bayes_theorem: THEOREM
NOT null?(B) AND
Union(image(AA,fullset[below[n+1]])) = fullset[T] IMPL IES
P(AA(),B) = P(BAA()*P(AAG))
sigma(0,n, LAMBDA i: P(B, AA()) * P(AA()))

END conditional

Fig. 2. Conditional probability file in PVS

Definition 10: Theorem 1:If continuous random variable¥ andY have
joint probability density functionsf, thenZ = X + Y has

xs(z) = { (1) i ;g probability density function:
Now the probability density functiosi of the uniform random Y
variable over the closed interval, b] is ﬁX(a,b]- From this fz(2) = e f(@,z - z)de.
we can calculate the distribution function: In the special case whet¥ andY are independent, then
z (because the joint probability density functigi, y) can be
F(z) = / f(z)dx, expressed as the prodytt (z) fy (y)) we have theContinuous
—o© Convolution Theorem
from which we can calculate the probability Theorem 2:If continuous random variableX andY are
independent and have probability density functigrsand fy
Plz < X <=y) =F(y) — F(x). respectively, the = X +Y has probability density function:

In the case wherg is distributedU|, ;, and because — for Y B Y 3
any f(x) with [ f — F — we have fz(z) = 700 fx(@)fy (z—x)de = L fx(z=2) fy (z)dx.

o0 J E. Reliability of long calculations
/,oo F@)X @ (@)de = What we are actually interested in is whether a series of
(F(x) = F(a))X(ay) (%) + (F(0) = F(a))X(,00) (). calculations might accumulate a sufficiently large error to
(a,0] (b,00)

S _ become meaningless. In the language we have developed, we
+\£Ve also observe t?i[bjg IS d'smpUtedU[avb]’ thenE(X) = are asking what is the probability that all calculationsasfdth
aT, and Va(i)() = SO, witha = O, b=1we get upton is correct:

12 ¢

_ 1 _
H=135,0"= 13-
P Sil) <el.
D. Sums of Continuous Random Variables <1I£?§Xn(| D= 6>

Definition 11: If we have a sequence of continuous random Because they have nice convergence properties, we are
variables{X,}, then we define their partial sums as a seespecially interested imartingales

quence of continuous random variab{e, } with the property ~ Definition 12: A sequence{S, } is a martingale with re-
spect to the sequendeX,, }, if for all n:

Sn =Y Xi. 1) E(|S,|) < oo; and
=1 2) E(Sn+17 Xla X2a ey Xn) :S’n



We first observe that the sequengg = X7 ; X; (as pre- in [E], [E]. This work will be carried in collaboration with
viously defined) is a martingale with respect to the sequenitee developers of Fluctuat. The software will conservéjive
{X,}. estimate the final effect of the error introduces by each

Lemma 1:The sequencéS,}, whereS,, = > | X;, and individual floating point operations and compute upper fasun
eachX,, is an independent random variable witlX,,) = 0, of their variances.

is martingale with respect to the sequercg, }. The second direction is to develop and check accurate proofs
Alternatively as could be needed for progrm 2: about the round-off errors of individual equations. A unifdy
Lemma 2:The sequencéS,,}, whereS, =" | X;, and distributed random variable whose variance depends only on
{X,} satisfies for alk the operation and the computed result might provide a too
E(X;) = 0 pessimistic bound. For example the floating point additibn o

E(X;: X1---Xio1) a Iarg_e number with a small number absorbs the small number
' ! meaning that the round-off error may be far below half an ulp

the sequencgs,,} is martingale with respect to the sequencef the computed result.

{Xn} Two’s complement operation of TMS320 circuit can either
We now make use of the Doobs-Kolmogorov Inequalityound or truncate the result. If truncation is used, it idtroes

presented Figurf 3. The statement of Thedrem 3 is deceptivgldrift and Doobs-Kolmogorov inequality for martingalesiea

simple. The key as the astute reader will observe is that wet be used. Should we wish to extend this work to account for

have a restricted form of the Doobs-Kolmogorov Inequalityirifts (non-zero means for the random variabje$, }), then

in which the sample spaces of the underlying sequence\gé anticipate making use of Wald Identity. Such development

random variables are identical. This is an artifact of theSP\Wyjill also be necessary to address higher order error terats th

type system which would require us to prove multiple versiantroduce a drift.

of the theorem at each tuple of instantiated types. This library and future work will be included into NASA
Although the type system used in PVS is extraordinarilyangley PVS librarj as soon as it becomes stable.

flexible, it is not as malleable as that used by professionalwe saw with the example of Iistirﬂ 2 that inductions on the

mathematicians. To capture mathematics in its entiretygusivariances of the random variables can be crudely bounded.

a theorem prover, we would need to dispense with any foryet, we may expect tighter results if we use tools that are

of type checking. For its intended use as an aide to provingble to infer inductions and solve them mathematically but

programs correct, this would fatally weaken PVS as a usetlis domain is far from the authors’ research areas.
tool. In addition, in many practice areas of mathematics, th

full generality of categorical constructs is an unnecessar

0,

V. CONCLUSIONS

luxury, albeit one with a seductive, siren-like, appeal. To the best of our knowledge this paper presents the first
Theorem 3 (Doobs-Kolmogorov Inequalitylf: {S,} is a application of the Doobs-Kolmogorov Inequality to softear
martingale with respect t¢.X,,} then, provided that > 0: reliability and the first generic formal development able to
1 handle continuous, discrete and non-continuous noneatescr
P 121?<xn(|5i|) >e] < E—QIE(S?l) random variable for PVS. Previous developments in higher

In our particilar case where eachi; is an independent order logic where targeting other applications and using,Co

random variable WithE(X;) — 0, and VafX;) — o2, we HOL or Mizar proof assistants (sef [14], J[15] and references
observe that ’ ' ’ ¢ herein). In addition, we have demonstrated a slightly weake

n version of this result in PVS. We claim that the utility of
P (m_‘dX (ISi]) < 6> >1— lz ZC’? this weaker result is not unduly restrictive, when compaced
1<i<n €= the general result. The major restriction lies in the faeitth
we have to demonstrate that a sequence of overall errors is
rtingale with respect to the sequence of individual etror
e have been forced to make simplifications to the mathe-
I_fnatical model of our software to ensure that this is the case.
n

The short conclusion is therefore that eventually errots wi
accumulate and overwhelm the accuracy of any numeri
software. However, it is large enough and each of thé are
small enough, then the number of iterations required fag t
to occur will be high enough to be of no practical significanc
Crucially, the results hinge critically on the errdr¥,, } being
independent.

particular, we have been forced to insist that our indaid
errors have no drift, and are independent.

We have been surprised that the limit on the reliability of
a piece of numeric software could be expressed so succinctly
IV. FUTURE WORK Notice that even with a high tolerance of error, and with

This work will be continued in two directions. The firstindependent errors, we will still eventually fail. Our résu
direction is to modify Fluctuat to generate theorems thatlm Permit the development of safe upper limits on the number

checked automatically by PVS using Prooflites proposed Of operations that a piece of numeric software should be

permitted to undertake.
1A weak form of type consistency is used in category theory this is so

weak that we can introduce the Russel Paradox. Shttp://shemesh.larc.nasa.gov/fm/ftp/larc/
2http://researc:h.nianet.org/”munoz/ProofLite/ | PVS- |i-3rary7pvs ib.htm .



http://research.nianet.org/~munoz/ProofLite/
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

doobs[T:TYPE+,
S:sigma_algebra,
P:probability_measure
]: THEORY

(IMPORTING probability_measure[T,S])

BEGIN
IMPORTING probability[T,S,P],martingale,reals@bounde
epsilon: VAR posreal
X,S: VAR [nat -> random_variable]
pn: VAR posnat
doobs_kolmogorov: THEOREM martingale?(X,S) IMPLIES
P(max(image(abs o S,below(pn))) >= epsilon)
<= E(sq(S(pn)))/sq(epsilon)

END doobs

(IMPORTING finite_measure@subset_algeb

d_reals

ra_def[T]) % sample space
% permitted events
% probability measure

Fig. 3.

It is worth pointing out that violating our assumptions(7]
(independence of errors, and zero drift) would lead to worse
results, so one should treat the limits we have deduced W'TE]
caution, should these assumptions not be met.
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