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Abstract

A systematic mathematical methodology for derivation of boundary layer expansions
is presented. An explicit calculation of boundary layer sizes is given and proved to be co-
ordinates system independent. It relies on asymptotic properties of symbols of operators.

Several examples, including the quasigeostrophic model, are discussed.
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Boundary layers appear in various physical contexts, such as fluid mechanics, thermodynam-
ics, or ferromagnetic media. From the mathematical point of view, they are related to singular
perturbation problems in bounded domains. The singular perturbation is due to the presence
of small parameters in the dimensionless governing equations. For instance, in magnetohy-
drodynamics (MHD), the so-called Rossby number (ratio between the angular velocity of the
fluid and the angular velocity of the Earth) can be as low as 10~7. Similarly, the Prandtl
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number (ratio between hydrodynamic and magnetic diffusivity) is about 107¢ in the Earth’s
core. In the interior of the domain, these small parameters lead to some reduced dynamics of
the equations. For instance, in highly rotating fluids, the velocity field does not vary along the
rotation axis, see textbook [[[1]]. This reduced dynamics is often incompatible with boundary
conditions. This yields boundary layers, in which the solutions of the equations have strong
gradients, in order to satisfy the boundary conditions (typically a Dirichlet condition at a
rigid surface).

In a formal setting, boundary layer problems are connected to systems of the type
A% (z,Dy)u® + Q° (u¥) = [, z€Q, (1.1)

where ¢ € R? describes the small parameters of the system, @ C R™ is the domain, u®(x)
the unknown, f¢(z) the data, A° is a linear differential operator (most often of elliptic or
parabolic type), and QF the nonlinear part. One must of course supply these equations with
appropriate boundary conditions.

The basic idea, which underlies the mathematical study of all boundary layers, is that the
solution u® of ([l1]) should satisfy an asymptotics of the form

u (@) ~ u(a) + uf (m%ﬁ?) toetu <xd(§7<8§2)> R

ul (6;) — 0, 6; — 400, Vi.

This means that u® should have a regular part, depending on x, but also a singular part,
depending on stretched variables 6; = d(x,09Q)/;(g), with a;(e) — 0 as € — 0. This singular
part should be localized near the boundary and express the strong gradients of boundary
layers. Broadly speaking, the aim of boundary layers studies is to answer the following
questions:

i) What are the possible a;(g) (the boundary layer sizes)?

bl 2
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ii) What are the possible profiles u, u
iii) Is the asymptotics ([.2) correct (in a sense to be determined) ?

The first two questions are related to the derivation of boundary layers, whereas the third
one is connected to stability issues.

The aim of this note is to give some insight into the derivation problem. In some cases, the
derivation is quite easy, and the stability analysis is the most difficult part (see for instance
[L0, 5] on viscous perturbations of hyperbolic systems). But in most situations of physical
interest, it may involve a variety of length scales and equations. A typical example is the
description of water in a highly rotating tank. If the water is at rest in the rotating frame
attached to the tank, it is well modeled by Stokes equations with Coriolis term:

exu + Vp — FAu = f,

1.3
V-u =0, (13)

where e = (0,0,1) is the rotation vector, and E is a small parameter called the Ekman
number. For such system (with appropriate source term f and boundary conditions), the
structure of the solutions near a flat horizontal boundary is understood: there is a boundary
layer of size E'/2, the Ekman layer (see [B)). In this case, one can even carry an analysis
of the full Navier-Stokes equations with rotation: we refer to [[2, [[4, i among others. But
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Figure 1: Boundary layers of rotating fluids, near a sphere and at the circumscribing cylinder
(following Stewartson [[19])



in more elaborate geometries, following the articles of Stewartson [[[§, [[J], many other layers
develop: for instance, between two concentric spheres with slightly different rotation speeds,
boundary layers of size EY/2, EY/3, EY/4 E2/5 . are expected near the inner sphere and the
cylinder circumscribing it (see figure [).

Note that equations ([[.) are linear. Generally, the derivation of the boundary layers does
not involve the nonlinearity Q° of ([L.1): it only matters in stability questions. In short, one
can say that the nonlinear term does not create the boundary layer, but may destabilize it.
Therefore, we restrict ourselves to linear equations

A(z, Dy)uf = f5. (1.4)

Classically, the problem of the derivation is tackled through one of the following ways:

i) an explicit calculation, where the exact solution is computed and expanded. However, such
technique is restrictive (an analytical computation is rarely tractable) and often tedious
(see for instance [[[9], with Bessel functions).

ii) the so-called “method of matched asymptotics”, see [E, P2, @] for a general presentation.
The idea of this method is to patch two asymptotic expansions: an “outer” regular
one, far from the boundary, and an “inner” singular one, close to it. Such expansions
must coincide in an overlap domain, which provides boundary conditions for both outer
and inner profiles. The structure of the inner expansion (including the layer sizes)
is sought by trial, through the principle of least degeneracy (c.f. [f] for a detailed
explanation). This method has been applied with success to various physical systems,
including singularities near edges. However, the determination of layer sizes leads to
heavy computations, and must often be supplied with refined physical arguments (see
B1] on rotating fluids).

A new method of derivation has been recently introduced in [§ (see also the proceedings [f]).
It is based on the asymptotic analysis of the symbol A®(x,§) as € goes to zero, for x € Jf).
Briefly, up to use local coordinates near = € 952, one can consider that equation ([[.4) holds
in a neighborhood of « = (2/,0) in R”. Then, the leading idea of the derivation is to carry a
Fourier-Laplace analysis: boundary layer sizes near x are deduced from modal solutions

u(z) = exp (i€°-2) VE, V= #0, (1.5)
of the equation with frozen coefficients
A% (z,0z)u® = 0.
In other words, one must consider the characteristic manifold of A%,

o (a®) ={(z,£°), a*(x,£%) = 0}

where a®(z,§) = det A%(x,€). Broadly speaking, if £ = ((,&,) is the dual variable of x =
(¢/,2n) € RY, boundary layers correspond to (z,£%) in o (af) that satisfy

Imé¢, — +oo, € —0.
The size of the boundary layers is then given by |Zm ffb\_l. In most cases, boundary layer
equations follow, by appropriate rescaling of the symbol. This method has been used in [g]
at a fully formal level. It has been applied with efficiency to various geophysical systems,



including rotating fluids or MHD. It has allowed to recover the main boundary layers of the
physical literature, with very few and simple algebraic computations (see [§] for all details).

The aim of the present paper is to provide this formal method with some mathematical
basis. We will limit ourselves to scalar equations. In this reduced (but still large!) setting, we
will show how the microlocal analysis of ([[.4) is linked to boundary layer expansions ([.).
We will present a set of conditions (assumptions (H1) to (H5)) that ensures the existence of
such expansions, with clearly identified boundary layer sizes and equations. Hypothesis (H1)
to (H5) involve symbols derived from a®. They will be shown to be intrinsic, although these
symbols depend on the choice of local coordinates.

Let us specify the framework of the study. Let X be a smooth Riemannian manifold,
n = dim X. In all situations of physical interest, X will be of the type T™ x R"2, ny+ns = n,
where the torus T™ models periodic boundary conditions in n; physical variables. The
Riemannian metric will be the Euclidean metric induced by R?™ x R™2. Let Q a domain of
X. We denote Y = 092 the boundary of 2, which is a n — 1 dimensional submanifold of X.
We assume that Y has a finite number of connected components, Y7 to Yy. We endow Y with
the Riemannian structure induced by X. We assume that there exist a tubular neighborhood
of Y in X, T > 0, and a smooth diffeomorphism

TrY x(-T7,T), z=(y,t),

such that t > 0in 7N, t < 0in 7N (X \). For instance, such assumption is satisfied when
X =R" and Q is a bounded open subset. In the whole sequel, we identify T and Y x (=T,T).
We consider the scalar problem,

a*(x,Dy)u® = f, x€Q, (1.6)
bj(x,Dy)u® = g, z€Y, le{l,...,L},
where a°(z, D,), respectively bj(x,D,), is a differential operator depending smoothly on
x € QUT, respectively z € Y, and polynomial in €. The source term f, respectively g,

is smooth on QU 7, resp. on Y. Let m = deg(a®) > 0.
In the region Y x [0,7”), T" > 0 small enough, we can write

m
aa(an:B) = aa(x’DyaDt) = Z a?(any) Di
7=0

where af is a differential operator on Y, of order m — j, with coefficients smooth in x,
polynomial in €. We assume that the leading coefficient reads

a,(x) = eMapn(x), MEeN, apn(z)#0, V.

Before we state our main result, we still need to precise what we mean by boundary layer

expansion. Let ¢ be a cut-off near the boundary. Precisely, ¢ € C*(Q2), o = 1on Y x[0,7/4),
and ¢ =0 on Q\ (Y x [0,7/2)).

Definition 1. A family of functions u(x) is of boundary layer type if it reads
u(z) = u(x) + o(z)vy(z) (1.8)

where the regular part uy and the singular part vy, have the following asymptotic expansions,
for some positive § and 'yji»:

us(z) ~ Y e*uf(x), uhec>(Q), (1.9)



uniformly on every compact subset of Q, and and

o0
. t
G t) ~ S 3 Lyi(y) it <y ) (1.10)
k=0

1<i<N
1<5<r;

uniformly on every compact subset of Y x [0,T), where v;k = v;-’k(y, 0) are not all zero and
belong to X' = S (R ; C=(YY)).

We recall that S stands for the Schwartz space of fast decreasing functions. Spaces x*
express the localization of boundary layer profiles. Note that in our definition, the singular
part is non zero (at least one v;’k is non zero). Our main result resumes to

Theorem 1. Suppose that assumptions (H1) to (H5), c.f. next sections, hold. Then, the
system

(1.11)

ae(x’Dm)ue = f’ T e Q’
bj(z,Dy)u® = g;, ze€Y, le{l,...,L},

has a solution of boundary layer type, modulo € uniformly on every compact subset.

Theorem [[ is the rigorous translation of the formal method described in article [§]. In the
following, we will present assumptions (H1) to (H5), which allow to build solutions of bound-
ary layer type. Broadly, assumptions (H1) to (H3) (see section ) relate to the determination
of exponents 7; Assumption (H4) (section []) is linked to the derivation of boundary layer

profiles v;k Finally, (H5) (section ) is connected to the construction of the regular part
us.. The proof of theorem [l| follows. Application to the quasigeostrophic equation is given in
section [f.

2 The singular perturbation

2.1 Local characteristic manifolds and assumptions (H1)-(H2)

The aim of the paper is to describe the structure of the solutions u® of ([L.f) near the boundary.
Let y € Y, and ((9, x = (2, xn)) a local chart in X around y, with

On

5 (y) # 0.

zn(y) = 0,

The local coordinates (z',z,) lie in R"~! x R. We denote by as, = a5(z,§) the symbol of the
operator a in this local chart: precisely,

& (2,6) = N [a#(a, Dy)e@€]

|Z=x ’

Our idea is to deduce the singular structure of u® from the local symbols a5, precisely from
their characteristic manifolds. We are interested in modal solutions that are singular with
respect to € in the direction normal to the boundary. This means we wish to consider wavevec-
tors ¢ = (¢, &) such that

€] — 400, & — 0.

We have the following

Proposition 1. For all ( € R* 1,



i) the m roots of a5 (y,(,-) can be written as m functions §§(8), oy E(e) fore > 0 small
enough.

ii) There exists p = p(¢) € N* such that, fori=1,...,m, 55(61’) has an extension meromor-
phic in €.

This proposition follows from standard results of complex analysis. For fixed (, at;(y, ¢,r)
is a polynomial in &, with coefficients holomorphic in €, and we refer to Kato [[[3] for a detailed
study.

Corollary 1. For all ( € R", 1 < i <m, one of the two following possibilities occurs:

1. {f(a) has a limit as € > 0 goes to zero, that we denote {50.

2. there exists a unique p; = p;(¢) € Qf such that ePi 55(5) has a non-zero limit as € > 0
goes to zero, that we denote 77@'<,0 .

Note that if the leading coefficient of at;(y, (,-) does not vanish when ¢ — 0, the second
possibility does not occur. Roots with singular behaviour exist only if the highest order term
goes to zero with €, which is typical of a singular perturbation.

We denote by s = s({) the number of roots {Z-C satisfying 2. Several indices ¢ may cor-
respond to the same value of p;. Let 71, ..., v, r < s, be the distinct values of p;. For
1 < j < r, we call m; the number of indexes i such that p; = v;. We make the following
assumption:

(H1) There exists R = R(y) > 0, such that for all || > R, the values of r, (y1,m1)
up to (v,,m,) are independent of (.

This also implies that s = ) m,; is independent on (. Note that, using notation ~,, we
implicitly assume r > 1. When r = 0, the statements in the sequel become empty, so that we
do not pay attention to this case.

Assumption (H1) allows to state

Proposition 2. Let || > R. There exists W = W () a neighborhood of ¢, and constants
€0 = €0 (Z) >0,6=90 (Z) > 0, such that: for all { in W, for all 0 < € < g¢, the roots of
as(y,C, ) can be divided into r + 1 disjoint sets Z3(¢), 0 < j < r satisfying:

i) card Z5(() =m —s, and for all &, in Z§(C),

0 < |&] < 6L

ii) Forall1<j<wr, card Z5(C) =my, and for all &, in Z5(C),

) o1

e

evi’

Remark 1. Suppose proposition B holds. Let ( € W. By propositions [ and [§, for e small
enough, the roots of a5 (y,(,-) can be written 55(6), 1 <i<m. Up to reindex the roots, they
satisfy:

§ — & stl<ism,
£e— )

€”§f;—0—>77§,o750, 1<j<r pi=1-



Therefore, there exists 58 such that , for all 0 < e < 88,

Z50¢) = {ﬁf(s), S—i-lSiSm},

Z5(¢) = {gf(a), D =7j}

for 1 < j <r. We emphasize that in proposition [3, the sets Zj(() are defined for 0 < € < g,

where g depends only on C. This is not the case for the {f(s), defined only up to 58, which

depends a priori on . Moreover, up to consider a smaller &g, sets Zj(() satisfying i) and ii)
will be automatically disjoint.

Proof: Let |[¢| > R. With the notations of remark [[, for all 0 < & < 88, we can factorize

a5 (y.¢, &) = ag® (&) ] a5 (7€),
7j=1

(2.12)

where

ag’C(gn) = M= Xwmy Cy H (5n - 55(5)) )
i=s+1
‘) = TI (n- <€), for1<j<n

Pi=";

and Cy := (%(y)) am(y). We then define

_ﬁr n
k(6 7)

with 8, = M — m~,. It is a polynomial in 7, whose coefficients are functions of the type

ar, (C,n) -

for some fixed kg € N, a > 0, and polynomials symbols by.

Using (R.13), it is easily seen that: for all ¢, locally uniformly in &,,

a;(Gm) —= O™ ] (77 - nﬁo).

pPi="r

It is a priori pointwise convergence in (. However, the pointwise convergence of the coeffi-
cients, of the type

Z b (¢) e — b(<)
k=—ko
holds if and only if by = 0 for k < 0, and by = b. This implies that the coefficients of
) = G T (- o)
Pi="r

are polynomials, and that the convergence is in fact locally uniform in .



Let |C| > R. Let I', a curve enclosing the 77@'2,0 and no other root of a97x(z, -). As this

polynomial has smooth coefficients, Rouché’s theorem yields a neighborhood W of ¢ such
that, for all ¢ in W, I, encloses the 77iC o (and no other root of a(B’X(C ,+) ). Now, the convergence
of a?x to aQ,X is locally uniform in ¢. Still by Rouché’s theorem, and up to take smaller W,

we get: for all ¢ in W, I, encloses exactly m, roots of af, (¢, ).

Back to af, this yields a § = §(¢) > 0, such that a%,(y, ¢, ) has m, roots satisfying

This provides us with the set ZZ(().

The construction of the other sets is made inductively, using the polynomials
_3, n
i) = e a5 (16, L)

with 3 = M —my;j + > k> ;11(7 — ). We only indicate how to build Z7_;(¢). The general
induction argument is left to the reader.

The coefficients of the polynomial a;_; ,(C,-) are of the same type as a7, ((,-). Using
again (R.19), we have this time, locally uniformly in (,n,

af’fl,x(ga 77) - agfl,x(ga 77)?

e—0
0 —My—Mp—
e = oo T (o-ok) (I ).
Pi="r—1 Pi="r
and a8717x has smooth symbols in ¢ as coefficients. Note that

H _772‘4,0 # 0

Pi="7r

by definition of the 7750. Reasoning as above with Rouché’s theorem, up to reduce W, ¢¢ and
0, we find a curve I',_; (independent on ¢ in W, ¢ < gp) which encloses exactly m,_1 roots
of a5 (y,(, ), all satisfying

, Cew.

eVr—1
They define the set Z5_(¢). O

Let ¢, W and &g as in proposition f]. For all ¢ in W, for all 0 < € < &y, we can factorize
the symbol as

a(y,¢, &) = a§(C. &) [ a5 (C.e7&), (2.13)
j=1

where

a5(¢,&) = Cy [ (& —2),

2€Z5(C)

a5(¢m) = [ (mn-ev2),

2€25(0)



for 1 < j <r. Note that for all ( in W, and for 0 < & < 58, we have
@S¢ = @i

where aj’c was introduced in (2.12). We can extend a5 to e = 0 by

B¢ = ] (- =€) af) =TI (=)

i=s+1 Pi=";

for 1 < 7 < r. We emphasize that all a? are globally defined in ¢, i.e. on {|¢{| > R}. On the

contrary, the a5 are only locally defined in (g, (), on an open subset [0,£0(¢)) x W(C). The
regularity of these various polynomials is given in

Proposition 3. For all0 < j <r:

i) The coefficients of a? are symbols in C, (restricted to |¢| > R).

ii) Let [(| > R. The coefficients of a5 are smooth functions of (e,¢) in a neighborhood of
(e=0,0).

Proof: We use the notations introduced in the proof of proposition Pl Again, we deal
only with 7 = r,r — 1, and leave the general induction argument to the reader.

i) In the course of the previous proof, we have shown that the coefficients of

ay(Cm) = Con™™ T (= no) = Cun™ ™™ al(Com)

Pi=r

are polynomial in ¢, |¢| > R, so that the coefficients of a¥ share the same property. Also, the
coefficients of

ay_1,(¢m) = Cy M H (77 - 77?,0) (H _7750)-

Pi=Yr—1 DPi="r

= Cyn™ ™) (C,m) < 11 —m%) -

Pi="7r

are polynomial in (. As

o (114)
Di="r

0
X

definition of the 7750. We deduce that the coefficients of a?_;(¢,-) are smooth symbols in ¢ as
well.

is the coefficient of order m — m, of @, , it is a smooth symbol, which does not cancel by

ii) In the course of previous proof, we have shown the existence of a curve I, (independent
on ¢ € W, ¢ < &), enclosing the set €7 Z7((), and none of the other roots of a7, (¢,-). By
Cauchy’s formula, we deduce for all £ € N,

1 i O ary ()
Z 77]4? _ k‘ n »X d,r]

= o= [ 0=
neeTr—1 Z¢ 2im Iy ar,x("n)

The right-hand side, so the left-hand side, defines a smooth function of (¢,(¢) in [0,e0) x W.
Now, it is well known that the coefficients of a polynomial are themselves polynomial in

10



such symmetric functions of the roots. We deduce that the coefficients of a%((,-) are equally
smooth. We can proceed similarly for a;_;, through the formula

1 Bar 7
Y=o k9 arax ()

: U —
neetr—1 2, 2im Jp, r—l,x( 777)
S

and the smoothness of aZ_; follows as well. [J

On the basis of (H1), we hope for an asymptotics of type ([.2) with a; = €% for some
indices j. Nevertheless, for such an asymptotics to be true, it is reasonable that 7, (y1,m1),

, (77, m,) depend neither on the local chart x, nor on y € Y. With above notations, we
have : for all |(| > R, forall 1 <j <r,

ad(¢,0) H 5o # 0. (2.14)

By proposition [, a?(g“ ,0) is a symbol in ¢ (restricted to [¢| > R). By equation P.14, it
does not cancel. In general, this property of no cancellation is not preserved by a change of
variable. Therefore, the assumption (H1), as well as r,(y1,m1), ..., (7, m,) depend on the
local charts. To overcome this problem, we need to make a stronger assumption:

(H2) For all 1 < j <, a?(-,O) is elliptic.

Note that, up to consider a larger R, (H2) implies (P.14). Note also that (H2) is preserved
by a change of the tangential variable z’.

2.2 Asymptotic invariance and assumption (H3)
We can now state the following invariance result:

Theorem 2. (Invariance through diffeomorphism)
Assume (H1)-(H2). Let (Ow,¥) a local chart in X around y such that

ov,,
U, (y) =0, Y (y) # 0.

Let (H1)y-(H2)y be the same as (H1)-(H2), with V in place of x. Then, (HI1)y-(H2)y holds,
with the same r, (y1,m1), ..., (Y, my).

Remark 2. In short, theorem [} states that the conjunction (H1)-(H2) is intrinsic, as well as
the main features of the singularities (exponents ~v; and multiplicities r,m;). We stress that
(H1)-(H2) involves the whole symbol a5 (y,-) and not only its principal symbol. Therefore, it
s not obvious that it should be preserved by another choice of coordinates.

Proof: Let us first set a notation: for any smooth ¢ = (¢',¢,) : U — V, 0 € U, for any
symbol P(¢,n) defined on R*~! x R, and for any v € R, we introduce

$1P(C,n) = @O (Ge) P(Dx/,eVDmn)e—i¢(x)~(©6’”n)]
| z=0

We also denote

0. P(¢,m) = ¢LP((,m).

Let (O, x) and (Og, ¥) the local charts of the theorem. It is clear that (H1) and (H2)
(and 7, (y1,m1), ..., (7, m,)) are not affected by a translation of each coordinate. Therefore,
with no loss of generality, we can assume that x(y) = ¥(y) = 0. Let ¢ = o x L. Itisa
smooth diffeomorphism between two neighborhoods U, V' of 0. Let now P°((,n) a polynomial
in €,(,n. The proof of theorem P} will follow from the study of ¢ P¢. Precisely, we will show:

11



Proposition 4. Let v > 0. Then, uniformly in each compact subset of R"~! x R,
lim ¢ P(C,m) = ¢, P°(C,m), (2.15)

where ¢(x', x,) = ((;5'(3:',0), O, on(2',0) xn)
Remark 3. If we denote
> P
J
the expansion of P° with respect to n, then

6. P(Cm) = D QYO
J

with
| z'=0

Tn

The symbols Q? are polynomial in (. More precisely, classical symbolic calculus (see [B])
provides the following (finite) expansion:

@@~Z%%Pm?%mﬂ DEP) (dw/(0)C) (217)
a>0 ¢ n |z'=0

where

r’ (x') = ¢ (x', 0) — dp¢'(0) (m') .
The terms of rank « in this expansion are polynomial in C, of degree less than deg <PJQ) —|al/2.
(see again [G] for details).

Remark 4. In the case v = 0, the limit (R.17) is easily replaced by

gig(l]gb*PE(C,ﬁ) = ¢*PO(C,77)- (2'18)

We postpone temporarily the proof of the proposition, and we show how to deduce theorem
B from it. We must prove that (H1)g-(H2)y holds, that is we can replace the local symbol
a5, by the other local symbol ag. With a slight abuse of notation, we identify = and x(z) so
that we work with z € U, U a neighborhood of y = 0 in R™. Hence,

ay(0,-) = ¢« al(0,-). (2.19)
Proof of (H1)y: We consider
- n
a’i,\ll(ga’r/) =& ﬁra’fll(o? Ca 87)’

and, as in previous proofs,

_5. n
ay\ (Cn) i=¢ ’ a5 (0,¢, gw)'

Equation (2.19) becomes

ai,\ll = ¢Z’" ai,x'
We have seen in the previous proofs that ay . is polynomial in %, ¢,n for some appropriate
a > (0. Moreover,

a3, (Cn) = Cyn™ ™ a(C,m), ¢ > R. (2.20)
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If we expand

0 0 j
ar,x(<7 77) - Z ar,j(C) n,
J
we get from proposition [ that, for || large enough,

lim ayy(C,m) = Zbg,j(C) n,
J

with

b0 .(¢) = [a?vj(Dm/)< —igh(x')- Bqﬁn( /’0)j>]|$/o

oxy,
Using (R.20), we deduce that the term of lowest degree (with respect to 1) in hm ay. g (1)
is b0 (¢) ™~ ™. Moreover, by (B.17), the principal symbol of brm my 18

( r,m— mr) (C 77) =0 (ag,mfmr) (d¢6(0) C)
= Cy o (ap(-,0)) (d65(0) ©)-

Note that d,¢'(0) is a diffeomorphism in R"~!. By assumption (H2), a2(-,0) is elliptic, hence
bg m—m, is still elliptic. As a consequence, it does not vanish for || large enough. Therefore, at
fixed ¢, the polynomial lim._.g a (¢, ) has m, roots away from zero. By Rouché’s theorem,
it is still the case for € < gp small enough. Back to the original variables, we find m,. roots of
a3 (0, ¢, -) satisfying

571

err’

o S Gl s

With similar arguments, we can find m,_; roots of ag (0, (,-) which scale like e77~1. We
consider this time

U 1,9 = e Pr=1a% (0 Ca po— )s

as well as a;_; . Again, a;_; , is a polynomial in (e* ,C,n) and

1,x
0 1 (Cm) = Cyn™ ™=l (Cn) al(C,m).

We then apply the same reasoning as above, replacing a2(-,0) by the product a®_;(-,0)a’(-,0),
which is still elliptic.

Proceeding recursively, we find, for all 1 < j <, m; roots of a3(0,(,-) such that

-1

(e
[«

- < | < =7

for ¢ < eg small enough, § = 6(gp) small enough. Finally, by (.1§),

lim a§,(0,¢,6n) = ¢ | af(¢.&) [ af(¢.0)
j=1

At fixed (, the right-hand side defines a polynomial in &,, of degree m — s. By Rouché’s
theorem, this yields m — s roots of a3 (0, ¢, -) with

0 < |& <67L

As the degree of ay(0,¢,-) is m = m — s 4+ > m;, we obtain in this way all the roots.
Assumption (H1)y follows with the same r, v1,..., ¥,.

13



Proof of (H2)g: We have just established (H1)y. Just as for a5, we can factorize

ay (Y, ¢ 6n) = 5(C,6n) H (C,€7¢) (2.21)

(see factorization (R.13)), and we have to show that: for all 1 < j <7, &?(C ,0) is elliptic in a
neighborhood of y. But from above identities, we have got easily:

Cy o (a(-,0)) () = Cy o (ax(0)) (dgip(0)S),

and

Cy o (a0_1(-,0)) () o (@(-,0) (¢) =
Cy o (a)_1(-0)) (der ¢’ (0)¢) & (a)(-,0)) (dar ¢’ (0) C),

and so on. As ellipticity is preserved by inversion and product, we deduce (H2)y from a
simple recursion. [

Proof of proposition [§: The proof relies on the representation of ¢ P¢ as an oscillatory
integral. The asymptotic analysis of such integral will be performed through “stationary
phase type” theorems. This approach is very classical in symbolic calculus, to establish the
properties of conjugation, product, or transformation under a diffeomorphism (see, among
many, textbooks [, B]). However, in the standard setting, one is mainly concerned with the
principal symbol, so that the small parameter in the asymptotics is the wavelength 1/|¢|. In
our framework, the natural idea is to work with the parameter ¢ instead of the wavelength.

Let u € C*(U), ¢ € R" 1 5 # 0. We wish to compute

I = {Pa(Dm/,avan) (e_w(m)-(c,e”n)u(x))]

| z=0
I¢ = I¢(¢,n) is defined by the oscillatory integral:
IF = 1 /e—iw-(fﬁ) Pe <<~ 5777) u(x) @ T drd(C, 7).
(2m)" ’

Following the scheme of [, page ??], we make the change of variables:

3% n /aO
oule0)

Y

no=1 -
By the Fubini theorem for oscillatory integrals, we can write

1
(2m)"

o= /eix"f JE(2', ) da’ dg,
with
Je(ﬂf/, 5) = /ei‘r"77 et (@) u(x) et ()<
P2 (G771 + O fula’, 001 dand

where

rp(z) =1 (gbn(az) — amnqﬁn(x',())) .

14



We set
.ry(x)

O° (2, 7) == /em"ﬁel o u(x) €@ dy,,,

so that
T, C) = / P*(C. £ + 02, 6u(a’,0)m) °(a/,7) di.

For fixed 7, 2’, we introduce the phase
e 7 flan) == T (ry(x) — e"Nwyp),

with derivative

F(@n) = 102, 0n(2) = Oz, $n(a’, 0)) — €77,
o If |90y, dn(2',0) + 7| < 1/C, C such that | n 9,, ¢(z) | > 2/C for x in a neighborhood
of 0, then |f'(x,)| > 1/C.

o If |00y, dn(2',0) + 77| > C, C such that |nd,, ¢(x)| < C/2 for x in a neighborhood
of 0, then | f'(z,,)| > C/2.

We deduce from the non-stationary phase theorem (see [B, page ??]) that for large enough
C, outside

= < n0hafn(a,0) + 7| < C,
for all k,
—k
o<@, )| < G (141l +2) (2.22)

Still following [F], we introduce a truncation function « such that a € C°(R), a(&,) = 1
for C~1 < |€,] < C, alé,) =0 for |&,] < (2C)~L. We divide

J (2!, () = Ji (/. 0) + J5(2'. Q)
with

¥ -
J5 = /a ((9%@5”(3:/,0) + %ﬁ) Pe (x, ¢, e'n + amngzbn(ﬂ:/,xn)n) e (2, 7)) di.

Note that J{ and J5 are polynomials in ¢ (as the only dependence on Cisin P#). From the
estimate (2.23), we deduce

‘0@,,5) Jf(:c’,f)‘ < CprlCINPek, NeN, Vg, k.

Hence,
1 —iz!-C e pe
I = (277)"/6 ¢ Jf (2!, ¢) da’ dC

satisfies I§ = O(g¥) for all k. Moreover, a rapid look at the proof shows that all estimates
hold uniformly in every compact subset of R*~! x R,.

It remains to estimate the “stationary terms” J5 and I5. For this, we will use a lemma
whose statement and proof can be found in [J]:

15



Lemma 1. (f3)
Let 7 = 1(2,0) € C°(R x O), O open subset of RP, such that 0,7(0,0) = 0. Let b* =
W (2,m,0) € C®(R x R x O), depending on a parameter X > 0 so that, for some M,

V3.8,

D20 b (2,1, 0,\)| < Cp AV (2.23)

Assume moreover that b has compact support in z, uniformly with respect to n, 8, X. Then,
the integral

JA) = (2#)"/eiznei>‘r(z’9) W (z,n,0) dz dn
has the following asymptotic expansion for X — +oo

1 .
JO) ~ Y2 =02 (VO DR (=,0,0)) Lo,
a>0

)\Mfa/2_

where terms of rank o are bounded by This expansion holds locally uniformly with

respect to 0.

The function J5(x, () is polynomial in ¢, with coefficients that read
/ e_ix” 1 Bie_'yr"(x) n b;:(xn; 77, <a m, 'I/) dmn
Such integrals can be easily put in the framework of lemma [, with A\ := ™7, 2z := x,,, n := 7,
and 0 := (¢,n,2"). Thus, 7(z,0) := r,(x) satisfies 9,r(0,60) = 0. Besides, the function

bA(Za m, 9) = b;(xn’ ﬁa Ca m, 33/)
satisfies estimate (R.23) with M = 0. Its support in z is contained in the support of u, so
uniform with respect to the other variables. Hence, we can apply lemma [Il. The first term of
the expansion provides

J5(@.0) — @, 0) = V0 PO (C 0rbu(a,0)n) ula’.0)

e—0

and consequently

1 s _ _
B o [ o' G

e—0 (27‘()”

with convergence in every compact subset of R”~! x R,. As we handle polynomials in 7, the
uniform convergence extends to compact subsets of R”™! x R. By taking u equal to 1 in a
neighborhood of 0 in U, we obtain the result. [J

We end this section on asymptotic invariance with a definition:

Definition 2. Let y € Y. We say that a® is uniformly singular at y if (H1)-(H2) holds at y.
The corresponding v;’s, 1 < j < r are called singular exponents (of a® ) at y, and the m;’s
are their multiplicity.

These definitions make sense because of theorem . We recall that the singular exponents
are positive rational numbers (see corollary [l).

Definition 3. Let Y/ C Y. We say that a® is uniformly singular on Y, if it is uniformly
singular at all y CY', with constant singular exponents and multiplicities.

In the whole sequel, we will make the following assumption:

(H3) The operator «° is uniformly singular on each connected component of the
boundary Y.

16



3 Boundary layer sizes and equations

3.1 Definitions and hypothesis (H4)

Let Y a connected component of Y. By assumption (H3), a° is uniformly singular on Y.
We denote by 71 to 7, the singular exponents, and m to m, their respective multiplicity. In
a region Y’ x (0,7"), equation ([.4) reads

a®(z, Dy, Dy)u® = 0.
Let y € Y'. Let (O, ') a local chart in Y’ around y. The application
X - O x (_TI7T/) = an (yl7t) = (X/(yl)vt)

defines a local chart in X around y. Hence, we can define a local operator a5 (z, Dy, Dy),
with symbol af (z,(, &)

On one hand, we have a finite expansion of the type
€ Dy & K _ak
(500 20) = 305 AuelnDy) D (329
k=—ko Kk’ X
for some appropriate o > 0 and smooth differential operators Ay i on Y. Hence,

ko
as, <y7C, 6%) = > > Agw(y, ek, (3.25)
k=—ko K

On the other hand, with notations introduced in (-1J), we have for || > R(y),

. ) n —S .. m.y
gg% 6ﬁj CL; (y, Ca €TJ> = CX 77m Z] 23 "™ (Z?(C, 77) H (l?/(g, 0) (326)
J'>j

From (B.29) and (B.26) we deduce

D -5 ,..m
lim Pias (y,Dy,:£> - Dy’ 252 " an, (y, Dy, Dy), (3.27)

where a.; is a smooth differential operator. It satisfies, for [(| > R(y),
a"/jyX(y’ C’ 77) = (Z?(C, 77) H (Z?z((, 0)
3>

For 1 < j <r, we say that the operator a,, is a singular operator (associated to the singular
exponent ;).

Special attention will be paid to localized solutions of equation
ayu = f, (3.28)

where a, is a singular operator, associated to the singular exponent «. Indeed, the functions
v;.’k in expansion ([.I0) will satisfy equations of type (B:2§). Therefore, we introduce the
Fréchet space

X = S(Rf; C>2(Y")).

We also denote
X = {ue X, a,u=0}.

We set the following definition

17



Definition 4. We say that 7y is a boundary layer exponent (and €7 a boundary layer size) on
Y’, if there exist subspaces X} # {0}, X" with:

i) Xy CciAy, Apycx cAX.
ii) DpX' = X', DX Cc X', 0X' C X', [fX CX forall smooth functions f € C*(Y").
iii) For all f € &7, (B.29) has a solution in X'.

Remark 5. Note that identity Do X' = X' implies that X' is preserved by both Dy and its
inverse Dg_1 (which is obviously defined on X ). Note also that X} and X' are not uniquely
determined. However, the subspaces + X and + X' where the algebraic sum is taken over all
subspaces X} and X' satisfying i)-iii), are well-defined, and are the largest subspaces satisfying

i)-111)
Remark 6. The definition of a boundary layer exponent is at first sight dependent on the

diffeomorphism
X : T/ ~ Y/ X (—T/,TI), T~ (y’t)’

where T’ is a tubular neighborhood of Y'. However, if
VT =Y x (=T, 1), z=~(3,t)

is another such diffeomorphism, we can link the singular operators a, and a~. following
computations of theorem B. Indeed, we have

Ay, (Y, Dy, D) = b, ay,x(y, Dy, Dy),
where ¢ = (¢, ¢n) =V o x™ 1 €Y' X (~Thnin, Trnin), where Tpyin := min(T’,T’). , and

Py 0 n., o /
5:0.0) = (0.0, B0 07 )

Thus, solutions of (B.28) with ay = a, and a, = a4y are deduced from each other by the

change of variable ¢ . As soon as

000

>
o = C0>0,

this change of variables preserves the properties of a boundary layer exponent.
We end this section with an assumption that will ensure the existence of a singular (bound-
ary layer part) in ([.g):

(H4) Among the singular exponents given by (H3), there exists at least one
boundary layer exponent.

3.2  Solvability

The verification of (H4) relies on solutions of (B.2§) in X. In some particular cases, one can
give some effective criteria that ensure the solvability of this equation.

18



3.2.1 Order zero operators

For many physical systems, the coefficients of the singular operators are just smooth functions

a’Y(yv Dya D@) = av(%Dé))-

Hence, (B.2§) resumes to a collection of linear ODE’s with constant coefficients, indexed by y
in Y/, Thus, to determine if v is a boundary layer exponent is relatively easy. For instance,

Proposition 5. Assume that there exists a closed curve
r'c{Zm(n) >0}
enclosing the set

{n, 3y,ay(y,m) =0} N {Zm(n) > 0}

of all roots with positive imaginary part. If this set is not empty, then v is a boundary layer
exponent, otherwise it is not.

Proof: By Rouché’s theorem and smoothness of a., the number m™ (y) of roots of a-(y, -)
lying inside I' is locally constant, As Y’ is connected, it is constant. It is then well-known
(see [[l]) that the homogeneous space X is spanned by functions of the type

f@)w;j(y,0), feCeY'), wi(y,0) = /Fe"”ga;l(y,n) n' dn, jeN.

Moreover, the dimension of Vect {w;(y,), j € N} is m*. The result follows, using X} = Xj,
and

X' = Vect {f(y) /Fei"ga;%y,nwdn, fecxy, leN,jeZ}
]

As shown in proposition [, the boundary layer is connected to roots with positive imag-
inary part. This echoes the formal method used in [§], where roots & with Im & — 400
were considered.

3.2.2 Operators with constant coefficients

Suppose that Y" = R""! (or T""1) and a, has constant coefficients. One can use the Fourier

transform over R"~! (or 77~ !), which turns (B.2§) into

a“{(CaDG),& = f
This is still a collection of linear ODE’s, with constant coefficients, indexed by ¢ € R"~! (or
Tnfl)_
3.2.3 General case and link with spectral problems

In general the singular operator a.(y, Dy, Dy) will be a "true” differential operator. But in
many cases it will give rise to a (spectral) decomposition which will allow us to solve the
problem. In this paragraph we will describe briefly the methodology without focusing on
technical details.

Let us remind that a solution of a problem of type

ay(y, Dy, Dp) u(y,0) = f(y,0) (3.29)
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that decreases as § — +o0o can be handled by Fourier-Laplace transform in 6. Denoting

u(y,§) : > e~ (y, 0)dl, (B-29) is equivalent to an equation of the form :
ay(y, Dy, )y, &) = f(y.€) + F(y,€) := G(y, &) (3.30)

where F' involves boundary terms issued from integrations by parts in the Laplace transform.
Let us suppose that A¢ := ay(y, Dy, &) admits a ( sometimes spectral) decomposition weakly
on L? of the form:

A = / 90 O)lpen >< wealdr (3.31)

where |pg x >< ¢ 5| denotes the orthogonal projector on ¢ y, and the (spectral) parameter
A is either complex or real. Let us suppose moreover that the function g(\,§) and the family
of vectors ¢ \ are analytic in £ (let us mention here that a naive definition of analytic vectors
is enough for the examples we have in mind: for a precise definition see [[[7]). We can solve

(B.30) by using the decomposition (B.31) . Indeed denoting

GNE) =< perlGON ) >= / FERC(N. £)de
we get:

J:—Hoo
/ dx / L 00 o). (3.32)

Therefore by the Cauchy theorem it is enough to know the zeros of g. Let us show how these
ideas apply in the case of a non-differential operator, a pure differential one and in general
when the boundary is a flat manifold..

Let a(y, Dy, Dg) = b(y,Dp). In this case @er(y) = 0(y — A) and g(A\, &) = b(A§).
Therefore the Lh.s of (B.:33) can be computed easily: let &(y) a family of non-degenerate
zeros of b(y, ), that is b(y, & (y)) = 0, 0:b(y&i(y)) # 0. then:

x-l—zoo
up0) = g far [ GO o)

)\
_ x-l—zoo 1 €0
- / s s G0. 0 - )

T+1i00 1
= dé7— Gy, €)e’

27-” T—100 b(y7§)
= &i(y)0
Z b, 5 Py Gy, &i(y))e

One sees immediatly on this example that the boundary layer will exist as soon as one of the
&i(y) satisfies Re(&;(y)) > ¢ > 0, and there is no crossing between the different branches.

Let us suppose now that a,(y, Dy, Dg) = c(Dy, Dy). In this case ¢¢(y) = e and
g(A &) = c(N€). Let as before &(\) a family of non-degenerate zeros of b(\,§), that is
b(A, &(N)) =0, Oeb(N, &(N)) # 0. We get:

m+zoo
u(y,d) = 9 d)\/
m+zoo
= d
il 2

Zagb/\fk &\

@(A, )epe A (y)

G(A, £)elet™y

G*(A &(A))efi“”e“y
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Therefore the boundary layer will exist as soon as there exists a family &;(\) with Re(& (X)) >
c>0, VA

In the case where the boundary is R” (or T") and that the operator a,(y, Dy, Dy) is a
differential operator in y with polynomial coefficients a decomposition similar to the preceding
one can be handled with the so-called coherent states. Let us briefly describe the construction
on R, the generalization to R" (and T™ by periodization) is straightforward. Let (p,q) € R?
and let ¢, , the family of functions defined in [[]

Opqg(y) == a4~ (w—a)?/2 vy

Let us now consider the operator a.(y, Dy, §) = a(y, Dy, §). Being with polynomial coefficients
it can be surely rewritten as

a(y, Dy, &) = Y ar;(€)(y +9,)(y — 9, (3.33)
k.j

Let us define aaw (¢, p, €) == 2y ; an,j(€)(q + ip)*(y — ip)’

Lemma 2.
a(y7Dy7§) = /]RQ aAW(Q7p7§)“Pp7q >< @qu,dpdq

where the integral is understood in the weak sense.

Proof: an easy computation shows that we have the following decomposition of identity

> lepq >< @paldpdg =1
RQ

Moreover it is easy to check that
(¥ +9y)¢pq = (4 +1P)ppg

and therefore
< pgl(y —9y) = (= ip) < @pgl-
Inserting in (B.33) the decomposition of the identity we get:

.00 = 3 (O +0,) (-0,
k.j
= YO+ )" [ 160 >< cnaldpdaty =0,
k,j

= / . > an(q+ ) lppg >< ¢pal(q — ip) dpdg
Y

= /2 aaw (¢, p,&)|ep,q >< ep,qldpdy.
R

It is easy to check that the same argument as for the preceding case holds, and that the
boundary layer exists as soon as it exists a family of non-degenerate zeros, aaw (¢, p,€(q,p)) =
0 with real part strictly positive (uniformly in (g,p)). A detailed description of this method
will be given elsewhere.
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3.2.4 Almost solvability

Contrary to what previous cases suggest, the solvability of (B.2§) can not be deduced in
general from a symbolic analysis. Indeed, to go from a local analysis (with a local symbol
near y € Y') to a global one (on all Y’) requires a “patching process”, involving a covering
of the boundary and a partition of unity. Such process introduces regularizing operators,
responsible for a loss of information at low frequencies. One can clarify this idea in the light
of classical results by Tréves [R(, Chapitre 3]. These results were obtained to describe the
regularity properties of elliptic operators. However, they give some insight into our boundary
layer problem. Let us consider the “tangential principal symbol”

m
Ay(y, Dy, Dg) = Za(ak)(y,Dy) Dg,
k=0
where a, == Y _}L, ar(y, Dy) D§. We suppose that
i) Y’ is compact
ii) There exists ¢ > 0, such that

degree o(ar) = degree o(ap) + qg(m —k), Vk.

iii) There are two integers, m™ and m™~ such that m™ +m™ = m, m™ > 1, and for all (y, ()
in T*Y’ — {0}, the polynomial A, (y,(,n) with respect to n has exactly m™ roots with
positive imaginary part, m~ roots with negative imaginary part.

Under these assumptions, we state

Theorem 3. There exists a family Ry, k = 0,...,m of reqularizing operators over Y' such
that .
- . k
a”‘/(y’Dy,DG) Ca a’y(y’DyaDG) + ZRk(y,Dy) DG
k=0

satisfies: {u € X, ayu =0} # {0}, and for all f € X, equation au = f has a solution in X.

Broadly speaking, this theorem says that a singular operator whose “symbol has good
properties” (assumptions i) and ii)) is “close” to a boundary layer operator, i.e. up to
additional regularizing operators. However, as these regularizing operators do not vanish,

[,

one can not conclude to the solvability of (B.2§) in X.

Proof: We start noticing that

3
L

ay(y, Dy, Dg) = am(y, Dy) Dg" + ax(y, Dy) Df
0

b
Il

with a,, elliptic. Up to compose by a parametrix of a,,, which would yield an additional
R(y, Dy)Dy' term with R regularizing, we can assume that a,, = 1.

This simplification, together with ii) and iii) enter the framework studied in [R{]. Tréves
considered ii) with ¢ = 1, but its arguments extend straightforwardly to ¢ € N*. In particular,
we have the “almost factorization” (see [0, pages 157-162]):

a“/(yaD@pDG) = a;(%DyaD@) a:/r(y,Dy,Dg) + R(yaDy7D9)7
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m¥
where a = Zak (y, D De, R:= ZRk (y, D )Dg
k=0

The ak , Tesp. Rk, are pseudo-differential operators of degree q(mi — k) resp. —oo. Moreover,

for all (y, (), the roots of
+

AjE (y,¢,m) = ZO’
k=0

are the m* roots of Ay (y,¢, ) with =2 imaginary part. Thus, from above decomposition, we

can rewrite equation (B.2§) as a triangular system:

atv + Ru = f,

‘g

(3.34)

a, U = v
Still following [0], we denote —A,, the Laplace-Beltrami operator on Y’ and set A = (1 —

Ay)l/ 2. Through the change of variables

Dov/ = AL =1, m"T —1,
| o ) (3.35)
Dy = AT j=1,...,m —1,
we can write (B.34) as a first order system
D)V — ATV = RU + F,
’ v (3.36)

DyU — AU = JV
with V = (v9), U = (u/),
RU =(0,...,A"™ Ru'), F=(0,...,A"™ f), JV=(0,... A"
The .Ait are matricial pseudo-differential operators of order g over Y’. Moreover, they satisfy

det (n — U(Ajf)(y, Q) = Aﬂi/(y7 ¢;n).

Hence, we can apply [R0, theorem 1.1, page 134] on parametrices for parabolic type oper-
ators: one can find a function 4% (), with values in matricial pseudo-differential operators of
order zero over Y’ such that

DoU* FAZU* ~ 0in Y’ x {0 >0}, U*|p_g=1I*

where I* is the identity of C™". In each local chart (O',X") of Y, the local symbol (y,() —
Uj(y,@, ¢) of U*(0) satisfies

i) L{;E, is C*® on O x Ry x R"L,

ii) To every compact subset K of @', to every pair of (n—1)-tuples «, 3 € Z’f[l, and to every
pair of integers r, N > 0, there is a constant C' > 0 such that for all y in K, § > 0,
¢ER™,

a5 0F O U (5. 6.0)l < CON (1 [¢lyra- 1= (3:37)
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We quote that in theorem 1.1 of Treves, estimate () holds only locally in 6, because
the symbol A = A(€) under consideration has only local control in 6. In our case, .Ait are

independent on 6, so that (B.37) extends to # in R,.
Suppose now that f € X so that F € X™". Let V0 € (C®(Y"))™*. Set

0
V =Uut@e) v - / Ut — s) F(s)ds,
. 0 (3.38)
U = —/ U (s—0)TV(s)ds.
(%

By estimates (B.37), it is clear that (U, V) € X™, and as U* are parametrices,

DgV — ATV = RU + RTV + F,

! _ (3.39)
DU — A;U = JV + RU

for regularizing operators R*. Back to original variables, we get the result. [J

4 Boundary layer expansions

4.1 W.K.B. Ansatz

The notions and hypothesis introduced above are linked to boundary layer expansions for
solutions of ([L)-(C7). Let Y! to YV the connected components of Y = 9. To each
i=1,...,N, we can associate r; € N boundary layer exponents v} < ... < 'yﬁl Remind that
these exponents are positive rational numbers. Hence, replacing for simplicity ¢ by € with
some appropriate § > 0, we can assume that § = 1, 7;» e N*, Vi, j.

As usual in WKB approach, we inject approximations ([.§)-([.10) into ([.G). The resulting
equations are expanded and ordered according to powers of €, and coefficients of the different
powers of € are set equal to zero. It leads to a family of equations on the u* and v;’k. To

lighten notations, we set uk =0, vli’j =0 for k <O.
i) Interior terms. Denoting a°(x, D,) := Z?:o laj(x, D,), we have

h
> i, D) uFt = Gor f, Yk EN. (4.40)
=0

where dg, is the Kronecker symbol. This reads in short
Az, D,)U = F (4.41)
where U := (u¥) € C*(Q)N, F := (£,0,...), and
A:C®@N s c®@N, (AU =D qub
ii) Boundary layer terms. We deduce from (B.27)

n ik .0 i k—1
D,’ ay;(y,Dy,Dg)v; + L(y,0, Dy, Dy) <v; ,...,v;. ) =0 (4.42)

for y € Y% and 6 € R,. L is the linear differential operator coming from lower order
terms, and nj is an integer. L has smooth coefficients, polynomial in 0. As Dy is
invertible from X to X%, we rewrite such equations as:

ik i,0 i, k—1
a:(y: Dy, Do) v + M(y,0, Dy, Dy) <v; eyt ) —0. (4.43)
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In particular,
0
ay];(y,Dy,Dg)v;» =0 (4.44)

Moreover, as 7;: is a boundary layer exponent, equation (§.44) has a non-trivial solution
in (X). Recursively, equation ({.43) (hence equation (£.4)) has a solution in (X?).
Again, equations ({.43) can be written

N N
_ _ 1,k N,k ;
Ap(y,0,Dy,Dg)V =0, V= (vj . )j,k € (I |1XZ> )
Z:

Remark 7. No other scalings in boundary layer expansion (L.10) could lead to “reasonable”
localized solutions. This means that, in view of factorization (R.13), any boundary layer term
of the type v(y,t/e") where 7 is not a singular exponent yields equations of the type

e(yaDy)ngU = f

for some elliptic operator e(y, D,) and oo € N. Except for some spurious source terms in the
case where e(y, Dy) is non-invertible, such equation has no nontrivial localized solution.

4.2 Assumption (H5) and proof of Theorem

At this point, the boundary layer and regular parts have been described independently from
one another. They are of course linked through the boundary conditions ([.7). It can be
written

m/
Z Blil(y,Dy) D§u|t=0 =g, Yye& Y, (445)
k=0
where By, (y, D,) are smooth differential operators, polynomial in €. Let us introduce
N m/+1
Y = {<D§V\t:0) L k=0,....m, AyV= o} c (HCOO(YZ')N>
i=1
Again, we can inject the Ansatz ([.§)-([.1() into (.7). This can be written as
m
> By, Dy)DgUl—o + Cily, Dy)W = G,
k=0

for some differential operators By : C°(Y)N — C®(Y)N, W € 9V, and

N m+1
Cr: 0V — (HCOO(YZ‘)N> .
i=1
Introducing any projector II; on the range of C;, we can rewrite previous equation as
m
> T By, Dy) DU =0 = TG, (4.46)
k=0

The existence of the regular part resumes to:
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(H5) One can find U € C>®(Q)" such that

A(z,D,)U = F,

“ 4.47
> T Bi(y, Dy) DU =0 = TG, (4.47)
k=0

As assumptions (H1) to (H5) are fulfilled, one can find u° of type ([L.§)-([L.10) satisfying

{aE(x,Dm)us ~ [, z€Q,

) (4.48)
bj(x,Dy)u ~ g, xz€Y, le{l,...,L},

uniformly on the compact subsets. Theorem [[ follows.

One can see system ([L.47) as the limit system of ([[.)-([[.7). It means that the small-scale
effects due to boundary layers are contained in this large-scale system. A strong difficulty
is that it is infinite-dimensional: correction terms u' at any order may interact. Hence, in
most situations, one does not treat directly system ([.47). The classical attempt is to turn it
into an infinite collection of finite-dimensional systems, that are of the same type and solved
recursively. This will be illustrated on the quasigeostrophic equation in the next section.

5 Application to the quasigeostrophic model

The stationary linearized quasigeostrophic equation reads, for = in a two-dimensional domain

Q

1
Re
where ¢ = ¢ (z) € R, x = (x1,22) in cartesian coordinates, 3, r and Re are positive param-
eters, and np = np(x), 7 = 7(x) are smooth functions. It is a celebrated basic model for
oceanic circulation: 1 is a stream function, associated to horizontal velocity field u = V-4,
np is a bottom topography term. The expression (05,7 comes from the variation of the
Coriolis force with latitude, 7A and —1/Re A1) are dissipative terms due resp. to friction
and viscosity. Finally, Bcurl 7 is a vorticity term created by the wind. We refer to [[L§] for
all necessary details. Equation (p.49) is fulfilled with Dirichlet boundary conditions

B0z + VY- Vng + rAy — A% = Beurl 7 (5.49)

V=0, =0, zcdN. (5.50)

We will apply previous analysis to system (f.49), (F.50), for several domains € and ranges of
parameters 3, r and Re.

5.1 Munk layers

We first investigate the case where
8 — +o00, 7r,Re,T given (5.51)
which corresponds to strong forcing by the wind. We consider a domain of the type
Q = {xw(r2) <1 < Xe(22)},

where x,, and y. are smooth, with all derivatives bounded. They describe the western and
eastern coasts. We assume that z9 € R or 9 € T. The case of a closed basin will be evoked
in last subsection.
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This boundary layer problem enters the framework given in section [, with e = 5~1. We
start with the derivation of singular exponents for both connected components of Y := 0,

Y = {(xw(®2),22), x2 €Ror T}, Yo :={(xe(x2),22), 22 €RorT}.

Western boundary layers. For any y € Yy, global coordinates x| = xq, 24 = 21— xw(22) define
a local chart near y. In these coordinates, the corresponding symbol satisfies as |£1] + |£2] —
00,

aw(@,1,6) = ie7 & + 0(&| + |el) — v (& + (1 +x2) &
+o(al + l6D) - = (6 + 4278 + o((al + &),

with x}, := x%,(2}). For all & € R, the roots of a, (', &1, ) with |&| — 400 satisfy

.1 1 N2 iRe 8 -1/3
e 52 ~ %(1+Xw) 52, v.e. 52 ~ (1+X5)2 € :

Eastern boundary layers. The derivation is similar, with 2} = za, 2}, = xc(22) — 1. Roots of
ae(x', &1, ) with singular behaviour satisfy

é_ —ZRG 1/3 5_1/3
! (14 x2)? '

Hence, assumptions (H1) to (H3) are fulfilled, with the singular exponent v = 1/3.

To identify singular operators and boundary layer sizes is easy using the global coordinates.
Indeed,

Dg _ 1 2
aw (27,0, Dyt 1—/3) ~ e4/3 (De e (1+X§12;) Dé‘),

D _ 1
ac(,0, Dyt 1—/93) ~ g 4/3 <—D9 e (1+x, ) D9>

Thus, the singular operators are

1 1
aw,,y—Dg—R—(l—i— )De, ey 1= Dg—R—(1+ )De

They have order zero coefficients. Denoting o, . = Re'/3/(1 + Xﬁ,e)% the roots of their
symbols are cu,e'™6, 5im/6 37/2 resp. e /6 /2, 7in/6  Proposition i}
applies (two roots, resp. one root with positive imaginary part). Thus, el/3 is a boundary

layer size on Y, ..

Q€ Q€ , Qe Qe

It remains to show the existence of solutions similar to ([L.§), with
g (2) ~ 90 (2) + PN a) + .
0 (1= Xw(®2) 0 ( Xe(z2) — 21
Up (@) ~ by, <T79€2> + e (ElT,xz
+ eyl <7$1 ~ Xu(23) :c2> T

1/3

Equation (5.49) yields ‘ '
O W' = f* + dp;icurl 7, (5.52)
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where f? involves u¥, k <4 — 1. Equation (5.50) yields

Yilo—o + ¥'lv, =0, il + ¥y =0,
Doislo=0 = 9us  Dotbelo=o = ge,

where gfw depends on u* and uffme, k < i—1. The western boundary layer operator has
two characteristic roots with positive imaginary part. One can find localized solutions 1, of
Ay Yw = fu for arbitrary values of ¢, |g—=0, Dotw|p=o. This is not the case for the eastern
boundary layer, for which only one condition can be given. The last boundary condition
prescribes Dp1)0)g—o = 0. Recursively, we easily deduce that the approximate solutions exist

if

Wb=1f, Ylyv.=9 [feCTQ), gel™(Ye) (5.53)
has a solution. As ¢(z1,x2) = f;::(m) f + g(z1) is the unique solution of (5.53), this proves

the existence of boundary layer expansions. These boundary layers are called Munk layers.

5.2 Stommel and friction layers

We now investigate the case where

ﬁ2/3 )
8 — 400, —— — 0, Re,7 given, (5.54)
r

which emphasizes the role of friction. In terms of £ := 37! and &, := /3, the last condition
reads ¢!/3 /es — 0. To fit exactly the context under consideration, we assume that e, = &9 for
some rational number § < 1/3. The domain 2 remains the same as in previous subsection.

Remind that the western symbol reads

aw(7',€1,6) = ic & + O(l&] + |&]) — e <5% + (1+x2) &
+o(al + 16D) - = (6 + a+x27% + ol + 1&l)?).

For all & € R, the singular roots of a,, (2, &1, ) satisfy either

- _ , { _
iet ey ~ o eget (1+X/u2))£§? i.e. £ ~ Wesl, or
Es 12\ ¢2 —1 2\2 4 (—Re)1/2 <5S)1/2
— (1 ~ — (1 .e. ~N = .
€ ( +Xw) 52 Re ( +Xw) 52, 7€ 52 1 +X;12; c
Similarly, for the eastern symbol,
- —Re)/2 re\1/2
fo v —5et, oréy ~ % <—s> :
R L+xe e
There are two singular exponents, uniformly on Y: 1 = § (i.e. €7 =¢&,) and v = 1%5 (i.e.

e’ = \/e/ey).

The singular operators read

Qwry = 1Dy — ng, Qe = —1Dp — ng,
1 1
Qo = —1ld — ng, Qery = —rld — ng.
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Thanks to proposition [J, we deduce that £ is a boundary layer size on Y, and €7 is only
a boundary layer size on Y, (one root with positive imaginary part for aj;e and aj), no such
root for al').

We look for approximate solutions with
us,, = PO 4 el 4 62(72—71)w2 + ...,
T1 — T2 T1 — T2
vy = P <M79€2> + Y00 <M,$2>

eMn 72
0 [ Xelz2) — @1 Ya—71,,1 T1 — Xw(®2)
+ T/Je,z Tax2 + e 7/)11;,1 T,@ + ..

Equation (B.49) yields (5.53). Equation (5.50) yields
Vi lo=0 + Vi olo=o + ¥'lyv, =0, ¥lslo—o + ¥'ly, =0,
Dythy, olo=0 = d»  Dote 2lo=0 = ¢,
where gfw involve u* and Uﬁ;,eg,z for k < ¢ —1. All boundary layer operators have one root

with positive imaginary part, thus only one condition can be given at the boundary. The last
line prescribes D9¢2;,e72 = 0. Reasoning recursively, the existence of approximate solutions

relies on the solvability of (B.5J). The boundary layers with size €5 and ey := \/es/e are
known as the Stommel and friction layers.

5.3 Geostrophic degeneracy

We consider again the asymptotics (b.51]). In subsection p.1, we have considered a domain
with western and eastern boundaries, but no northern or southern boundaries. Let us examine
here the case of a closed basin. We assume simply that

Q= {af+23 <1}, Y=00=5"

Let us look for singular exponents near yo := (0,1). We chose local coordinates x} = x1,
zhy = /1 — 22 — x9. The local symbol reads, as |&1] + |&2] — oo
a5 (@' 61,&) =ie ! (¢ —Aﬁ
Y\ 81,82) = 1 T 2
1
’ 1 o
. 51,217152 o™ 7IB_2—1289¢/ nB
+ 9 N . R i
—& —390'2773
2 da’? 2
—r &t (e tl) & + Olal+el)
-

Y O (R 254 + O((l&] + I&2)%)
Re | °! 1-— x’f 2 ! 2
Let & € R*. For y # yo, i.e. x| # 0, the roots & with |£2| — 400 satisty

1 @ 4’2 2
1 1 1 4
2ie §o ~ <1—x’2 +1> 5

Re /1 —af?
which yields v = 1/3 in agreement with subsection p.1. For y = yq, i.e. x) = 0, this relation
degenerates. The roots & going to infinity satisfy

. 1 . ) _
1€ 151 ~ ﬁgg, i.e.&y ~ (z&Re)l/A‘e 1/4
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so that v = 1/4. In particular, there are no singular exponents uniformly on a neighborhood
of yo = (0,1) and (H3) fails. This phenomenon is known as geostrophic degeneracy. It takes
place in various systems of fluid mechanics, including rotating fluids (as can be seen on figure
fl, near the equator of the inner sphere, following [[[9]). To understand the structure of the
solutions near such “turning points” is an open question, both from physical and mathematical

viewpoints.
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