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A woven reinforcement forming simulation method.
Influence of the shear stiffness

Bassem Zouari a, Jean-Luc Daniel a, Philippe Boisse b,*

a Laboratoire de Mécanique de Systèmes et des Procédés, UMR CNRS 8106, ENSAM-ESEM,

8 rue Léonard de Vinci, 45072 Orléans Cedex, France
b Laboratoire de Mécanique des Contacts et des Solides, UMR CNRS 5514, INSA de Lyon,

Bâtiment Jacquard, Rue Jean Capelle, 69621 Villeurbanne Cedex, France
A simulation method is proposed for forming processes of fabrics used as reinforcements of composite materials. It uses specific finite 
elements made of woven material. The nodal interior loads are deduced from yarn tensile strain energy and woven cell shear energy. A 
picture frame shear test is presented. Optical measures permit to analyse the strains in yarns at microlevel for the different stages of the 
shear test. The influence of shearing in the formulation is studied on two forming simulations. It is shown that taking shear into account 
permits the appearance and the development of wrinkles when the locking angle is overcome.
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1. Introduction

Forming of composite materials exploits the relative
movements of fibres made possible by the lack of cohesion
of the matrix during the process. The matrix can be absent
(forming of dry fabrics in the first stage of the R.T.M. pro-
cess), be not polymerised yet (prepreg draped before poly-
merization of their thermoset matrix) or made fluid by
heating (thermoplastic matrix). In this work, we consider
the forming of dry woven reinforcements, but the study
can be applied to the previous other cases when the rein-
forcements are continuous. A simulation tool permits the
evaluation of the feasibility of a fabric forming process.
It also gives the direction of the reinforcements after form-
ing. This one conditions the mechanical behaviour of the
final composite structure. In addition the angles between
the warp and weft yarns also influence the permeability
* Corresponding author.
E-mail address: Philippe.Boisse@insa-lyon.fr (P. Boisse).
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of the reinforcement and thus the stage of filling by the
resin. This stage is delicate and is the subject of many stud-
ies and development of specific codes [1]. For the simula-
tion of dry fabrics forming, many codes have been
developed on a geometrical approach (fishnet algorithm)
[2–4]. These fast and effective methods make possible the
calculation of the angles between the yarns in warp and
weft directions in order to compare them with limiting val-
ues for which forming is not possible any more without
wrinkles. On the other hand these methods do not take into
account the mechanical behaviour of the reinforcements
and the boundary conditions (blank holder load for exam-
ple). Both of these two points affect (sometimes much) the
obtained shape. An alternative to these geometrical meth-
ods is the use of finite element approaches. The domain
can be considered as a continuous media, the mechanical
behaviour of which models those of the fabric [5–7]. This
is not easy especially because many stiffnesses of the fabric
are very weak compared to the tensile rigidity. In the other
hand the direction of the fibres (or yarns) must be followed
very carefully [6,7].
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Fig. 1. Shear kinematics: (a) shearing + tensions; (b) simple shearing.

Nomenclature

a side length of the picture frame
A1, A2 sections of warp and weft fibres
C(c) torque at warp and weft intersection
f exterior prescribed volume load
F load applied by the traction machine on the pic-

ture frame
h1, h2 unit vectors in the warp and weft yarn directions
h1, h2 contravariant vectors related to h1, h2
Int(A) integer part of A
a, b indexes equal to 1 or 2
k, k1, k2 shear rigidities
pla length of the fibre p in the direction of ha
nt, nc number of weft and warp fibres in the element
Nt, Nc number of weft and warp fibres in the fabric

specimen
Nk, k = 1,4 interpolation functions of a quadrangle
s range of the degree of freedom in the element

s 2 {1, . . . , 12}
t exterior prescribed surface load applied on Ct

T = Tabha � hb tension tensor
Text(g) virtual work of exterior loads
T e
extðgÞ elementary virtual work of exterior loads

Tint(g) virtual work of interior loads
T e
intðgÞ elementary virtual work of interior loads

u displacement
_u velocity
€u acceleration

VC velocity of the traction machine crossbar
e = eabh

a � hb symmetrical gradient strain tensor
c relative rotation between warp and weft fibres

(or shear angle)
_c relative rotation speed between warp and weft

fibres
cc shear limit angle
pc(g) rotation between warp and weft yarns related to

the virtual displacement field g for the woven
cell p

g virtual displacement field with g = 0 on the part
of the frontier of X with prescribed displace-
ments Cu

gs component number n of the virtual displace-
ment

h0 = (g10,g20) angle between warp and weft yarns at the
start of the time step

h = (g1,g2) angle between warp and weft yarns in the
virtual configuration

q mass per volume of the fabric
r = rabha � hb Cauchy stress tensor
Ct part of the frontier of X with prescribed loads
Cu part of the frontier of X with prescribed dis-

placements
n1, n2 coordinates in the reference element
X current fabric domain under consideration
In this paper an alternative is proposed where finite ele-
ments, specific to woven materials, are constructed. They
are composed of woven yarns in tension and shear and
the nodal interior loads are obtained from yarn and woven
load strain energy. This permits an approach that is closed
from the physics. The tensile and the shear mechanical
behaviour is naturally introduce from experimental tests.
One goal of this paper is to show the influence of the shear
stiffness in the formulation. The computations of forming
processes are made taking or not the shear strain energy
into account. It is shown that the main improvement due
to shear is the description of wrinkles when the shear limit
angle is overcome.

2. Experimental analysis

The mechanical behaviour of a woven composite rein-
forcement is special because of the possible motions
between fibres and yarns. Consequently most of the rigidi-
ties can be neglected as regard to tension stiffness. In the
present work, tension stiffness will be considered and in
plane shear stiffness will be (possibly) added. It will be
shown that this shear stiffness is important in some cases.
Bending rigidity will be neglected.
2

The behaviour of fabric reinforcements in biaxial ten-
sion has been studied in [8,9] and recently in [10,11]. In this
section, an experimental study of the reinforcement in
plane shear is considered. There are mainly three experi-
mental methods for the study of fabric shear deformation.
In the first method, parallel and opposite displacements are
applied to two opposite sides of a rectangular fabric spec-
imen. The strain state corresponds to a shearing case super-
posed with tensions (Fig. 1(a)). Many parameters influence
the measures, as the report of elongation of the fabric spec-
imen and the applied transverse force. The measurement
dispersions in this case can be important. Kawabata et al.
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Fig. 3. Shear load versus the displacement.
[12] developed a device imposing a simple shear state to a
woven fabric specimen (KES-F) (Fig. 1(b)). The second
type of shear tests on woven reinforcement is the FAST test
(Fabric Assurance by Simple Testing) or ‘‘bias test’’. Its
aim is to prescribe a tensile load to the specimen in a direc-
tion different from the yarns ones, typically to 45�. Several
works [13–16] have shown that the field of deformation is
not uniform within the specimen. In fact, only the central
zone is subject to a pure shear deformation. This test is
used frequently because of its simplicity. During this test
a slip between the yarns can happen, which is contrary to
the hypotheses of a continuum for the fabric. The third
method consists in the use of a hinged frame called picture
frame. We used this technique that is described in the fol-
lowing paragraph to characterise the shear behaviour of
woven fabrics.

2.1. Experimental analysis by picture frame shear test

The picture frame shear test consists in clamping a
fabric on a hinged frame whose directions are those of
the fabric yarns (Fig. 2) [17–19]. Different studies have
showed that this device is the most satisfactory to impose
a homogeneous shear deformation in a woven reinforce-
ment [20,21]. The frame is installed on a conventional
tensile machine. A pre-tension is applied on the fabric
yarns before shearing. The active surface of the presented
test specimen is 200 · 200 mm2. The specimen under
consideration is a glass plain weave (T6) presenting the
following features: yarn density = 0.25, crimp: S = 0.5%,
surface density: W = 600 g/m2, linear density: w =
1200 tex (1 tex = 1 g/km). The curve giving the evolution
of the applied load versus the displacement (Fig. 3) can
be divided into three zones. In the first part the slope is
small and the shear rigidity is very weak. In the second
zone, the shear rigidity increases and becomes very impor-
tant in the third part. Optical measurements are used at
macro- and micro-level in order to understand the shear
deformation mechanisms operating during these three
phases. They are described in the following paragraph.
Fig. 2. Shear picture frame.
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2.2. Optical measurements of deformation

An optical system (Fig. 4) acquires pictures of the whole
frame (macroscale) or only of a few number of yarns
(12.4 · 9.5 mm2). The measure domain can be restricted to
a unique yarn (microscale). Two pictures (macro and micro)
are taken simultaneously using cameras at both sides of the
specimen. These pictures are used to calculate the displace-
ment and strain fields by applying a digital image correla-
tion method [22,23]. It permits to verify the homogeneity
of the shear deformation in the specimen [21]. Fig. 5(a)
shows the displacements at the microscale (inside the yarn)
during the phase 1. The average displacement is subtracted
to the measured ones. In this phase, the yarns are submitted
to a rigid body rotation. There is no shearing inside the
yarns. The global fabric shear is due to relative parallel dis-
placement of yarns. This explains that the fabric shearing
corresponds to weak loads since only the friction due to
rotation between warp and weft yarns is opposed to the dis-
tortion. The transition to the zone 2 corresponds to the limit
angle or shear locking angle. After this angle, the yarns
become in contact with their neighbours and are laterally
compressed (Fig. 5(b)), first partially (zone 2) then com-
pletely (zone 3) (Fig. 5(c)). This explains the very fast
Fig. 4. Shear frame device equipped with the optical system.



Fig. 5. Displacement field in a yarn during the three phases of shear.
increase of the shearing force and therefore of the shear
rigidity. In practice in the zone 3, wrinkles appear caused
by the shear locking.

3. Finite element for the simulation of woven reinforcements

sheet forming

Finite elements developed to simulate the sheet forming
of woven reinforcements are presented in this section. The
element formulation taking only the tension rigidity in
warp and weft directions into account is reminded first
[24,25]. Then, the plane shear behaviour and its implemen-
tation in the finite elements are presented.

3.1. Tension behaviour

3.1.1. Elementary cell

It has been shown by some experiments [24] that it can
be assumed that there is no translation sliding between
warp and weft yarns in a usual forming process. This justi-
fies the use of classical lagrangian finite elements for woven
reinforcement sheet forming modelling. The fabric finite
element that has been developed by the authors [24,25,27]
and which take into account only the two rigidities of trac-
tion in warp and weft directions is briefly presented in the
following paragraph.
h1

Fig. 6. Direction of the yarn.
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In the present study the tensile behaviours of warp and
weft yarns are assumed to be uncoupled. An approach tak-
ing interaction between the two direction can be found in
[28,29]. If h1 is the unit vector in the fibre direction (see
Fig. 6), the Cauchy stress tensor in a yarn in tension is

r ¼ r11h1 � h1 ð1Þ
The tension tensor, that has more physical significance in
the case of fabrics than the stress tensor, is defined as

T ¼ T 11h1 � h1 ð2Þ

T 11 ¼
Z
A1

r11 dS ð3Þ

3.1.2. Finite element formulation

Let us consider a domain X composed by n yarns, the
principle of the virtual works in the dynamic case can be
written as

"g/g = 0 on CuXfibres
p¼1

Z
pl1

pe11ðgÞpT 11 dl� T extðgÞ ¼
Z
X
q€u � gdV ð4Þ

The virtual work of the exterior loads Text(g) is

T extðgÞ ¼
Z
X
f � gdV þ

Z
Ct

t � gdS ð5Þ

The presented finite element is an isoparametric bilinear 4
nodes element. The natural directions of the element coin-
cide with the warp and weft directions (Fig. 7) for numer-
ical efficiency [30]. The element contains nc warp and nt
weft yarns. The material co-ordinate system (n1, n2), in
the warp and weft directions, defines a covariant material
base (g1, g2) as well as the contravariant associated base

ga ¼
ox

ona
; ga � gb ¼ dba ð6Þ

The virtual work of interior loads is

T e
intðgÞ ¼

Xnt
p¼1

Z
pl1

pe11ðgÞPT 11 dlþ
Xnc
p¼1

Z
pl2

pe22ðgÞpT 22 dl

ð7Þ
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Fig. 7. Woven finite element.
The components of the symmetrical gradient tensor are
considered in h1, h2 and g1, g2

rsg ¼ eabh
a � hb ¼ �eabg

a � gb ð8Þ
The components �eaa are interpolated in function of the

virtual displacements

�eaa ¼
og
ona

� ga ¼
oNk

ona
ðgaÞmgs ¼ Baasgs ð9Þ

where k ¼ Int sþ2
3

� �
, m = s � 3(k � 1), s is the range of the

degree of freedom in the element and Int(A) is the integer
part of A.

The elementary virtual interior work can be written

T e
intðgÞ ¼ gs

Xnt
p¼1

Z
pl1

1

kg1k
2
pB11s

pT 11 ds

þ
Xnc
p¼1

Z
pl1

1

kg2k
2
pB22s

pT 22 ds

!
¼ gsðF e

intÞs ð10Þ

The quantities present in the interior loads do not
depend of na. Taking into account that ds = kgakdna, the
nodal components of the interior loads for warp and weft
yarns are

ðF e
intÞs ¼

Xnt
p¼1

1

kg1k
pB11s

pT 11 þ
Xnc
p¼1

1

kg2k
pB22s

pT 22 ð11Þ

Because of the bilinear interpolation function of the ele-
ment, it is not necessary in the previous equation to sum
over all the yarns. There is two ‘‘Gauss fibres’’ where Eq.
(11) is equivalent to

ðF e
intÞs ¼

X2
p¼1

ntB11sT 11 1

kg1k
þ
X2
p¼1

ncB22sT 22 1

kg2k
ð12Þ

The positions of these two Gauss fibres are

n2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

n2t � 1

n2t

s
; n1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

n2c � 1

n2c

s
ð13Þ

for the warp and weft directions, respectively [26].
The element is implemented in an explicit code, conse-

quently the nodal interior loads F e
int is the only elementary
5

quantity needed for the computation. Details on this (stan-
dard) explicit approach can be found in Ref. [29].

3.2. Taking in-plane shear into account

The observations made in the shear tests on the woven
reinforcements, show that the fabric deformation is the
result of a relative rotation between the warp and weft
yarns and not of a fibres shearing [31] (Fig. 5). The tensile
mechanical behaviour of the fabric presented in Section 3.1
is completed by adding a shear rigidity to every yarn cross-
over [32]. The relative rotations of the warp and weft yarns
lead to a torque applied at the yarn intersections. The value
of this shear torque for a shear angle is experimentally
given by the picture frame test. To find the value of this
resistant torque, it is assumed that the fibres remain
straight during the test [12]. Consequently, all the angles
(between warp and weft) and all the torques at the intersec-
tions are equal over the frame. The dissipated power is
assumed to be small. The power provided by the traction
machine and the power absorbed by the warp and weft
intersections are supposed to be equal. Using the notations
of Fig. 8, we get

P ¼ F � VC ¼ NcNtCðcÞ _c ð14Þ
The elementary torque according to the shear angle is

given by

CðcÞ ¼ a
NcNt

ffiffiffi
2

p

2
cos

c
2
� sin

c
2

� �
F ðUCðcÞÞ ð15Þ

Fig. 9 shows the torque according to the shear angle.
This curve can be divided into three zones in such a way
as the load–displacement curve (Fig. 3). The torque value
is small at the beginning and becomes important after the
locking angle. The shear and tension behaviour are
assumed to be uncoupled. In a first approach, the tor-
que–angle curve is modelled by two straight segments of
different slope. Thus, the shear fabric behaviour is charac-
terised by two rigidities k1, k2 and a limit angle cc. The
following relation between the torque and the shear angle
is assumed:
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Fig. 9. Shear torque versus shear angle.
CðcÞ ¼ k1c if c 6 cc
CðcÞ ¼ k2ðc� ccÞ þ k1cc if c > cc

�
ð16Þ

In the case of a glass plain weave (T6), the three following
values of the shear behaviour are identified:

k1 ¼ 0:26 mmN=rd; k2 ¼ 4:03 mmN=rd;

cc ¼ 0:9148 rd
3.3. Implementation of the shear stiffness in the fabric

finite element

The introduction of the shear contribution in the expres-
sion of the virtual works in dynamics leads to:

Xfibres
p¼1

Z
pl1

pe11ðgÞ pT 11 dlþ
Xcrossovers

p¼1

pCpcðgÞ � T extðgÞ

¼
Z
X
q€u � gdV ð17Þ

Within a finite element approach, the elementary virtual
work of the interior loads is

T e
intðgÞ ¼ gs

Xnt
p¼1

1

kg1k
pB11s

pT 11 þ
Xnc
p¼1

1

kg2k
pB22s

pT 22

!

þ
Xntnc
p¼1

pCpcðgÞ ð18Þ

As it is defined in (17) and (18), the shear contribution does
not permit to express the interior virtual load work as a
scalar product of the virtual displacement vector and the
interior load vector. In this goal, first order development
of pc(g) is performed. The use of an explicit resolution
scheme requires (for stability reasons) a very small time
step. Consequently the rotations between two consecutive
configurations are small, that justifies the linearisation.

The rotation between warp and weft yarns following the
virtual displacement g is:

cðgÞ ¼ arccos
g1 � g2

kg kkg k

� �
� arccos

g10 � g20
kg kkg k

� �
ð19Þ
1 2 10 20
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ga0 ¼ ox0
ona

and ga ¼ ox
ona

¼ oðxþgÞ
ona

are the covariant vectors in
the present configuration and the virtual configuration.

cðgÞ ¼ arccos
g10 þ og

on1

� �
� g20 þ og

on2

� �
kg10 þ og

on1
kkg20 þ og

on2
k

0
@

1
A

� arccos
g10 � g20

kg10kkg20k

� �
ð20Þ

We have

ga0 þ
og
ona

				
				 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kga0k

2 þ og
ona

				
				
2

þ 2ga0 �
og
ona

s
ð21Þ

Neglecting the terms of second order in g and making a
first order development, we get

ga0 þ
og
ona

				
				 ’ kga0k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ga0

kga0k
2
� og
ona

s

’ kga0k 1þ ga0

kga0k
2
� og
ona

!
ð22Þ

and

g10 þ
og
on1

� �
� g20 þ

og
on2

� �

’ g10 � g20 þ g20 �
og
on1

þ g10 �
og
on2

ð23Þ

Consequently

g10 þ og
on1

� �
� g20 þ og

on2

� �
g10 þ og

on1

			 			 g20 þ og
on2

			 			
’

g10 � g20 þ g20 � og
on1

þ g10 � og
on2

kg10kkg20k 1þ g10
kg10k2

� og
on1

� �
1þ g20

kg20k2
� og
on2

� � ð24Þ

Neglecting the terms of the second order in g, we get

g10þ og
on1

� �
� g20þ og

on2

� �
g10þ og

on1

			 			 g20þ og
on2

			 			
’

g10 �g20þg20 � og
on1

þg10 � og
on2

� �
� g10 �g20ð Þ g10

kg10k2
� og
on1

þ g20
kg20k2

� og
on2

� �
kg10kkg20k

ð25Þ
We note h0 = (g10, g20) the angle between warp and weft
yarns at the beginning of the time step

g10 þ og
on1

� �
� g20 þ og

on2

� �
g10 þ og

on1

			 			 g20 þ og
on2

			 			 ’ cosðh0Þþ
g20 � og

on1
þ g10 � og

on2

� �
kg10kkg20k

� cosðh0Þ
g10

kg10k
2
� og
on1

þ g20

kg20k
2
� og
on2

!

ð26Þ
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We note h = (g1, g2) = h0 + c(g) the angle between warp
and weft yarns in the virtual configuration. We have

cosðh0Þ � cosðhÞ ’ sinðh0ÞcðgÞ ð27Þ
from where

cðgÞ sinðh0Þ ’ �
g20 � og

on1
þ g10 � og

on2

� �
kg10kkg20k

þ cosðh0Þ
g10

kg10k
2
� og
on1

þ g20

kg20k
2
� og
on2

!
ð28Þ

c(g) is obtained as

cðgÞ ¼ og
on1

� cot gh0
g10

kg10k
2
� g20
sin h0kg10kkg20k

" #

þ og
on2

� cot gh0
g20

kg20k
2
� g10
sin h0kg10kkg20k

" #
ð29Þ

c(g) can be written as the product of the virtual node dis-
placements vector and a column matrix Bc

cðgÞ ¼ Bcg ¼ Bcsgs ð30Þ

With

Bcs ¼
oNk

on1
cot gh

ðg1Þm
kg1k

2
� ðg2Þm
sin hkg1kkg2k

" #

þ oN k

on2
cot gh

ðg2Þm
kg2k

2
� ðg1Þm
sin hkg1kkg2k

" #
ð31Þ

where k ¼ Intðsþ2
3
Þ, m = s � 3(k � 1) and s the range of the

degree of freedom in the element.
The new expression of the virtual work of the interior

loads after finite element approximation is

T e
intðgÞ ¼ gs

Xnt
p¼1

1

kg1k
pB11s

pT 11 þ
Xnc
p¼1

1

kg2k
pB22s

pT 22

þ
Xntnc
p¼1

pCpBcs

!
¼ gsðFe

intÞs ð32Þ

It is possible to replace the summation on all the warp and
weft crossovers by a summation on only 4 crossovers. The
positions of these particular points depend on the numbers
of yarns in warp and weft directions of the element. The
interior loads vector is computed using the following
expression:

ðF intÞs ¼
X2
p¼1

ncpB11sT 11 1

kg1k
þ
X2
p¼1

ntB22sT 22 1

kg2k

þ 1

4

X4
p¼1

ncntBcs
pC ð33Þ

In this equation Bcs and
pC are calculated at the four posi-

tions p given by Eq. (13).
7

Eq. (33) provides an approximate computation of the
interior loads due to shearing (contrary to the tension
which is calculated in an exact manner).

4. Validation and forming simulations

4.1. Verification of the discrete quadrature for shear

The error made in the computation of the shear contri-
bution is evaluated in function of the fibres density in the
finite element. An hourglass shape is considered (Fig. 10).
The error is maximal for this particular element geometry.
This shape is uncommon in practice because the yarns of a
fabric do not usually stretch out much and consequently
the deformed element is close to a lozenge. In a lozenge
the warp and weft yarn angles are equal, so the discrete
quadrature provides an exact computation.

An exact computation of the matrix Bc is obtained by
summation on all the crossovers. It is compared with the
results obtained using the discrete quadrature. Fig. 11 pro-
vides the evolution of the maximum of the relative error
committed on the shear contribution in the terms of the
interior loads vector according to the shear angle c for dif-
ferent warp and weft element densities. The relative error is
very weak for angles lower then 0.5 rd and remains small
for large angles (0.9 rd). The error is equal to zero for
two yarns and remains small when the number of yarn in
the element increases. We can conclude that the approxi-
mation made to compute the sum on all warp and weft
intersections provided a good result with a very weak error.
It permits an important gain in computational time.
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Fig. 15. Pure shear test on a unit woven cell.
4.2. Element validation

It is first necessary to verify the approximation of c(g)
given by the expression (29) for time steps used in practical
explicit computations. In this goal, several deformation
cases are considered. For these cases, the approached val-
ues of the angle h between warp and weft directions are
compared with the exact values.

4.2.1. Traction

A unit side square element is submitted to a 100% elon-
gation in direction 1 (Fig. 12(a)). The computation needs
3400 steps. The results show that the angle h between warp
and weft remains constant and equal to 90�.

4.2.2. Shearing

The same element is now submitted to simple shear
(Fig. 12(b)). The computation needs 3400 steps. Fig. 13,
the two curves show the variation of the angle between
warp and weft yarns calculated by the approximated value
given by Eq. (29) and by an exact computation. The two
curves are perfectly superimposed. Fig. 14 shows the differ-
ence between the two previous curves. The error remains
very small. The computation of the angle between warp
and weft from the expression (29) is therefore satisfactory.

4.3. Pure shear test

An analytical solution for the pure shear test applied on
a square elementary cell of unit side containing one warp
1 111 

a b

Fig. 12. Elementary tests: (a) traction; (b) shear.
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Fig. 13. Angle variation between warp and weft yarns in the case of a
shear test.
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and one weft yarns has been developed (Fig. 15). The nodal
force components issued from the analytical solution and
from the proposed numerical approach, are compared
according to the shear angle. We suppose that a torque C

proportional to the shear angle is applied at the warp
and weft intersection.

CðcÞ ¼ kc ð34Þ

where k is the shear rigidity.
When bringing back the loads FA, FB, FC and FD to the

nodes M, N , P and Q, we get

F x
1 ¼ �kc cos c; F y

1 ¼ �kcð1� sin cÞ

F x
2 ¼ �kc cos c; F y

2 ¼ kcð1þ sin cÞ

F x
3 ¼ kc cos c; F y

3 ¼ kcðsin c� 1Þ

F x
4 ¼ kc cos c; F y

4 ¼ �kcð1þ sin cÞ

8>>>>><
>>>>>:

ð35Þ

with c = arcsin(u), where u is the horizontal displacement
of the points C, P and Q.

Figs. 16–18 show the theoretical nodal loads and those
obtained from the developed numerical model for different
values of the fibre tensile rigidities. The rigidity of the yarn
is denoted E (N/mm). When it increases the computed
solution differs slightly from the analytic solution. This
can be explained by the approximations on the node speeds
prescribed in y-direction.
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Fig. 19. Meshes used for the picture frame test simulation.
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Fig. 21. Computed load when the prescribed velocity is constant.
4.4. Simulation of the picture frame test

A picture frame test is equivalent to a pure shear test
plus a rigid body rotation. This test has been simulated
by using the presented approach and for different meshes
(Fig. 19).

Fig. 20 shows the variation of the force calculated by
our model according to the displacement (for different
meshes: 1 element, 4 elements and 16 elements) and the
9

experimental force measured on the traction machine.
One can notice that the calculated force is insensitive to
the mesh density.

The velocity imposed on the boundary nodes of the
frame evolves in a progressive manner (class C1 in relation
to the time). In the contrary case, the initial knock induces
strong oscillations (see Fig. 21).

4.5. Square box deep drawing

The test presented Fig. 22 is a classic benchmark for
sheet forming. It has been proposed at the Numisheet 93
conference [33]. For the woven sheet forming, this test is
severe because it leads to large variations of angle between
warp and weft in the radius of the square box. If these
radius become small, we get some warp and weft angle



Fig. 22. Square box deep drawing: geometry of the tools.
distortions superior to the limit angle of the fabric. The
sheet forming simulation of a glass plain weave (T6 tested
in Section 2) is achieved using the tension only approach
(Eq. (4)) and the tension–shear approach (Eq. (17)).
Fig. 23 presents the two deformed shapes of the reinforce-
ment at the end of the forming. Due to the strongly double
curved character of the formed surface, the shear limit
Fig. 23. Final shape of the fabric: approach in tension (a) and approach in
tension + shear (b).

Fig. 24. Angle between warp and weft yarns: approach

10
angle of the fabric is exceeded. There is no wrinkling in
the tension only solution because there is no source of
instability in this case. On the other hand some wrinkles
are developed in the second approach. They are due to
the fabric shear locking that leads to out of plan solutions
in order to reduce the shear strain energy. Fig. 24 shows
that the shear angles are reduced when shearing is taken
into account (maximum shear angle is 48�). Nevertheless,
the tension approach also detects that the shear angle
exceeds the locking angle in some places. Wrinkles appear-
ance is detected but those wrinkles are not described. The
contribution of the shear in the approach is mainly the
description of the deformed shape after wrinkling.

4.6. Hemispherical forming of an unbalanced fabric

The hemispherical forming of a 2 · 2 nylon twill is
analysed in this section. This fabric is used in automo-
tive industry [31]. It presents a very unbalanced tensile
behaviour in warp and weft direction (Fig. 25). The warp
rigidity is 50 N/yarn and the weft rigidity is 0.2 N/yarn.
The shear behaviour of this fabric has been experimentally
analysed by the picture frame test. Its rigidity has been
approached by two straight segments, whose slopes are
k1 = 0.03 mmN/rd and k2 = 0.095 mmN/rd with a critical
shear angle cc = 0.5 rd.

Tests of hemispheric sheet forming have been achieved
by Dumont in the S3MEM composites laboratory of the
University of Nottingham [31,34]. It is a classic case of a
double curved geometry [24,35–37] that presents the advan-
tage to have regular change of curvatures while producing
strong distortions for a sufficiently deep forming [38]. This
forming process has been simulated using the two
approaches (tension only, tension + shear). The results of
these two simulations as well as the experimental final
shape are shown Fig. 26. The experimental deformed shape
is very different in warp and weft direction. The warp direc-
tion (vertical in Fig. 26) corresponding to the most rigid
yarns, shows an important sliding of fabric in the matrix.
In the other (weft) direction, there is no visible sliding.
The yarns are strongly stretched. At the summit of the
hemisphere, an initially square quadrilateral becomes a
in tension (a) and approach in tension + shear (b).
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Fig. 26. Deformed shape after the hemispheric forming in the experimental case (a), simulation in tension only (b) and in tension + shear (c).
rectangle with a side ratio equal to 1.8 (Fig. 26(a)). Both
simulations give value of this ratio close to this value
(Fig. 26(b) and (c)). The deformation of the hemispherical
part is well computed by both approaches.

The asymmetry of the deformed shape in warp and weft
direction is obtained by both approaches. The main differ-
ence concerns the wrinkles. In tension + shear approach,
the shear strain energy leads to the appearance of wrinkles
in the plane region of the preform (contrary to the
approach in tension only). Their shapes are in good agree-
ment with those of the experimental preform (Fig. 26(a)
11
and (c)). There is no wrinkle in the hemispherical zone
and the two approaches give close results in this region.
But there are regions where the shear angle is higher than
the shear limit angle. When the shear energy is taken into
account, the minimisation of the total deformation energy
leads to an out of plane solution i.e. to the wrinkles
(Fig. 26(c)). The contribution of the shear behaviour is
mainly in the description of the state after wrinkle appear-
ance. In this stage, the relative rotations between warp and
weft yarns are reduced. For instance the maximum shear
angle is 37� in Fig. 26(c) instead of 50� Fig. 26(b). This



value (37� in case of (tension + shear) analysis) is in good
agreement with angles measured on experimental parts
(37�). It can be observed that the mesh used Fig. 26(c) (ten-
sion + shear) is finer than those used in 26(b) (tension
only). These 1meshes are used because they are sufficient,
i.e. that their refinement does not change significantly the
solution. The needed size is much finer in the case ten-
sion + shear because the wrinkles that appear in this case
need elements of a time much smaller than those of these
wrinkles in order to describe then correctly. The explicit
scheme permits to obtain them without any perturbation
method or initial imperfection.

5. Conclusion

The objective of this work is to show the influence of the
fabric shear rigidity on the prediction of the final shape of
the woven reinforcement after forming. It has been
observed according to the experimental study of shearing
with a picture frame, that the principal mode of shear
deformation of the woven reinforcement is the relative
rotation between the warp yarns and the weft ones. Conse-
quently, we supposed the existence of a resistive torque
applied to the level of the warp and weft intersections vary-
ing according to the shear angle. The evolution of the shear
rigidity according to the shear angle has been deduced.
This shear behaviour has been introduced in the woven
finite element without addition of new degrees of freedom.
This approach gives better results than those only based on
tension properties when the shear limit angle is exceeded
and when consequently some wrinkles appear. In these
cases, deformations modes are obtained in order to reduce
the shear angle (that corresponds to a strong stiffness in
this situation). This has been shown in a square box and
in a hemispherical forming cases. A next goal will be to
investigate the importance of the yarn bending rigidity
when the woven reinforcement is thick.
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