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Josephson transport through a single molecule or carbootuta is considered in the presence of a local
vibrational mode coupled to the electronic charge. The rglestate solution is obtained exactly in the limit of
a large superconducting gap, and is extended to the gersmmby variational analysis. The Josephson current
induces squeezing of the phonon mode, which is controllethépuperconducting phase difference and by the
junction asymmetry. Optical probes of non-classical pimostates are briefly discussed.

PACS numbers: 72.15.Qm, 85.35.Gv, 85.75.-d

Nanoelectromechanical systems (NEMS) offer a way tdead coupling. Explicitly (we put = kg = 1),
reach the quantum regime of mechanical oscillators. A chal- 1
lenging goal consists in creating non-classical vibratlon ), = [eo — A (b+b')] Z (ny — =) +Untny +Qbb,
states, similar to non-classical states of lihf]L, 2],hwie- o1l 2
duced quantum fluctuations in one of the mode quadratures. (1)
The generation of such states has been suggested in bulk maheren, = dfd, with d,, di, being the fermion operators
terials [3,[}#]. Recently, squeezing scenarios have been sufpr spino =1, | on the molecular levely = ¢o(V,), the po-
gested for resonators driven by nonlinear couplirﬂ;s [5] andsition of which can be tuned by the gaté,is the repulsive
for a Cooper-pair box coupled to a cantilevfr [6]. Here weCoulomb interaction, antl b" are the boson operators for the
consider a superconducting molecular transistor, whege thlocal mode of frequenc{. The leads are described by stan-
molecule carries both electronic and vibrational degrdes odard BCS Hamiltoniansj(= L, R is the lead index),
freedom. We show that squeezing occurs when a Josephson
current.flows through the molgcule, by exploiting the coher-Hj — Z\I’;k (€xo- + Do) T, Ty = < ff/’jk,T ) 7
ent regime of polaron dynamlcE [7]. Compared to the fre- - wj(fk),l
guency range of micro-cantilevers (less than 1 GHz), hexe th (2)
frequency range goes from 1 GHz to 10 THz depending owith the energy dispersiof),; the Pauli matrices,, , act in
the system (single wall carbon nanotube (SWCNT) or singleNambu space. The molecule-lead coupling is given by
molecule). p

The excitation of molecular vibrations (phonons) by an Hr = Z\Ij;k Tid+He, d= (dl ) , 3)
electronic current has been observed with normal metallic ik 1
leads in several molecules including fullerenes and carbon , ]
nanotubes[f8]. The latter are in fact NEMS, where chargaVhereZ,_r r = t;o. e***=%/4, 1; is the jth lead-molecule
fluctuations couple to bending] [9], stretchirg][10] or radia tunneling amplitude, and is the superconducting phase
breathing (RBM) mode$ [11]. Incoherent polaron-like ctearg difference across the molecule. Averaging over the leads
fluctuations due to transport trigger a non-equilibriuntrifis ~ Yields a partition function for the molecular sité[¢] =
bution of the phonon mod§ [[L2]. In the present paper, we adI™ {e PP (8,0)}, with
dress the superconducting regime. Recently, the proxiefity 3
fect and the Josephson (_eff[13] ha_ve been observed id gatw(ﬁ’ 0) = T, exp {_/ drds’ d’r(T) (r —7') d(r’)} 7
carbon nanotubes. Yet, in the tunneling regime and for gtron 0
enough electron-phonore<{ph) interaction, the Josephson (4)
current should be suppressed due to the Franck-Condon dresghere T'. is the imaginary-time ordering operatgt,is the
ing factor [14]. In contrast, we show here that for transpare inverse temperaturé;(t — 7') = Y, 7}T g( — ') T;, and
lead-molecule contacts, the Josephson effect survivesragst 9() = =3, (8, + Eros + AO‘I)_l 5(7) is the Green func-

e—ph int_e(action and triggers cohergnt phonon fIUCtuatiOnstion of the uncoupled leads. Assuming a constant normégd-sta
As a striking consequence, the conjugate momentum of th ensity of states in the Ieada one obtains:

molecular distortion displays reduced zero-point fludarat.
The superconducting phase difference and the junction-asym , 1) . ,
metry allow to control non-classical squeezed phononsstateE(T*T )=T [af +A (COS 5 O TSI Jy)} Qr—17),
including nearly (gaussian) minimum-uncertainty states. (5)

The model Hamiltonian read$ = Hy, + Hy + Hp+ Hy,  With Q(7) = 5713 e ™7/ /w2 + A2, wherew, =
whereHys, Hy, g and Hy respectively describe the uncou- =(2n + 1)/ is a fermionic Matsubara frequency (integgr
pled molecule, two superconducting leads and the moleculd =T';, +T'g,v = (I'z —I'g) /T, andl’; = m/t?.



First we focus on the case where the relevant molecule dy¥o lowest order /<2, fore = 0, one obtains the ground state
namics is restricted to the low-frequency domain on theescal | ¥) = e*X/2|a)|04) — e~X/2| — )| 1]), where| + a) =
of the superconducting gap (in particul@r,< A). In this  Uy,|0,) are coherent states of the phonon mode. In the limit
limit, the ¥ term in Eq. ) becomes local in time with of Jarge, the Josephson curred{¢) = Fe‘a2|sin(¢/2)|
Q(r —7') — A~15(r — ') at low frequenciesy, < A.  pecomes strongly suppressdd][14]. As we show below, in
This yields an effective Hamiltonian for the molecule as a molecular transistor with a relatively strong coupling to
the leads a sizeable Josephson current may flow and gen-
Hepp = Hy + rdf (cos ¢ oz + ysin ¢ ay) d. (6) erate squeezing without the necessity of an external drive.
2 2 This is in contrast with Ref. [[6] where an external oscilla-

The Hilbert space off.;; splits into two subspaces{; and tor (2 < 1GHz) is coupled to a Cooper-pair box, for which
M2, spanned by electron statgs 1), | 1) } and{|0a), | 1)}, @< Landa<lholds. . .
respectively. In the larga limit, these subspaces are decou- N order to probe the generic squeezing properties of the
pled. We hereafter assume the repulsiorio be relatively ~Molecular phonon, we now compute the mean square fluctu-
small,U/2 < T, consistently with good contacts. Therefore, ations of both the displacement coordinafe= b + b' and

the ground state of the system lies in tHe subspacem5]. the conjugate momentui® in the ground state of thg system
Introducing the Pauli-matrix operators = [04)( 04| — | 11 assuming zero temperature. The ground st}te (8) is found nu-

B t : _merically by truncating the phonon Fock space to a maximum
) (14 landr, = (7-) " = 04) (1] |, and performing the rota number of phononsy,,.... > A\/Q. Inthe range of parameters

tion Heyr = e'm=X/2 [ ¢=i7=X/2 Wwith y = arctan (7 tan% consideredy,,.. = 30 is sufficient to ensure the convergence
lead to an effective spin-boson Hamiltonian: of the calculations. When discussing the numerical resuks

. - set() = 1.

H=0b—[e=Ab+b)] . +T(@) 7, () Coherent charge fluctuations enhance the fluctuatiois of

. — 6X = ((Wo|X?|¥g) — <\IJO|X|\IJO>2)1/2, beyond the quan-
wherel'(¢) = p(9)L', p(¢) = \/COSQ(ffD/?) +7?sin”(¢/2),  tum zero-point magnitude. Concomitantly, the charge fluc-
ande = ¢y + U/2. Any eigenstate off, and particularly the tuationsreducethe fluctuations of the momenturdp =
ground staté®,), can be written as (Wo| P2[W)!/2. Note that(Wo|P|To) = 0 always, while
(Po|X|¥o) = 0onlyfore = 0.
~ ity /2 Nt 9 The effective polaronic interaction constavi/T'(¢) of the
|Bo) = e |Wg) = Z (A%0)|Od> + A7 Tl)) ). (8) spin-boson Hamiltoniar](7) depends on theZuéerconducting
n=0 phase difference and becomes infiniteat = for a symmet-
where|n) is then-phonon Fock state. The staf¢ (8) exhibitsric junction,y = 0. Fig. 1a shows the-dependent variation
entangled charge and vibrational states. Note that fero,  of the momentum fluctuationP as well as the uncertainty
the amplitudes in Eq.[|8) fulfilt?) = (—1)"+142, owing  9X9P. (The ground-state value 6 0 P for an harmonic os-
: ~ bth cillator is 1.) SqueezingdP < 1) occurs for a wide range of
to the parity symmetr;{H  Ta(=1) } =0. parameters, and its intensity dependgpim accordance with
The Josephson current flowing through the moleculghe effective polaronic interaction.
can be obtained as a functional derivative of the gener- For smalll’ (stronge—ph interaction), the resulting coher-
ating functionalZ = Z[¢ + £(7)] with respect to the ent state§ + o) are not squeezed, i.e., squeezing marks a
source variable¢(r), J = -24§InZ¢/0§(0)|._,. Af-  deviation from the displaced oscillator (coherent) staféee
ter averaging over the leads and neglecting retardatiogeneration of gaussian squeezing can be understood from the
of the kernel~ in Eq. (4), the Josephson current re- Hamiltonian [1p) by noticing thaP? is not modified by the
duces toJ — ZflTr{efﬁHMW(ﬂvo)j}’ wherej —  transformatiorl/,,. Expanding the third term in Eq[_(10) for
small A gives 2a°T (b2 + (bT)?) 7,,, which precisely gener-
ates two-phonon squeezed s}a@s [2]. The variationrof
betweeny = 0 andw, whereI'(¢) is maximum/minimum,
shows that squeezing is a crossover phenomenon and is maxi-
i_ A2\ o mal for intermediate coupling parameters of the polarofpro
= (T/20(9)) [(1 7 )Sm(b% * 2771“’} ' ®) lem [B]. In general, squeezing does not involve minimum-
Note that in the presence of phonons, the current operagsr douncertainty states. YetX P = 1 can be made very close to
not commute with the Hamiltoniaf] (7). This results in quan-unity for intermediate\ andI’ (see Fig. 1b).
tum fluctuations of the current even in the case ef v = 0. Squeezed states can only be produced with a sizeable
In the ground state, the relevant experimental quantityds t Josephson current. Actually, optimal squeezing (in theesen
current expectation valud,(¢) = (xpohﬂ\po), which probes  of minimum-uncertainty) is generated in the parametereang

the overlap of phonon states in Eq[] (8). To make furthewhereJ is moderately affected by-ph interaction. To illus-
progress, we perform a unitary transformatién = e~ taPr; trate this, the Josephson current is plotted as a functitmeof

on H of Eq. @)1 whereP = i(bf — b) anda = \/Q: bare interaction\?/T'Q) (Fig. 2a): as expected] decreases
~ ~ but moderately ifA is not too large. The inflexion region
H' = Qb'b — er, + T [cos(aP) T, +sin(aP)7,], (10)  corresponds to the polaron crossover where optimum squeez-

Id' (—sin(¢/2) o, + v cos(¢/2) o) dis an effective current
operator [1p] in terms of. In the rotated basis of Eoﬂ(?), the
current operator takes the form
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FIG. 1: (a) Squeezing of the momentum and (b) Josephsonnturre FIG. 2. (a) Josephson current as a function of the electtaman

as functions of the phase differenge We takel' = 0.5 (circles),2 interaction, atp = 7/2: I" = 0.5 (circles),1 (squares) and (trian-
(squares), and (triangles) forh = 0.9, ¢ = v = 0. The insetin (b)  gles) fore = v = 0; (b) Same as Fig. 1a, in the asymmetric case:
shows the Heisenberg uncertainty as a functios.of ~v = 0.5 (squares) an@.75 (triangles) forA = 1.5, ' =4, ¢ = 0.

ing is achieved. Interestingly, the asymmetry4 0 leads to  be generated by projecting the ground state on the current

strong (up tot0 percent) and nearly harmonic squeezing, hav-€igenstates, which are in principle accessible experiatignt

ing a weak dependence with the phase difference (Fig. 2b). The ground state in the current state basis (defined from Eq.
To check that the squeezing property is generic and not onlf)) asJ|£) = £J|+)) reads:[Wo) = [®4)|+) + [P_)|-),

restricted to the largé limit, we have treated the case of fi- with |¢.) = FX'/25°% (eix/2A§ZO) + efix/2A§f)) n)

nite A by using a variational ansatz appranh [3]. A mod- , s _

ified polaronic transformatiod, () = ena(b’=b). g per- andy’ = arctan ('ycot 5). In the smalll’ regime, one ob-

formed on the original Hamiltonian, Egs. (1)—(3), followsd  tains, fore = 0, the “phase cat” states,

a harmonic squeezing transformatioig, (3) = ("%, » _ _

wheren and 3 are variational parameters. Averaging over |®.) = eFTX'/2 (elX/2|o¢> 4+ e~ X/2| - a)) V2, (11)

the zero-phonon state leads to renormalized tunnelingiampl

tudes7; = 7; exp (—3a’n’e~*F) and the effective interac- which are superpositions of opposite coherent states of the

tion U’ = U — 2n(2 — n)(\?/Q). Squeezing is measured by phonon mode. More generally, states ljke.) are similar to

§P = e~2A. For largel’, using the Hartree approximation, those generated in Quantum Optifis [1]. They carry nontrivia

one minimizes the ground state energy with respegtand  phases, obtained here by tuning the junction asymmethy

(. This yields a good qualitative agreement with the exacparticular, fory = 0, they are built from phonon Fock states

large A calculation. For finiteA, squeezing is still present with even/odd occupation numbers only, being linked, respe

provided thath > 2. For instance, with the parameters of tively, to the|+) current states. At moderalet is possible to

Fig. 2b 0 = 1.5, = 4,y = 0.75) and¢ = 0, one finds achieve such nontrivial states. They have a substantialagp/e

0P = 0.79 and 0.76 forA = 100 and 4, respectively. In the between phonon states and a sizable Josephson current.

opposite limit ofA < T', assuming = 0.1, A = 1.2, = 2, We have also checked that squeezing is robust against en-

~v =0, one finds (atp = 7/2) P = 0.77 with 6XJP = 1.1,  vironmental effects induced by coupling the local vibratib

indicating that even with rather high frequency modes sisch amode to an external phonon bath, by using the reduced den-

RBM in nanotubes{ ~ 10meV’), squeezing could be ob- sity matrix formalism. Provided that the quality factQr =

tained (assuming Nb contacts,~ 1meV). Q/n, with n the dissipative coupling constant, is large enough
Nonclassical phonon states (other than squeezed states) 0@ ~ 102 — 10* has been suggeste@i @ @ 11]), the squeez-



4

ing property of the ground state is protected due to the gaground state energy), with probabilities given fay®(®))? =

(~ min(€2, A)) in the excitation spectrum of the system. | A 2; this yields a spectroscopy of the squeezed $tf8).

A direct probe of squeezed (non-classical) phonon states ig/hile absorption from a filled molecular orbital’j probes
needed. For low bending modes in SWCNT, capacitive de- |$(0)), similarly absorption towards an empty orbital will
tection through a single-electron transistor can be eowési.
Optical detection techniques may be used, such as Reson
Raman Scattering (RRS), which has been achieved in carb
nanotuk_)es|ﬂ7] for RBM mOde.S' In RRS, the incident IOho'absorption involving a transition from the subgap (Andjeev
ton excites an e!ectromc transition within the moleculal a bound states to quasiparticle states in the leads.
photon is re-emitted with excitation of the phonon modes. We
denoted’ the state corresponding to a low-lying molecular or-  |n summary, we have studied theoretically the generation of
bital, which is assumed to be deCOUpIed from the moleculabhonon Squeezing by coherent Charge fluctuations in a super-

$robe|d>(2>> — 32, A |n) by taking out an electron from
HE state] T/)4. Concerning the "cat states”, experimental
idence could be gained in principle by far-infrared ogitic

vibrations. The molecule Hamiltonian then reads: conducting molecular junction. Squeezing occurs for a wide
, sty it gty range of parameters and is maximal in the polaron crossover
Hy = Hy +¢dTd + (Ce7'd'd' + Hee) . (12) regime. A nearly minimum-uncertainty state with about 40

er cent squeezing can be obtained provided that the local vi
rational mode is weakly coupled to the environment. For
hese purposes, suspended nanotubes present the advantage

Using the golden rule to calculate the Raman transitiorﬁ
rate, we assume that the initial state is the projectioq

T-]; trle |91)r<%§J>Tg> |stﬁ[>e |](83\Iit(r)]ntht2e ﬁce)rr]%'neIegtrE%](o)iUbfpaC?hat their various vibrational modes are well charactel&ned
’ w ) di Ivian T P ) P ~ the corresponding quality factors are large. Finally, weeha
>_n—oAn"|n), while the final state withone electron in  giscussed the possibility of using optical techniques tecte

the orbitald (together with a hole inf’), involves an arbi-  the spectral properties of non-classical phonon states.
trary number of phonons without a net displacemgfit, =

[n)|o)a| — o)ar. Resonant Raman emission lines (Stokes) The authors acknowledge support from the A.C.
will appear at energies) — ¢’ + nQ2 — Eo(¢) (Eo(¢) is the  Nanosciences Program NR0114 of Ministry of Research.
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