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1 INTRODUCTION 

The natural element method (NEM) is a particular 
meshfree method which possesses advantages 
compared to the vast majority of other meshless 
approaches such as (a) Direct imposition of essential 
boundary conditions (b) Automatic adaptation of the 
support (domain of influence of a node) to the 
density and/or anisotropy of the surroundings cloud 
of nodes. Furthermore, it has been shown that the 
accuracy of the approximation is not much affected 
by the relative positions of the nodes. In that context, 
simulations of processes involving large strains, i.e. 
extrusion, can be performed with great robustness, 
using the same cloud of nodes during the whole 
simulation. Nevertheless, the NEM is 
computationally more expensive than FEM, as the 
shape functions can not be expressed analytically. 
Different natural neighbour interpolants (NEM 
shape functions) exist, i.e. Sibson shape functions, 
Laplace shape functions, or pseudo NEM shape 
functions. In this work, a comparison of these 
different interpolants in terms of CPU requirements 
and accuracy is proposed. Numerical investigations 
are performed through both linear 3D benchmark 
and complex extrusion simulations.  

2 NATURAL NEIGHBOUR INTERPOLANTS 

There exist various types of natural neighbour-based 

interpolations, but they all are based on the 
construction of the Delaunay triangulation [1] of the 
cloud of points used to discretise the domain. The 
Delaunay triangulation of a set of points is the 
unique triangulation of the set that verifies the so-
called empty circumcircle criterion. This means that 
no point of the set lies in the interior of a circle that 
passes through the three vertices of each triangle. 
The dual structure of the Delaunay triangulation is 
the Voronoi diagram of the cloud [2]. For a given 
node nI, its associated Voronoi cell is composed by 
all of the points which are closer to the node nI than 
to any other node. Formally, 
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where TI is the Voronoi cell and d(·,·) represents the 
Euclidean distance. Two nodes whose Voronoi cells 
share one edge are called natural neighbours and 
hence the name of these interpolation schemes. 

2.1 Sibson 

The most extended form of natural neighbour-based 
interpolation is due to Sibson [3]. For the definition 
of Sibson interpolation it is necessary to previously 
introduce the concept of second order Voronoi cell 
TIJ. It is defined as the locus of the points that have 
the node nI as the closest node and the node nJ as the 
second closest node. 
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Fig .1. Areas of the second Voronoi cells 

If a new point x (i.e. an integration point) is added to 
a given cloud of points, the Voronoi cells will be 
modified by its presence (see figure 1). Sibson [4] 
defined the natural neighbour coordinates of a point 
x with respect to one of its neighbours nI as the ratio 
of the area (2D) or volume (3D) of the cell TIx to the 
total area (2D) or volume (3D) of Tx: 
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The resultant shape function obviously depends on 
the relative position of the nodes. An example of 
such shape function on a 2D regular mesh can be 
seen in figure 2. 

  
Fig. 2. Sibson interpolant 

2.2 Laplace 

Laplace interpolants [5] are also based on the 
Voronoi diagram of the cloud of but involve 
computations on lower dimensional geometrical 
elements . Being  hxI the distance between a node nI 
and a point x, and mxI the length (2D) or area (3D) of 
the common face of the cells defined by the node nI 
and the point x (see figure 3), the Laplace function 
of node nI at the point x is defined as: 
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 is called Laplace weight and  
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is the sum of the weights of all n neighbosr nodes of 
x. 

 
Fig. 3. Parameters involved in Laplace interpolant 

computations 

Figure 4 shows the interpolant of a 2D regular mesh: 

 
Fig. 4. Laplace interpolant 

3 PSEUDO NATURAL NEIGHBOUR 
INTERPOLANTS 

In the context of Pseudo-NEM interpolants [6,7], the 
shape functions are computed using the Moving 
Least Square [8] framework, with particular weight 
functions, in order to match the properties of the 
NEM. For that purpose, some weight functions 
matching the support of the NEM shape functions 
support are computed as follows. The definition is 
given here in 2D, but is straightforward in 3D. Let a 
cone function which basis matches one of the 
Delaunay circle containing the point x, and where 
the projection of the node match the node ni (see 
figure 5). 
 

 
Fig. 5. Conical function. 

 
The value of the conical function computed at point 
x is given by: 
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In order to avoid overlapping of the cone functions 
whereas conserving the continuity of the weight 
function, a cone portion is associated with each 
Delaunay triangle connected to the node ni (see 
figure 6). 

 
Fig. 6. Zone associated with a conical function. 

 
After introduction of (6) in the MLS framework, we 
obtain the shape functions depicted in figure 7 More 
details on the procedure can be found in [6,7]. 
 

 
Fig. 7. Pseudo NEM interpolant 

4 LINEAR ELASTIC COMPRESSION TEST 

4.1 Problem definition 

The first example consists in the compression of a 
cube made of an linear elastic material. A 
displacement of 0.01 on z direction is prescribed on 
the top face and the nodes of the bottom face are 
constrained in the z direction. Different clouds of 
nodes have been employed, both in regular and 
irregular distributions. In the FEM context, 
Delaunay triangulation has been used, and three 
integration points are used in each tetrahedron. All 
meshless simulations use the same integration 
points. 

4.2 Results 

4.2.a Computing time 
Figure 8 shows the time needed to solve different 
problems. It is obvious that solving the problem 
using Sibson (NEMS) shape functions takes the 
highest times, increasing very fast. Furthermore, the 

time needed for irregular distributions is higher than 
regular ones, since regular ones have less Delaunay 
tetrahedra and thus less integration points. 
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Fig. 8. Computing time comparison 

Comparing the ratio of time needed to calculate the 
shape functions to the total time to solve the problem 
(figure 9), the pseudo NEM (PNEM) needs less than 
10% of total time and decreases when the size of the 
problem increases. Laplace method (NEML) also 
decreases, but gets about 30% time. Again, Sibson is 
very expensive. 
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Fig. 9. Shape calculation time/total time comparison 

5 EXTRUSION SIMULATION 

5.1 Problem definition 

The second problem consists in the simulation of a 
real extrusion problem. A regular mesh is generated 
at the beginning of the extrusion process. After some 
steps, the mesh becomes very distorted. The 
example involves 3021 nodes and 53781 integration 
points. 
Mixed formulation with incompressible viscoplastic 
material model has been used. Only three iterations 
are needed for convergence. 
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5.2 Results 

5.2.a Computing time 
As can be seen in the table 2, only calculating 
Sibson shape functions have significance in the total 
time. 
 
Table 2. shape function calculation time/total time for 
extrusion 
 shape calc time total time proportion 
FEM 0.22 289.81 0.0759% 
NEMS 17799.43 19611 90.7625% 
NEML 70.94 1877.02 3.7794% 
PNEM2 10.84 1814.12 0.5975% 

5.2.b Accuracy 
The following figures show the equivalent strain rate 
at a region close to the exit, where the mesh is 
highly distorted. The artificially values obtained 
with FEM due to the mesh distortion are not 
reproduced in the meshless methods. However, 
PNEM values are very low, probably due to the 
locking of the velocity field. 
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Fig. 10. Equivalent strain rate at the corner 

6 CONCLUSIONS 

The calculation of the NEM and Pseudo NEM 

interpolants takes mores time than FEM shape 
functions. However, in complex calculation the extra 
time needed to calculate natural interpolants is 
relevant only when Sibson is used. 
Due to the larger support of NEM shape functions, 
the matrices are not so empty, thus total calculation 
time increases. But when the high distortion of a 
mesh makes FEM unstable, meshless methods seems 
to be useful. 
Despite Pseudo NEM involve less computational 
times than other NEM approximations, its efficiency 
seems quite poor compared to other reviewed shape 
functions. Nevertheless, it is worth noting, that the 
accuracy can be enhance using special smoothing 
techniques [7], as well as special treatment of the 
boundary conditions. An other assumption is that the 
higher complexity of the shape functions probably 
necessitates a finer integration scheme. These 
improvements are currently being investigated. 
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