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Different approaches for woven composite reinforcement

forming simulation

P. Boisse & N. Hamila & F. Helenon & B. Hagege & J. Cao

Abstract Different approaches used for the simulation of

woven reinforcement forming are investigated. Especially

several methods based on finite element approximation are

presented. Some are based on continuous modelling, while

others, called discrete or mesoscopic approaches, model the

components of the fabric. A semi discrete finite element

made of woven unit cells under biaxial tension and in-plane

shear is detailed. In continuous approaches, the difficulty

lies in the necessity to take the strong specificity of the

fibrous material into account. The yarn directions must be

strictly followed during the large strains of the fabric.

This is the main goal of the non-orthogonal model and of

the hypoelastic constitutive model based on the yarn

rotation presented in this paper. In the case of discrete and

semi-discrete approaches the directions of the yarns are

“naturally” followed because the yarns are modeled.

Explicitly, however, modeling each component at the

mesoscopic scale can lead to high numerical cost.

Keywords Fabrics/textiles . Finite element analysis .

Composite forming . Continuous/discrete

Introduction

In order to determine the deformed shape of draped fabrics,

several codes have been developed based on geometrical

approaches so called fishnet algorithms [1–4]. These

methods, where the fabric is placed progressively from an

initial line, provide a close enough resemblance to handmade

draping. They are very fast and fairly efficient in many

prepreg draping cases. Nevertheless, these methods have

major drawbacks. They account neither for the mechanical

behaviour of the fabric nor for the static boundary

conditions. This last point is very important in the case of

forming with punch and die (such as in the preforming of the

R.T.M. process). The loads on the tools, especially on the

blank-holder, influence the quality of the shaping operation,

and therefore, need to be considered in simulations.

The alternative to these geometrical methods consists of

a mechanical analysis of the fabric deformation under the

boundary conditions prescribed by the forming process.

This requires a model of the woven reinforcement and its

mechanical behaviour, in order to achieve the deformation

through a numerical method, for instance, the Finite

Element Method. The mechanical behaviour of fabrics is

complex due to the intricate interactions of the yarns. It is a

multi-scale problem. The macroscopic behaviour is very

much dependent on the interactions of yarns at the meso-

scale (scale of the woven unit cell) and at the micro-scale

(level of the fibres constituting yarns). Despite of a great

amount of work in the field, there is no widely accepted

model that accurately describes all the main aspects of

fabric mechanical behaviour. The main model families

come from the multi-scale nature of the textile. A first

family of models is obtained by homogenizing the

mechanical behaviour of the underlying meso-structure

and considering the fabric as an anisotropic continuum
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[5–13]. If these models can easily be integrated in standard

finite element (FE) shell or membrane elements, then the

identification of homogenized material parameters is

difficult, especially because these parameters change when

the fabric is strained and when, consequently, the directions

and the geometry (crimp, transverse sections…) of the

yarns change. Some of these approaches will be described,

especially a non-orthogonal constitutive model [8, 9] and

an anisotropic hypoelastic continuous behaviour for fibrous

material based on an objective derivative using the rotation

of the fibre [10, 11].

Conversely, some authors present fully discrete models

of fabrics [14–18]. Each yarn or each fibre is modelled and

is assumed to be a straight or a curved beam or truss.

Sometimes they are modeled as 3D domains [16]. Springs

are often used to model warp and weft yarn interactions. In

the objective of fabric forming simulations, some authors

extend the discrete modelling to the whole textile structure

that is represented by a network of interwoven trusses or

beams with different tensional and rotational springs.

Accounting for the simplicity of each component, the

whole textile structure deformation can be computed.

Nevertheless, the computational effort needed is relatively

significant. At present this method is restricted to simple

geometry of the local yarn and relatively simple mechanical

behaviour. When a fine model of the fibrous yarns is used,

the analysis can only consider a small part of the textile

reinforcement such as a few woven or knitted cells.

The semi-discrete approach is a compromise between the

above continuous and discrete approaches [19, 20]. A finite

element method is associated to a mesoscopic analysis of

the woven unit cell. Specific finite elements are defined that

are made of a discrete number of woven unit cells. The

mechanical behaviour of these woven cells is obtained by

experimental analyses or from 3D FE computations of the

woven cell. The nodal interior loads are deduced from this

local behaviour and the corresponding strain energy in the

element deformation. One objective of the present paper is,

to assess the importance of in-plane shear strain energy in

fabric forming simulations. It will be shown that the in-

plane shear stiffness is particularly important for the

description of wrinkles and shear strain after the shear

locking angle.

Continuous approach for composite forming process

analysis

F.E. analysis of composite forming requires modelling of

the different aspects involved in the process and especially

a constitutive mechanical model of the fibrous reinforce-

ment. The multiscale nature of the composite and of its

fibrous reinforcement permits different possible

approaches. The first one considers the fibrous reinforce-

ment as a continuum. The reinforcement is not continuous

at lower scales but it is usually continuous in average and a

continuous material superimposed to the fibrous material

can be considered. The advantage of the continuous

approach is that it can be used in standard finite elements.

Nevertheless, the constitutive model of this continuum will

have to convey the very specific mechanical behaviour of

the fibrous reinforcement. Especially this behaviour is

mainly depending on the fibre directions that are strongly

changing during forming. It has been shown that the

approaches usually used for anisotropic metal forming

cannot be used here [10]. Other specific aspects of fibrous

reinforcement mechanical, behaviour such as crimp change

and shear locking should also be taken into account in the

model.

The main difficulty in using the continuous approach is

capturing the effects of the fibre architecture and its

evolution. There are many models. Most of them assume

that the fibrous reinforcement is elastic while forming. That

is usually true for extensions in the fibre directions, but not

obvious in the other directions, such as in-plane shear,

bending, and transverse compression. Nevertheless, the

forming process is a more or less monotonous operation

and making this assumption doesn’t change the result of the

analysis greatly. Continuous behaviour models that cap-

ture macro-level phenomena at lower scales generally

concern homogenisation, although homogenisation typi-

cally refers to techniques applied to a two-scale periodic

material, in which the analysis of a unit cell reveals the

properties of the homogenised material [5]. This approach

is elegant but requires lengthy computational times.

Furthermore, extending it to non-linear problems is diffi-

cult. Two continuous approaches used in FE analysis are

described below.

Non-orthogonal constitutive models

In these approaches, the stress and strain of a continuous

material are related to fibrous reinforcement using the

constitutive relation in a non-orthogonal frame directed by

the fibre directions. Models have been developed by [7–9].

They considered two yarn directions and used them to

define the non-orthogonal frame. The model developed in

[9] is briefly described here.

This approach uses the Green Naghdi frame. It is an

orthonormal frame which is rotated by R, the rotation of the

polar decomposition in which the local stress increment

computations at finite strain are made. It is used by many F.

E. codes especially ABAQUS. This basis is noted (e1, e2)

(Fig. 1). A second non-orthogonal basis (g1, g2) is defined

from the yarn directions. The contravariant basis (g1, g2) is

associated (gb � g
a ¼ dab (a, β=1 or 2)). The (e1, e2) basis
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permits an objective sum of the stress components in this

frame:

s tþdt
� �

¼ s t½ � þ ds½ � ð1Þ

The stress sum (Eq. 1) is made in the (e1, e2) basis, but

the mechanical behaviour of the woven reinforcement is

known in the frame of the yarns (g1, g2). The following sets

of components are considered:

s ¼ Aaβea � eβ ¼ eAaβga � gβ
ε ¼ "aβea � eβ ¼ e"aβga � gβ

ð2Þ

Assuming an orthotropic format of the constitutive matrix

in the non-orthogonal frame,

d~σ11

d~σ22

d~σ12

2
4

3
5 ¼

~
D11 ~

D12 0
~
D12 ~

D22 0

0 0
~
D33

2
4

3
5

d~" 11

d~"22

d~"12

2
4

3
5 ð3Þ

This relation can be written in the (e1, e2) basis. Equation 2

leads to:

d~"½ � ¼ T1½ � d"½ � dσ½ � ¼ T1½ �T d~σ½ � ð4Þ

where T1½ � is the following matrix (given by Eq. 2):

T1½ � ¼
cos2 a sin2 a sin a cos a

cos2 a þ θð Þ sin2 a þ θÞð Þ sin a þ θð Þ cos a þ θð Þ
2 cosa cos a þ θð Þ 2 sin a sin a þ θð Þ sin 2a þ θð Þ

2
4

3
5 ð5Þ

Consequently:

dA½ � ¼ T1½ �T
~
D
� �

T1½ � d"½ � ¼ D½ � d"½ � ð6Þ

D½ � is the constitutive matrix in (e1, e2) basis and the new

value of the stress can be computed by Eq. 1. The

calculation of the T1½ � matrix needs the knowledge of a and

θ angles (Fig. 1). Those are calculated respectively from F

(the deformation gradient tensor) and R (the polar rotation):

eti ¼ R � e0i gti ¼ F � g0i ð7Þ

Based on this approach, the simulation of a picture frame

shearing of a woven composite fabric is shown Fig. 2b

and c [9]. It is compared to experimental results [21]

(Fig. 2).

An hypoelastic model for fibrous materials

Approaches traditionally developed in finite element codes

for anisotropic metal at large strains are based on Jaumann

corotational formulation [22–24] or the Green–Naghdi

approach [24–26]. In these models, a rotation is used both

to define an objective derivative for the hypoelastic law and

to update the orthotropic frame. The rotations used in

Green–Naghdi and Jaumann derivatives are average rota-

tions of the material (polar rotation and corotational

rotations respectively). These well-known approaches can-

not be used for a fibrous material under large strains

because the update for the strong direction must follow the

fibre direction strictly [10]. The following approach uses

the rotation of the fibre denoted Δ [10, 11]. The rotation Δ

is used to update the initial constitutive axes {k0} to the

current constitutive axes {kt}

k
t
i ¼ Δ � k0i ð8Þ

Equation 8 leads to equations (Eq. 9) that explicitly give

the constitutive axes {kt} as functions of the initial

constitutive axes {k0} and the deformation gradient F [24]:

k
t
1 ¼

F�k0
1

F�k0
1k k

k
t
2 ¼ k

0
2 �

b2
1þb1

k
0
1 þ k

t
1

� �

k
t
3 ¼ k

0
3 �

b3
1þb1

k
0
1 þ k

t
1

� � ð9Þ

with bk ¼ k
t
1 � k

0
k and bk≠1. In this formulation, the fibre

direction, i.e. the strong anisotropic direction, remains

aligned with the first vector of {kt}. The constitutive

behaviour is then fully defined at each time point. In fact,

the component of the initial constitutive tensor 0C can be

computed from the traditional engineer’s constants:

0C ¼ 0Cijklk
0
i � k

0
j � k

0
k � k

0
l ð10Þ

The current constitutive tensor C can be deduced from 0C

by a rotational transport based on the fourth order rotation

tensor Λ:

C ¼ Λ : 0C : ΛT with 8A Λ : A ¼ Δ � A �ΔT ð11Þ

Fig. 1 Schematic of undeformed and deformed fabric [9]
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Consequently C is given by:

C ¼ 0Cijklk
t
i � k

t
j � k

t
k � k

t
l ð12Þ

The constitutive tensor C is used in a hypo-elastic law

written:

s
r ¼ C : D with s

r ¼ Δ �
d

dt
ΔT � s �Δ
� �

�ΔT

ð13Þ

D is the strain rate and s
r is the objective derivative of the

Cauchy stress associated to the fibre rotation Δ. The

cumulated tensorial strain tensor ɛ and stress tensor σ

associated with such an objective derivative are:

ε ¼ Δ �
R t

0
ΔT � D �Δ dt

� �
�ΔT

s ¼ Δ �
R t

0
ΔT � C � D �Δ dt

� �
�ΔT

ð14Þ

It can be shown that Eq. 14 will always give a logarithmic

strain in the strong anisotropic direction and that it ensures

the summation of the stress increments along this direction

[27]. Finally, the use of the material rotation tensor Δ for the

Fig. 3 Simulation result of a

bias extension test on a NCF

using a mesoscopic or discrete

approach [16]

Fig. 2 a Picture frame in initial

and deformed state [21]. b FEM

model for trellising composite

fabrics under shear frame. c

Test/FEM comparison [9]
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objective derivative (Eq. 13) and the evolution law (Eq. 11)

entails a consistent approach for fibrous media.

The above approach is carried out for a single fibre

direction, although many fibrous reinforcements, and

especially woven fabrics, have two fibre directions. The

behaviour here is no longer orthotropic because there are

very large angle variations between the warp and weft

directions due to in-plane shear. The above formulation can

be used by superposition on the same point for two

materials using their own fibre directions. Sliding between

warp and weft directions can be ignored because the two

materials (warp and weft) are in the same finite element.

However, that does not take account of the interaction

between fibres, such as crimp changes.

Discrete or mesoscopic approach

The discrete approach is the opposite of the continuous

approach, it considers and models the components of fibrous

reinforcement at a low scale. These components can be yarns,

woven cells or stitching, and also sometimes fibres. Because

these elements are usually at the mesoscale, the approach is

also known as meso-mechanical modelling. Some analyses

have been proposed where all fibres are modelled (microscale

modelling) [14, 17] but the number of fibres in a composite

structure limits these computations to small sub-domains, for

instance a woven cell or a few braided or knitted loops.

Discrete approaches for textile forming are generally made at

mesoscopic scale [15, 16, 18]. A major difficulty lies in the

description of the components at mesoscopic scale, usually

the woven yarns. A compromise must be found between a

precise description (which will be expensive from the

computation time point of view) and a simple description,

where it is possible to compute the entire forming process.

Fig. 4 Four node finite element

made of woven cells

Fig. 5 Deep drawing of a square box: geometry of the tools Fig. 6 Deformed shape and shear angle (tensile energy only)
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Beam, truss or spring elements are the more common

descriptions for yarns [14, 15, 17, 18]. In [16], meso-

mechanical FE modelling of NCF (Non Crimp fabric) uses

3D elements for each yarn and bar element for stitching

(Fig. 3). Friction contact between tows and plies is taken into

account. The simulation of a bias test is shown in Fig. 3. The

simulation of this test has proved to be difficult in case of

continuous approaches [28, 29]. Although the complete

model probably needs extensive computational time, a

forming process has been simulated in this way. A point in

favour of analysis at the mesoscopic scale lies in the strong

increase in computer efficiency.

Semi discrete finite element

The approach associates a finite element method with a

mesoscopic analysis of the woven unit cell. Specific finite

elements are defined that are made of a discrete number of

woven unit cells. The description of the fabric by finite

elements needs to assume that two points of a weft and a warp

yarns initially superimposed remain superimposed after form-

ing, i.e., there is no translation sliding between the yarns. That

has been experimentally shown in most cases [30]. Neverthe-

less, the model will have to describe the specificities of textile

reinforcement mechanical behaviour, especially:

& the non-linear tensile behaviour due to crimp interchange

& shear locking angle and the very different in plane shear

behaviour before and after this angle.

A global simplified dynamic equation is considered:

Pncell

p¼1

p
"11 hð Þð PT 11L1 þ

p
"22 hð ÞPT22L2Þ

þ
Pncell

p¼1

pCpg hð Þ �Wext hð Þ ¼ �
R
Ω

ρ ��u � hd V

8h such as h¼ 0 on Γ u

ð15Þ

where ɛ hð Þ ¼ rs
h ¼ "αβ hð Þhα � hβ is the symmetrical

gradient in the virtual displacement η (a and β are indexes

taking value 1 or 2). h1, h2 are the contravariant vectors

related to the unit vector in warp and weft directions h1 and

h2. L1 and L2 are the lengths of the warp and weft yarns in

the mid-plane of the fabric. g(η) is the virtual relative

rotation between warp and weft fibres (or virtual shear

angle). ncell is the number of woven unit cells of the textile

structure, pQ, means that the quantity Q is considered for

the woven unit cell number p. ρ is the mass per volume of

the fabric Ω. Wext (η) is the virtual work of the exterior

prescribed loads. Γu is the boundary with prescribed

displacements.

To make a finite element simulation of composite woven

reinforcement forming based on Eq. 15, it is necessary to be

able to know the tensions T11 and T22 and the shear couple

C for a given strain field in the woven unit cell. It is

assumed that the tension do not depend on the shear angle

and that the shear couple do not depend on the axial strain

i.e. T11 ("11, "22), T
22 ("11, "22) and C(g). In [31], biaxial

tensile tests performed for different angle between warp and

weft yarns have shown that the influence of this angle is

small and can be neglected. The second assumption (C only

depending on g) is probably less true [32, 33]. Neverthe-

less, all the experimental results that are currently available

give the shear load in function of the shear angle without

any information on the tensions, so the assumption C(g) is

made by default.

The tension surfaces (T11 ("11, "22) and T22 ("11, "22))

and of the shear curve (C(g)) can be determined both by

experiments or mesoscopic F.E. on the unit woven cell [11,

34]. From the simplified dynamic Eq. 15 specific finite

elements for fabric forming are constructed (Fig. 4 in the

case of a four-node quadrangle). These elements are

composed of woven cells the tensile and in-plane shear

strains of which are given by nodal displacements. From

Fig. 7 Deformed shape and shear angle (tensile + in plane shear

energy)

Table 1 Mechanical properties of the glass plain weave (“Deep drawing of a square box. Influence of the in plane shear stiffness” section)

Tensile stiffness in warp direction the tension is assumed to be T11=C1"11 C1 is assumed to be constant: C1=46,000 N/yarn

Tensile stiffness in weft direction the tension is assumed to be T22=C2"22 C2 is assumed to be constant: C2=48,000 N/yarn

In plane shear stiffness:
C gð Þ ¼ k1 � g si g � gc
C gð Þ ¼ k2 � g � gcð Þ þ k1 � gc if g > gc

�
k1=0.25 mm N/rad, k2=4.08 mm N/rad and, gc=0.72 rad (41°)
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Eq. 5 the nodal interior load components Feint
� �

s
are

obtained from the strain interpolation matrix:

W e
int hð Þ ¼ )s

Pncelle

p¼1

g1k k�2 pB11s
pT 11 þ g2k k�2 pB22s

pT 22
�

þ pCpBgs

�
¼ )s Feint

� �
s

ð16Þ

These nodal interior loads are directly calculated in an

explicit dynamic approach. The detailed formulation of the

element can be found in [20]. An extension to a three-node

element where the warp and weft directions of the woven

fabric can be in arbitrary direction with respect to the

direction of the element side is presented in [35].

Deep drawing of a square box. Influence of the in plane

shear stiffness

This classical benchmark for sheet metal forming [36]

(Fig. 5) is performed using the semi-discrete finite elements

presented in “Semi discrete finite element” section. The

geometry (Fig. 4 for a quarter of the system for symmetry

reasons) is strongly double curved, and this test is severe

especially for fabric forming because it results in very large

angle variations between warp and weft yarns in the radius

of the square box. The shear angles that are necessary to

shape the part can be larger than the locking angle of the

fabric depending on the radius values. The forming of a

glass plain weave fabric is simulated. The mechanical

Fig. 8 Hemispherical forming

of an unbalanced composite

fabric. a Geometry of the tools.

b Final shape obtained by a

simulation with semi-discrete

finite elements. c Experimental

final shape

Table 2 Mechanical properties of the unbalanced fabric (“Hemispherical forming of an unbalanced composite fabric” section)

Tensile stiffness in warp direction the tension is assumed to be T11=C1ɛ11 C1 is assumed to be constant: C1=50 N/yarn

Tensile stiffness in weft direction the tension is assumed to be T22=C2ɛ22 C2 is assumed to be constant: C2=0.2 N/yarn

In plane shear stiffness:
C gð Þ ¼ k1 � g si g � gc
C gð Þ ¼ k2 � g � gcð Þ þ k1 � gc if g > gc

�
k1=0.03 mm N/rad, k2=0.095 mm N/rad and, gc=0.5 rad (29°)
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properties are given in Table 1 [37]. The locking angle of

this fabric is 41°. Beyond this angle, the in-plane shear

stiffness becomes large. The forming simulation is made

with the dynamic equation presented in Eq. 15 (tensile and

in plane shear energy) but also neglecting the in-plane shear

term (tensile energy only). Figures 6 and 7 present in both

cases the computed deformed shape after forming. Because

of the geometry (strongly double curved) the locking angle

of the plain weave fabric is exceeded. This leads to rather

different results for both approaches. There is no wrinkle

when using the approach base on the only tension because

there is no source of instability (Fig. 6). On the contrary, the

computed solution obtained when taking shear into account

shows some wrinkles (Fig. 7). Those are due to shear

locking that leads to out-of plane solutions in order to

reduce this shear. The rotation angles are clearly reduced

when the shear stiffness is taken into account. This example

(as others [19]) shows that the contribution of the in-plane

shear term is principally in the description of the deformed

shape after the appearance of wrinkles (Fig. 7).

Hemispherical forming of an unbalanced composite fabric

The simulation of a very unbalanced fabric is presented

Fig. 8 (The simulation is performed on a quarter of the part

for symmetry reasons.). The warp yarns are much stiffer

than the weft yarns (Table 2 [37]). The blank holder is a

6 kg ring submitted to its own weight. The experimental

forming has been performed at Nottingham University [37].

The final shape obtained after forming is very asymmetri-

cal. There is a large axial strain in the weft direction

(horizontal) and large displacements with very small axial

strain in the warp direction (vertical). This final shape is

well obtained by the simulation. The ratio of the lengths

after deformation lweft/lwarp is equal at the top of the

hemisphere to 1.8 in experiments and in simulation as well.

There are many wrinkles, especially along the vertical axis.

They are fairly well obtained by the simulation.

Conclusion

The simulation of composite reinforcement forming is a field

which undergoes many developments. Several approaches

exist and mainly differ according to the scale at which the

modelling is made. In continuous approaches, it is assumed

that a continuous medium can stand in for the set of yarns or

fibres. In this case, the difficulty lies in the necessity for the

macro model to take the strong specificity of the fibrous

material into account, especially that the yarn directions must

be strictly followed during the large strains of the fabric. This

is the main goal of the non-orthogonal model and of the

hypoelastic constitutive model based on the yarn rotation

presented in this paper. In the case of discrete and semi-

discrete approaches the directions of the yarns are “natural-

ly” followed because the yarns are themselves modelled. In

each approach different assumption and different level of

modelling can be done. It has been shown, for instance, that

the in-plane shear rigidity mainly influences the wrinkles

that appear when the shear angle exceeds the locking angle.
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